
High Assurance System Software

Gerwin Klein Ralf Huuck

National ICT Australia Ltd. (NICTA)
Locked Bag 6016

The University of New South Wales
Sydney NSW 1466

Australia
Email: {gerwin.klein|ralf.huuck}@nicta.com.au

Abstract

This paper describes an approach to developing high
assurance system software. We demonstrate how
different formal methods can be applied in the de-
velopment process by matching specific techniques
and tools to the different levels of system require-
ments and how those techniques can complement each
other.

Keywords: System software, kernel design, theorem
proving, static analysis.

1 Introduction

System software is at the core of any application and
the correctness of the system layer is crucial to their
safety and security. This is even more important if
the application itself is used in an embedded, safety
critical environment. We believe that the convergence
of two trends in system design will help to develop
such high assurance software. Those trends are:

Small trusted computing base. The trusted
computing base (TCB) comprises all system compo-
nents that are essential to the safety and security of
the system. In the operating systems area, micro-
kernel designs show that the size of the trusted com-
puting base can be drastically reduced. Micro-kernels
provide the basic mechanisms for isolation and con-
finement of system components such that only a small
part of the system has to be trusted to ensure safe and
secure operation. Keeping the TCB small has the
great advantage of focussing the design and imple-
mentation on a few highly reliable components while
components outside the TCB require medium anal-
ysis effort since they can be updated or fixed much
more easily without affecting the integrity of the sys-
tem design as a whole.

Formal analysis. It is virtually impossible to guar-
antee correctness of a system, and in turn the ab-
sence of bugs by standard software engineering prac-
tice such as code review, systematic testing and good
software design alone. The complexity of system soft-
ware is typically too high to be manageable by in-

Copyright c©2005, Australian Computer Society, Inc. This pa-
per appeared at the 10th Australian Workshop on Safety Re-
lated Programmable Systems (SCS’05), Sydney. Conferences
in Research and Practice in Information Technology, Vol. 55.
Tony Cant, Ed. Reproduction for academic, not-for profit pur-
poses permitted provided this text is included.

National ICT Australia is funded by the Australian Govern-
ment’s Department of Communications, Information Technol-
ogy, and the Arts and the Australian Research Council through
Backing Australia’s Ability and the ICT Research Centre of
Excellence programs.

formal reasoning or reasoning that is not tool sup-
ported. The formal methods community has devel-
oped various rigorous, mathematically sound tech-
niques and tools that have matured enough within
the last decades to allow the formal analysis of sys-
tem software.

In this paper, we present an approach that al-
lows the design of high assurance system software by
matching appropriate formal methods to the develop-
ment process and to the various components of a sys-
tem. Section 2 describes the concepts of trusted com-
puting base and micro-kernels in more detail. Sec-
tion 3 gives a short overview of the two methods we
propose to apply: interactive theorem proving and
static analysis. Section 4 reports on experience gath-
ered in applying the former to L4, a modern high-
performance micro-kernel.

2 Trusted Computing Base

The trusted computing base is a priori a somewhat
vague concept. It comprises all system components
that are essential to the safety and security of the
system. This potentially encompasses the operating
system, device drivers, the application itself, middle-
ware etc. It also critically depends on what exactly
the safety and security policies of the system are.

On one end of the spectrum, the TCB of tradition-
ally developed software can be very large, and in effect
encompass the entire system. A standard web server
running a monolithic operating system like Windows
or Linux, for instance, with the goals of preventing
unauthorized access and delivering service up to a cer-
tain number of requests per second, potentially counts
inconspicuous pieces of code like the sound card driver
to its TCB. It runs in the privileged mode of the hard-
ware and in principle has access to every part of the
system. A bug in this driver can directly lead to a
system crash and therefore to denial of service, or —
with the right kind of bug and exploit — it could
even allow arbitrary code to run on the machine and
thereby circumvent access control.

It is clearly beneficial for the trustworthiness of
the system to reduce the amount of code that needs
to be trusted. This is one of the reasons well secured
web servers run with a minimal set of software and
services.

On the other end of the sprectrum is the approach
known as proof-carrying code (PCC) (Necula 1997).
Here, the application itself can be completely un-
trusted, but is accompanied by a formal proof of
safety. The goal usually is a simple property like
memory safety, i.e., the guarantee that the applica-
tion only accesses memory that it has allocated itself.
The TCB of a PCC system consists of a small proof
checker that takes the (binary) application code and
the proof that is delivered with it, and then checks



Hardware

L4

Linux Java
runtime

Application 2

d
river

Application 1

Figure 1: Example mobile phone architecture with
the L4 micro-kernel

that this is indeed a valid proof of the desired safety
property for this particular program. Of course, it
still relies on the operating system to provide its ser-
vice correctly to the application, but apart from that,
the TCB in proof-carrying code systems is not only
minimal, but also constant over a wide range of ap-
plications, and thus easier to validate and gain trust
in. Unfortunately this approach is still in its infancy
and has not gained a wide foothold yet in practice.
It would require a standardized proof platform, ven-
dors that ship proofs with their code, and extensions
to more interesting safety and security policies. Al-
though many of these proofs can be obtained com-
pletely automatically, the extension to other safety
policies is still a very active area of research.

A practical approach to reducing the TCB and
thus gaining a high degree of trustworthiness and re-
liability has its origin in standard good software en-
gineering practice: modularization, minimality, and
loose coupling of components. Micro-kernel designs
take these principles to the base of the system,
the OS layer. The first generation of micro-kernels
like Mach (Rashid, Julin, Orr, Sanzi, Baron, Forin,
Golub & Jones 1989) were not able to deliver on the
promises of minimality, and, for an OS almost more
importantly, performance. Modern micro-kernels like
L4 (L4Ka Team 2001) have overcome these problems
and are in industrial use for a wide range of platforms.
The design goals of modern micro-kernels are min-
imality, performance, and the ability to give strong
separation and confinement guarantees such that for
instance multiple full operating system personalities
(e.g. Linux) can run on top of them independently.
Separation means that failure of one process can not
be observed by other processes and confinement refers
to the ability of controlling communication between
processes.

Figure 1 shows an example system architecture us-
ing the L4 micro-kernel for a (hypothetical) mobile
phone. The phone is running Linux with a graphi-
cal front-end as user-interface, provides a native Java
runtime for downloaded applications and games, and
a separate module for handling the real-time and
security sensitive communication tasks. The mod-
ules are loosely coupled, they communicate by syn-
chronous IPC (inter-process communication) only.

The TCB of this architecture for a safety pol-
icy that focuses on the availability and security of
communication encompasses the micro-kernel and the
communications module only. The TCB for a policy
that allows untrusted code to be downloaded onto
the phone consists of the micro-kernel and the Java

runtime environment only. The TCB for smooth op-
eration of the user interface is again independent of
communications and untrusted programs. This shows
that the micro-kernel design not only has benefits for
the reliability of the operating system:

• it reduces the TCB of applications, and

• it enables the analysis of applications to proceed
in isolation.

Both help to make the problem of establishing
the trustworthiness of a system manageable and they
bring the size of the problem down to a level that
might be amenable to more rigorous techniques than
mere testing.

3 Methods

The last section showed a technique to bring the TCB
down to a manageable level. This sections gives an
overview of two methods that show promise of sig-
nificant impact on the problem of establishing that a
reduced size TCB is indeed reliable.

3.1 Theorem Proving

The reduction in size, compared to traditional ap-
proaches, already goes a long way towards making
the TCB more trustworthy. Standard methods for
establishing the trustworthiness of software, such as
testing and code review (while they inherently cannot
guarantee absence of faults) work better on a smaller
code base. However, they cannot provide confidence
in full functional correctness, nor can they give hard
security guarantees.

The only real solution to establishing trustworthi-
ness is formal verification, proving the implementa-
tion correct. This has, until recently, been considered
an intractable proposition — the OS layer alone was
already too large and complex. Owing to the com-
bination of improvements in formal methods and the
trend towards micro-kernel designs and hence smaller
TCBs, full formal verification of at least parts of the
system now seems to be within reach.

Even with these two trends combined, formal ver-
ification still requires an high initial investment and
experts, both in the application domain as well as
in the verification method and logic that is being ap-
plied. We therefore propose to use full formal verifica-
tion where the impact is highest and benefit greatest.
In micro-kernel based designs this clearly is the ker-
nel itself. As figure 1 indicated, it necessarily is part
of every TCB of a system, and it stays constant over
different systems.

Formal verification is about producing a strict
mathematical proof of the correctness of a system.
From the formal methods point of view, this means
that a formal model of the system behaves in a man-
ner that is consistent with a formal specification of the
requirements. This leaves a significant semantic gap
between the formal verification and the user’s view of
correctness. The user views the system as “correct”
if the behavior of its object code on the target hard-
ware is consistent with the user’s interpretation of the
(usually informally specified) behavior. Bridging this
semantic gap is called formalization.

For the purpose of verifying the functional correct-
ness of a kernel, the specification is a formalization of
its applications programmer interface (API), and, ide-
ally, the model is the code that is being executed. At
present there are two main verification techniques in
use for establishing a correspondence between them:
model checking and theorem proving.



Model checking works on a model of the sys-
tem that is typically reduced to what is relevant
to the specific properties of interest. The model
checker then exhaustively explores the model’s reach-
able state space to determine whether the properties
hold. This approach is only feasible for systems with a
moderately-sized state space, which implies dramatic
simplification. As a consequence, model checking is
unsuitable for establishing a kernel’s full compliance
with its API. Instead it is typically used to establish
very specific safety or liveness properties.

The theorem proving approach involves describing
the intended properties of the system and its model
in a formal logic, and then deriving a mathematical
proof showing that the model satisfies these proper-
ties. The size of the state space is not a problem, as
mathematical proofs can deal with large or even in-
finite state spaces. This makes theorem proving ap-
plicable to more complex models and full functional
correctness.

Contrary to model checking, theorem proving is
usually not an automatic procedure, but requires hu-
man interaction. While modern theorem provers re-
move some of the tedium from the proof process by
providing rewriting, decision procedures, automated
search tactics, etc, it is ultimately the user who guides
the proof, provides the structure, or comes up with
a suitably strong induction statement. While this is
often seen as a drawback of theorem proving, we con-
sider it its greatest strength: it ensures that verifica-
tion does not only tell you that a system is correct,
but also why it is correct.

Proof-based OS verification has been tried in the
past (Neumann, Boyer, Feiertag, Levitt & Robinson
1980, Walker, Kemmerer & Popek 1980). The rudi-
mentary tools available at the time meant that the
proofs had to end at the design level; full implemen-
tation verification was not feasible. The verification of
Kit (Bevier 1989) down to object code demonstrated
the feasibility of this approach to kernel verification,
although on a system that is far simpler than any
real-life OS kernel in use in secure systems today.

Since the early attempts at kernel verification
there have been dramatic improvements in the power
of available theorem proving tools. Proof assistants
like ACL2, Coq, PVS, HOL and Isabelle have been
used in a number of successful verifications, rang-
ing from mathematics and logics to microprocessors
(Brock, Hunt, Jr. & Kaufmann 1994), compilers
(Berghofer & Strecker 2003), and full programming
platforms like JavaCard (Ver 2005a).

We therefore decided about a year ago to at-
tempt a verification of a real kernel. We are
among several current efforts with this goal, no-
tably VFiasco (Hohmuth, Tews & Stephens 2002),
VeriSoft (Ver 2005b) and Coyotos (Shapiro, Doerrie,
Northup, Sridhar & Miller 2004). We target the L4
microkernel in our work as it is one of the smallest
and best performing general-purpose kernels, it is de-
ployed industrially and its design and implementation
is well understood in our lab.

The main challenges for a project like this are the
following.

Size We are attempting to formally prove the func-
tional correctness of a program measuring in the
order of 10.000 lines of C++ and assembler code.
This is very small for an operating system, but
beyond what has been done before in formal ver-
ification of implementation correctness.

Complexity Following the philosophy that only
those parts of the system that strictly require
privileged hardware access are part of the micro-
kernel, we are left with a program that is cut

down to only the essential concepts of inter-
process communication (IPC), threads, and vir-
tual memory management. These three concepts
are heavily intertwined and hard to modularize.
This means that also the verification of the ker-
nel is hard to separate into independent parts.
Therefore the full conceptual complexity of the
kernel is visible to most parts of the verification
process.

Level of Abstraction The two main techniques for
managing complexity are modularization and ab-
straction. This is true for software engineering
and even more so for software verification. Un-
fortunately and contrary to applications, the in-
ternals of micro-kernels are not easily modular-
ized and they work on a very low level of ab-
straction, partly with hand-optimized assembler
code, hardware architecture dictated data struc-
tures, and direct hardware access. One major
challenge is to work on a higher level of abstrac-
tion as long as possible and only use lower levels
of abstraction in isolated places where necessary.

Requirements Specification The starting point of
a verification project is capturing the intended
behavior of the system in a formal specification.
Ideally the system interface is well documented,
and the API specified in precise natural language
that only needs to be translated into a suitable
formalism. Reality, of course, is different. Al-
though L4 comes with extensive documentation
that for an operating system is of high quality, it
tends to focus on the syntactic parts of the API
and is vague on the semantics, the intended be-
havior. It describes for instance in very precise
detail, how each bit in each argument of a system
call is decoded, but it does not describe at the
same level of precision, how the call affects the
state of the system. This is not surprising and
not specific to L4. The semantics of these system
calls is on the one hand intuitively clear to ker-
nel developers and experienced users and on the
other hand difficult to describe precisely. This
is exactly the task of the formal specification:
capturing the understanding of what for instance
’sending an IPC’ means. A specification like this
should be as abstract as possible and as concrete
as necessary. At the API level there should be
no need to describe the hardware dictated layout
of page tables, for instance. It should be enough
to say that there is a data structure that can de-
liver a physical address for each virtual address,
possibly together with some constraints on the
size and structure of addresses. There exists a
multitude of different formal languages that are
more or less suited for this task. For this verifica-
tion project, we chose higher-order logic (HOL)
as the description language. It is well supported
by the main theorem proving tool we use (Is-
abelle (Nipkow, Paulson & Wenzel 2002)), it is
expressive enough to conveniently describe ker-
nel behavior in a operational manner that is easy
to understand, and it can be used as a typed,
functional programming language, which makes
it more accessible to programmers than a purely
mathematical formalism like set theory.

Requirements Analysis Writing down a formal
specification of the intended behavior is a good
first step, but in itself does not guarantee any-
thing about the actual system apart from the
fact that some thought has been given to how it
ought to work and what correct operation means.
The next step is to analyze the formal description
and to derive some (formal) properties about it.



Examples of this are ’with the exported virtual
memory management operations one virtual ad-
dress can never be associated with two physical
addresses at the same time’. This can be phrased
as a theorem and be formally proven. This activ-
ity is one the most effective ones to find incon-
sistencies, specification errors and errors in the
intended behavior of the system at a very early
stage in the development process — possibly be-
fore any code has been written, even before any
concrete design has been finalized.

System Model As mentioned above, the kernel
model is ideally the kernel executing on the hard-
ware. In reality it is preferable to take ad-
vantage of the abstraction provided by the pro-
gramming language in which the kernel is im-
plemented, so the model becomes the kernel’s
source-level implementation. This introduces a
reliance on the correctness of the compiler and
linker (in addition to the hardware, boot-loader
and firmware), but verification of the compiler
becomes an orthogonal issue, and is an active
area of research which has recently achieved some
success (Berghofer & Strecker 2003). The chal-
lenge for the system model is again to capture
not the syntax, but the semantics of the pro-
gram. While the complete formal semantics
of systems languages is an active area of re-
search (Norrish 1998, Hohmuth et al. 2002), a
complete semantics is not required. For our pur-
pose it suffices to have a semantics for the lan-
guage subset that is actually used in the imple-
mentation. In isolated places we even change
the implementation to remain in a safe subset
of C++. Such changes are acceptable as long as
they have no significant performance impact.

Proof Methodology The main activity of the ver-
ification is coming up with a formal, machine-
checked proof that the model of the system im-
plementation correctly implements the specifica-
tion; that it either exhibits exactly the same or
only a subset of the behaviors described by the
specification. Ideally this should be done in such
a way that all safety theorems that were shown
in the formal requirements analysis phase auto-
matically hold for the implementation as well.
This is not easily possible for all kinds of proper-
ties. Information flow related properties for in-
stance might hold on the specification, but not on
all functionally correct implementations. How-
ever, the majority of safety-related properties
are preserved by this process. The problem of
establishing that the system model implements
its specification is by no means easy, but rela-
tively well understood (Morgan 1990, de Roever
& Engelhardt 1998). The challenge lies in mech-
anizing the known theory in a theorem proving
tool and applying it to large-scale problems.

Maintenance One of the major open problems is
code maintenance: how to deal with change once
the micro-kernel is verified. In principle every
small change invalidates the correctness proof
that took a major project to accomplish. Re-
ality is not quite that bleak. Only the process
of coming up with the proof requires human in-
teraction, the process of checking if an existing
proof still works is automatic. This means it is
easy to determine which sub-proofs are affected
by a change and only these need to be fixed. De-
pending on the nature of the change, this can
either be a small lemma about one function that
is only used locally, or it could be a main theo-
rem that has to be restated completely, affecting

a whole kernel subsystem. We expect the former
kind to be something like local performance op-
timizations that might occur relatively often, the
latter major conceptual changes in the way the
micro-kernel works which happen comparatively
rarely. At least the most common kind of change
in normal programs — bug fixes — are unlikely
to happen in a formally verified program.

One concern that is often voiced for formal verifi-
cation is How do you know that your proof and your
theorem prover are correct? This really is the ques-
tion Can I trust formal verification? It is voiced,
because formal verification is difficult and hence not
a widely used and experienced technique. Its limi-
tations are not widely known which makes it hard
to trust completely. The answer to this concern is
twofold.

On the social side, we hope that projects like this
one, aiming to formally verify software in wide-spread
industrial use, show how reliable the resulting code is
and thus give an empirically and psychologically more
accessible reason for trust rather than theoretical re-
sults and case studies with limited practical use.

On the technical side, the soundness problem has
had significant research exposure and has lead to
modern theorem provers that can guarantee correct-
ness of formal proofs to a very high degree by ar-
chitectural design, independence of particular com-
pilers and machine architectures, and independent,
small proof checkers. Some provers like Isabelle allow
proofs to be written in human-readable form that can
again be independently checked by human experts.
The proof and the theorem prover are the least likely
sources of errors in the process. Of somewhat more
concern are Does the formal specification say what the
author thinks it says? and Is the system model really
what is being executed? The former is reasonably easy
to answer when the specification language is expres-
sive enough and fits the problem. The latter is the
larger gap. As mentioned above, modeling C++ se-
mantics correctly is not an easy task, and working on
the source code level requires trusting the compiler,
linker, and hardware. Compared to the absolute as-
surance that the formal proof gives this seems like
a big gap, but trusting their understanding of the
language, trusting the compiler and hardware it is
of course something that programmers do routinely.
This is the part that for now still needs to be vali-
dated by traditional means, but it is orders of mag-
nitude easier than the original problem of validating
an operating systems kernel.

This current situation does not necessarily need
to continue. Verified compilers are an active research
area as is verified hardware. It is entirely possible that
in the medium to long term the required level of trust
can be pushed down to the hardware manufacturing
process only.

3.2 Static Analysis

Static analysis (Muchnick 1997, Nielson, Nielson &
Hankin 1999) is a general term comprising a num-
ber of analysis techniques which can be applied at
compile-time, i.e., prior to the execution of the ac-
tual code. In fact, some of these techniques can be
applied in even earlier design stages when the code
does not yet compile and, therefore, is not executable.
Moreover, static analysis typically refers to techniques
which can be executed fully automatically, i.e., there
is no interaction from the user needed during the anal-
ysis process. However, for some analysis methods the
user might be required to annotate his code appro-
priately and, of course, the user has to be able to



interpret the analysis results, in particular when the
analysis reveals any errors.

The drawback of any automatic software analysis
technique is that almost all properties are generally
undecidable as the problem can be reduced to the
halting problem (Turing 1936-1937). To make them
nonetheless usable in practice, decidable approxima-
tions are computed. These can be either over- or
under-approximations.

With regard to safety properties over-
approximations consider abstract programs which
exhibit more behavior than the actual concrete
program. If an abstract program still satisfies a given
safety property, although it exhibits more behavior,
then the concrete program will do so as well (since
it has less behavior that can violate that property).
However, if the abstract program does violate the
given property it does not necessarily mean that the
concrete program does violate it as well, since the
violation might just be in the over-approximated
part of the program behavior which is not in the
concrete program. In this case we have a false alarm
or false positive. It is a major research challenge in
the area of automatic software analysis to minimize
the number of false alarms.

Under-approximations on the other hand consider
program approximations which exhibit less behavior
than the original program. In this case any violation
of a safety property in the approximated program is
certainly a violation in the original program while the
absence of a violation does not guarantee that the
program has no harmful (i.e., property violating) be-
havior. Again, it is a major research challenge to keep
the gap between the actual behavior and the approx-
imated one as small as possible.

Under-approximations are well suited to exploit
bugs in programs while over-approximations are used
to establish correctness. Most static analysis ap-
proaches pursue over-approximations.

In the remainder of this section we illustrate two
well-known static analysis techniques, data flow anal-
ysis and abstract interpretation, and their application
to software analysis.

3.2.1 Data Flow Analysis

Data flow analysis (Aho, Sethi & Ullman 1986) is a
flow sensitive method to derive information related to
the flow of data along control paths, more precisely,
for every program point information that summarizes
some property of all the possible dynamic instances
of that point are computed. It does distinguish be-
tween when and how a particular instance is reached.
Data flow analysis originates from compiler construc-
tion and was born out of the urge to develop efficient
and compact code. For instance, a program contain-
ing assignments to a variable which is not used later,
i.e., containing dead code, is non-optimal, this code
fragment can be eliminated and the resulting program
code is more compact.

We will illustrate the data flow problem by an
example. Consider the contrived C++ code in Fig-
ure 2. A variable tbn is initialized by one, a spinlock
is acquired and afterwards depending on the value of
tbn an error message is thrown or some updateState
function will be called repeatedly. Only in the later
case will the spinlock be freed again. We assume
that both the err and the updateState function
terminate and do not abort the program and that
updateState does not modify tbn.

Data flow analysis works on the control graph of
a program. It is custom to first partition the pro-
gram into basic blocks which are maximal sequences
of assignments which are executed sequentially. In
particular they do not contain loops or branching.

int contrived fun()
{

int tbn = 1;

spinlock.lock();

if tbn > 10
{
err("not expected!");

}
else
{
while (tbn <= 10)
{
updateState(tbn);
tbn += 1;

}
spinlock.unlock();

}
return 0;
}

Figure 2: Example Code Fragment

Figure 3: Control Graph

The resulting control graph for the example of Fig-
ure 2 where the nodes are basic blocks is shown in
Figure 3.

Assume we like to figure out if every lock oper-
ation is eventually followed by an unlock operation.
Any violation of this property might indicate a flaw
in the resource management. We can state this as a
data flow problem as follows: Determine for all pro-
gram nodes q if a lock has been acquired on any path
to q and not yet released. This means in particular,
if an unreleased lock reaches the node containing the
return statement our desired property will be vio-
lated.

Computing solutions. Data flow problems consist
of a property space and a flow function. The property
space characterizes the information of interest, e.g.,
the lock acquired but not released or in the case of
several locks, the set of locks which haven’t been re-
leased yet. The flow function characterizes the trans-
fer of information by computing the effect of a basic
block on a property in the property space. For in-
stance a block might generate a lock that has to be
released (added to the set of locks) or might release
one (removed from the set of locks). In general, its ef-
fect (output) depends on the output of its predecessor



blocks.
The ideal solution to a data flow problem is to take

all the paths in a program which will actually be exe-
cuted, apply the flow function to any block along the
path and take the meet of all the path results. The
meet can be either the union or disjunction of the in-
formation obtained, i.e., property computed, depend-
ing on the problem. In our example we have to take
the union since we are interested in any path that
might not release a lock.

Unfortunately, it is undecidable to statically de-
termine exactly the set of paths that will be exe-
cuted. An approximation to this is to take the set
of all paths in a program. Certainly, this is an over-
approximation, since the program semantics is not
taken into account and, i.e., more possible executions
are considered than there might actually be. How-
ever, loops introduce an infinite set of paths as every
loop can be traversed arbitrarily often. This makes
it infeasible to effectively compute the meet over all
paths.

A feasible solution is to concentrate on edges
rather than paths in the control graph. For every
node the effect of all incoming edges (in a forward
analysis) is computed leading to an effect for the out-
going edge. This is repeated all over until a fixed point
in the data flow is reached. As long as the property
space can be described as a lattice of finite height (cf.
(Nielson et al. 1999)), this procedure will terminate.
Moreover, the result is a solution to the data flow
problem which is a further over-approximation of the
solution taking all paths into account.

Depending on the problem the propagation of in-
formation is done from incoming to outgoing edges
(forward analysis) or vice versa (backward analysis).
Moreover, there are sophisticated heuristics to deter-
mine the fixed point without unnecessary recomputa-
tions.

All the solutions which are over-approximations of
the actual paths executed in the program of Figure 2
imply that at the end of the program the lock might
have been acquired but not released. The reason for
this is, of course, that data flow analysis does not take
the program semantics into account, which would rule
out the ”then” branch of the program.

3.2.2 Abstract Interpretation

Abstract interpretation (Cousot 1978, Cousot &
Cousot 1979) is a very general framework that can be
applied to various fields: to syntax in order to com-
pare grammars, to semantics that helps to design se-
mantic hierarchies, to typing, to model checking and
program transformations in order to provide suitable
means of abstractions. In this paper we present the
idea of abstract interpretation for program analysis.

As seen in the previous section, data flow analysis
might result in coarse over-approximations, since it
takes the whole control flow graph into account, no
matter whether some branches are semantically im-
possible to take. Abstract interpretation can some-
times remedy this problem by adding semantic infor-
mation to the analysis, making it more precise.

Abstract interpretation is about relating two
structures, the concrete domain and the abstract do-
main, and defining for every operation on the concrete
domain a matching operation on the abstract domain.
This enables the execution of programs purely on the
abstract level, which leads to over-approximated but
decidable program behavior.

We illustrate this by an example. Consider the
program of Figure 2. To come up with a more precise
data flow analysis result, it would be of interest to
detect that the ”then” branch of the program can
actually never be taken. This, however, requires that

int contrived fun() value of x
{

int tbn = 1; [1, 1]

spinlock.lock(); [1, 1]

if tbn > 10 [1, 1]
{
err("not expected!"); [11,+∞]

}
else
{
while (tbn <= 10) [1, 10]
{
updateState(tbn); [1, 10]
tbn += 1; [1, 11]

}
spinlock.unlock(); [1, 11]

}
return 0; [1, 11]
}

Figure 4: Abstract Interpretation Result

we track the values of the tbn variable. In general,
it is impossible to track variable behavior precisely
without executing the full program. In particular, it
is impossible to determine for each program location
the set of all possible values a variable can take.

Assume that sets of integers constitute the con-
crete domain. We define the abstract domain by in-
tervals. Precisely, for every the set we define an in-
terval by taking the lowest and highest number as
boundaries. The means the set {1, 2, 3} is repre-
sented by [1, 3], {1, 2, 5} by [1, 5], and {1, 2, 3, . . .} by
[1,+∞]. The abstract representation might lead to
over-approximation, but allows also concise represen-
tation of infinite sets. Next, we introduce for any
concrete program operation such as +, ∗, etc. an ab-
stract operation on intervals, e.g., [a, b] +I [c, d] :=
[a + c, b + d].

We can now execute the program on an abstract
level, observing the range of integer variables. This
alone does not guarantee termination, but it comes in
handy to simulate programs for sets of inputs simul-
taneously. Termination, however, can be enforced by
acceleration techniques (Cousot 1981) speeding up the
convergence of the analysis. These accelerations pro-
vide a safe approximation of the program behavior,
however, they often come with an additional loss of
precision, i.e., can lead to further over-approximation.
E.g., after unfolding loops a few times and observing
the change of some variable it is always safe to approx-
imate its range by [−∞,+∞], although it might not
be very precise. Nonetheless, for the example above a
sophisticated abstract interpretation framework can
compute the results as shown in Figure 4.

A quick analysis1 reveals that the ”then” branch
of the program will never be taken. This leads to
a smaller control graph that has to be taken into ac-
count for the data flow analysis. In turn, the data flow
analysis will reveal that indeed every lock operation
will be followed by an unlock operation. Remember,
since we are dealing with over-approximations, this
result actually verifies the property for all possible
program executions.

1This analysis can be part of the abstract interpretation by ex-
tending the framework to Boolean expressions.



4 Application

In the following we report on first experiences at ap-
plying the two formal methods described in section 3
to the L4 micro-kernel.

4.1 Theorem Proving

As the initial formal verification of an operating sys-
tem kernel clearly is a high-risk project, we first em-
barked on a pilot project in the form of a construc-
tive feasibility study. Its aim was three-fold: (i) to
formalize the L4 API, (ii) to gain experience by going
though a full verification cycle of a small portion of
actual kernel code, and (iii) to develop a project plan
for a verification of the full kernel. An informal aim
was to explore and bridge the culture gap between
kernel programmers and theorists, groups which have
been known to eye each other with suspicion.

The formalization of the API was performed us-
ing the B Method (Abrial 1996), independently of
the Isabelle development in the rest of the project, as
there existed a significant amount of experience with
this approach among our student population. While
L4 has a detailed and mature informal specification
of its API (L4Ka Team 2001), it contains the usual
problems of natural language specifications: incom-
pleteness, ambiguity, and, at points, inconsistency.
Furthermore it was at times necessary to extract the
intended and expected kernel behavior from the de-
signers themselves and, occasionally, the source code.

This part of the project was done by a final-year
undergraduate student. The result was a formal API
specification, covering a large part of the system, de-
scribing in particular the IPC and threads subsystems
of L4. The remaining subsystem (virtual memory)
was formalized separately in the verification part of
the project described below. The B specification con-
sists of about 1000 lines of code.

The full verification was performed on the most
complex subsystem, the one dealing with mapping of
pages between address spaces and the revocation of
such mappings. We formalized a significant part of
this API section and verified a subset of its function-
ality, corresponding to approximately 5% of the kernel
source code. Its implementation consists of the page
tables, the mapping database (used to keep track of
mappings for revocation purposes), and the code for
lookup and manipulation of those data structures.

We use higher-order logic and the theorem prover
Isabelle as our tool set to describe the behavior of the
kernel at an abstract level in the form of an opera-
tional specification. This description is then refined
inside the prover into a program written in a stan-
dard, imperative, C-like language. This means we did
not verify existing kernel code as such, but wrote a
new program inside the theorem prover that happens
to look mostly like the original.

The abstract description is at the level of a refer-
ence manual and relatively easy to understand. At
that level, address translation for instance is modeled
as an abstract function from virtual to physical ad-
dresses, explicitly not mentioning that this lookup is
implemented by complex page table data structures
in the real system. This is the level we use for an-
alyzing the behavior of the system and for proving
additional simple safety properties, such as the re-
quirement that the same virtual address can never be
translated to two different physical addresses. At the
end of the refinement process stands a formally ver-
ified imperative program — the kernel implementa-
tion in full detail. A purely syntactic translation then
transforms this program into ANSI C. This last stage
is soundness critical and not verified. However, the
translation is very simple and only consists of about

300 lines of ML code. This is small enough to be confi-
dently validated manually. Besides a number of small
safety properties, the main property, we are verifying,
is implementation correctness: the kernel implemen-
tation behaves as the abstract model prescribes. A
detailed description of this process can be found else-
where (Klein & Tuch 2004, Tuch & Klein 2004).

We found Isabelle suitable for the task. It is ma-
ture enough for use in large-scale projects and well-
documented, with a reasonably easy-to-use interface.
Being actively developed as an open source tool, we
are able to extend it and (working with the develop-
ers) to fix problems should they arise.

However, we are convinced that some important
requirements must be met for such a project to have
a chance of success. It is essential that some of the
participants have significant experience with formal
methods and a good understanding of what is feasi-
ble and what is not, and how best to approach it. On
the other hand, it is essential that some of the par-
ticipants have a good understanding of the kernel’s
design and implementation, the trade-offs underlying
various design decisions, and the factors that deter-
mine the kernel’s performance. It must be possible
to change the implementation if needed, and that re-
quires a good understanding of changes that can be
done without undermining performance.

The investment for the virtual memory part of the
pilot project was about 1.5 person years. All specifi-
cations and proofs together run to about 14,000 lines
of proof scripts. This is significantly more than the
effort invested in the virtual memory subsystem in
the first place, but it includes exploration of alterna-
tives, determining the right methodology, formalizing
and proving correct a general refinement technique,
as well as documentation and publications.

We estimate that the full verification of L4 will
take about 20 person years, including verification tool
development. This number must be seen in relation
to the cost of developing the kernel in the first place,
and the potential benefits of verification. The present
kernel (L4Ka Team 2001) was written by a three-
person team over a period of 8–12 months, with sig-
nificant improvements since. Furthermore, for most
of the developers it was the third in a series of simi-
lar kernels they had written, which meant that when
starting they had a considerable amount of experi-
ence. A realistic estimate of the cost of developing
a high-performance implementation of L4 is probably
at least 5–10 person years.

Under these circumstances, the full verification no
longer seems prohibitive, and we argue that it is, in
fact, highly desirable. The kernel is the lowest and
most critical part of any software stack, and any as-
surances on system behavior are built on sand as long
as the kernel is not shown to behave as expected. Fur-
thermore, formal verification puts pressure on kernel
designers to simplify their systems, which has obvi-
ous benefits for maintainability and robustness even
when not yet formally verified.

4.2 Static Analysis

We recently engaged in a project to apply static anal-
ysis techniques to system software, in particular the
L4 micro-kernel. While there are few conclusions
available right now, there are some interesting aspects
of new challenges created by the unique architecture
of micro-kernel software.

Properties. Traditionally, static analysis is con-
cerned with properties such as buffer overflows,
unreachable code, range violations, or division by
zero. This properties are, however, of less impor-
tance for a micro-kernel such as L4. The simple



reason is that there are hardly any arithmetic
operations, buffers, arrays etc. that might cause
problems. On the other hand, there a numer-
ous interactions with the hardware, bit manip-
ulations and excessive pointer arithmetic. This
provides new challenges to static software analy-
sis but also opens new areas of research.

Mixed code/parsing. The L4 micro-kernel is writ-
ten in most parts in C++. However, critical
parts implementing the interaction with the un-
derlying hardware are implemented in assembly
and sometimes inlined. Having to deal with a
mixture of programming languages is a challenge.
Moreover, there are few existing approaches that
deal with C++ at all. Even parsing C++ is not
easy. We therefore follow an approach of using
gcc as a frontend. The advantages are that we
do not have to write our own parser, are using
the same compiler that produces the object code
and do not have to worry about parser updates.

Specification Language. Ideally, a static analysis
tool runs on some piece of code and returns for
a given set of properties either error-traces or
a correctness statement. While there are sev-
eral generic properties to be satisfied for the L4
kernel, most of them are only expected to hold
under certain circumstances and for certain pro-
gram parts. This means, there are many excep-
tions to the rule, which might raise unnecessarily
many false alarms in a generic analysis environ-
ment. It is therefore desirable to have an anno-
tation and/or specification language that allows
to clearly mark which program parts should be
subject to a certain analysis. Moreover, a simple
specification language such as a state machine is
desirable to be more flexible and specify simple
rules easily. Approaches such as (Engler, Chelf,
Chou & Hallem 2000) appear to be promising.

A pilot project has been running for 2 months now
helping to establish an understanding of the unique
nature of system code in contrast to application code.
The pilot phase is expected to go for one year (2 per-
son years). The goal is to clearly identify research
challenges, evaluate existing tools, and build an ex-
perimental tool for L4 micro-kernel analysis. The pri-
mary techniques the team is looking at are the ones
outlined in Section 3.2.

5 Conclusions

Theorem proving and static analysis are two differ-
ent approaches to support the development of high
assurance software.

The flexibility and power of interactive theorem
proving helps to create software of the highest degree
of trustworthiness. The effort, however, is consider-
able. Not only is scalability a serious issue, but also
the expertise of the people involved in the process is
demanding. As shown in Section 4, only the latest
developments of micro-kernels towards a small TCB
brings interactive theorem proving into the realms of
practical, full-fledged verification.

The strength of static analysis is that it is auto-
matic, works on the source code, and is scalable. The
downside are approximated results and rather generic
properties. As we pointed out, the unique nature
of system code requires tailored properties and algo-
rithms and/or a specification language that matches
the requirements of kernel developers. Such a static
analysis tool could keep up with frequent kernel re-
designs during experimental phases and would seam-
lessly integrate into the development process.

The ultimate goal is to combine the theorem prov-
ing and static analysis approach. This would include
properties which are automatically verified during a
static analysis phase as assumptions into the theorem
proving framework. Such a transfer of information
would save the tedious effort of proving many generic
properties. Furthermore, properties which are shown
to be incorrect during a static analysis phase don’t
even have to be attempted to be proven correct. In
the other direction, theorems shown to be valid in the
proving environment can ideally be used to annotate
the source code in such a way that it guides the static
analysis process.

We expect that the combination of both ap-
proaches will deliver highly trustworthy system soft-
ware in acceptable time.

References

Abrial, J.-R. (1996), The B Book: Assigning Pro-
grams to Meanings, Cambridge University Press.

Aho, A. V., Sethi, R. & Ullman, J. D. (1986), Compil-
ers: Principles, Techniques and Tools, Addison-
Wesley.

Berghofer, S. & Strecker, M. (2003), Extracting a for-
mally verified, fully executable compiler from a
proof assistant, in ‘Proc. COCV’03’, Electronic
Notes in Theoretical Computer Science, pp. 33–
50.

Bevier, W. R. (1989), ‘Kit: A study in operating
system verification’, IEEE Transactions on Soft-
ware Engineering 15(11), 1382–1396.

Brock, B. C., Hunt, Jr., W. A. & Kaufmann, M.
(1994), The FM9001 microprocessor proof, Tech-
nical Report 86, Computational Logic, Inc.

Cousot, P. (1978), Méthodes itératives de con-
struction et d’approximation de points fixes
d’opérateurs monotones sur un treillis, analyse
sémantique de programmes, PhD thesis, Univer-
sité scientifique et médicale de Grenoble, France.

Cousot, P. (1981), Semantic foundations of program
analysis, in S. Muchnick & N. Jones, eds, ‘Pro-
gram Flow Analysis: Theory and Applications’,
Prentice-Hall, Inc., Englewood Cliffs, New Jer-
sey, chapter 10, pp. 303–342.

Cousot, P. & Cousot, R. (1979), Systematic design
of program analysis frameworks, in ‘Conference
Record of the Sixth Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Program-
ming Languages’, ACM Press, New York, NY,
San Antonio, Texas, pp. 269–282.

de Roever, W.-P. & Engelhardt, K. (1998), Data
Refinement: Model-Oriented Proof Methods and
their Comparison, number 47 in ‘Cambridge
Tracts in Theoretical Computer Science’, Cam-
bridge University Press.

Engler, D., Chelf, B., Chou, A. & Hallem, S.
(2000), Checking system rules using system-
specific, programmer-written compiler exten-
sions, in ‘Proceedings of the Fourth Symposium
on Operating Systems Design and Implementa-
tion, San Diego, CA’.

Hohmuth, M., Tews, H. & Stephens, S. G. (2002), Ap-
plying source-code verification to a microkernel
— the VFiasco project, Technical Report TUD-
FI02-03-März, TU Dresden.



Klein, G. & Tuch, H. (2004), Towards verified vir-
tual memory in L4, in K. Slind, ed., ‘TPHOLs
Emerging Trends ’04’, Park City, Utah, USA.

L4Ka Team (2001), L4 eX perimental Kernel Refer-
ence Manual Version X.2, University of Karl-
sruhe. http://l4ka.org/projects/version4/
l4-x2.pdf.

Morgan, C. (1990), Programming from Specifications,
Prentice Hall.

Muchnick, S. (1997), Advanced Compiler Design and
Implementation, Morgan Kaufmann Publishers.

Necula, G. C. (1997), Proof-carrying code, in
‘Proc. POPL’97, 24th ACM SIGPLAN-SIGACT
Symp. Principles of Programming Languages’,
ACM Press, pp. 106–119.

Neumann, P. G., Boyer, R. S., Feiertag, R. J., Levitt,
K. N. & Robinson, L. (1980), A provably secure
operating system: The system, its applications,
and proofs, Technical Report CSL-116, SRI In-
ternational.

Nielson, F., Nielson, H. R. & Hankin, C. L. (1999),
Principles of Program Analysis, Springer.

Nipkow, T., Paulson, L. & Wenzel, M. (2002), Is-
abelle/HOL — A Proof Assistant for Higher-
Order Logic, Vol. 2283 of LNCS, Springer.

Norrish, M. (1998), C formalised in HOL, PhD thesis,
Computer Laboratory, University of Cambridge.

Rashid, R., Julin, D., Orr, D., Sanzi, R., Baron, R.,
Forin, A., Golub, D. & Jones, M. (1989), Mach:
A system software kernel, in ‘Proceedings of the
34th Computer Society International Conference
COMPCON 89’.

Shapiro, J., Doerrie, M. S., Northup, E., Sridhar, S.
& Miller, M. (2004), Towards a verified, general-
purpose operating system kernel, in G. Klein,
ed., ‘Proc. NICTA FM Workshop on OS Verifi-
cation’, Technical Report 0401005T-1, National
ICT Australia, pp. 1–19.

Tuch, H. & Klein, G. (2004), Verifying the L4 vir-
tual memory subsystem, in G. Klein, ed., ‘Proc.
NICTA FM Workshop on OS Verification’, Tech-
nical Report 0401005T-1, National ICT Aus-
tralia, pp. 73–97.

Turing, A. (1936-1937), ‘On Computable Numbers,
with an Application to the Entscheidungsprob-
lem’, Proc. LMS, Series 2 42, 230–265.

Ver (2005a), ‘VerifiCard project’, http://verificard.org.

Ver (2005b), ‘VeriSoft project’, http://www.verisoft.de.

Walker, B. J., Kemmerer, R. A. & Popek, G. J.
(1980), ‘Specification and verification of the
UCLA Unix security kernel’, Communications of
the ACM 23(2), 118–131.

http://l4ka.org/projects/version4/l4-x2.pdf
http://l4ka.org/projects/version4/l4-x2.pdf
http://verificard.org
http://www.verisoft.de

	Introduction
	Trusted Computing Base
	Methods
	Theorem Proving
	Static Analysis
	Data Flow Analysis
	Abstract Interpretation


	Application
	Theorem Proving
	Static Analysis

	Conclusions

