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Abstract 
The data of interest are assumed to be represented as N-
dimensional real vectors, and these vectors are compressible in 
some linear basis B, implying that the signals can be 
reconstructed accurately using only a small number of basis 
function coefficients associated with B. A new approach based 
on Compressive Sensing (CS) framework which is a theory 
that one may achieve an exact signal reconstruction from 
sufficient CS measurements taken from a sparse signal is 
proposed in this paper. Wavelet-based contourlet transform, 
block-based random Gaussian image sampling matrix and 
projection-driven compressive sensing recovery are 
cooperating together in the new process framework to 
accomplish image reconstruction. Smoothing is achieved via a 
Wiener filter incorporated into iterative projected Landweber 
compressive sensing recovery, yielding fast reconstruction. 
Different kinds of images are tested in this paper, including 
normal pictures, infrared images, texture images and synthetic 
aperture radar (SAR) images. The proposed method 
reconstructs images with quality that matches or exceeds that 
produced by those popular ones. Also smoothing was imposed 
with the goal of improving the quality by eliminating blocking 
artifacts and quality of reconstruction with smoothing is better 
to that from pursuits-based algorithm. 
Keywords: block-based compressive sensing; contourlet 
transform; projection driven recovery; smoothing 
reconstruction. 1 

1. Introduction  
The Shannon-Nyquist sampling theorem (Abdul,1977) claims 
that one must sample at least two times faster than the signal 
bandwidth while capturing it without losing information. 
Many signal processing applications require the identification 
and estimation of a few significant coefficients from a high-
dimensional vector. There is an extensive body of literature on 
image compression, but the central concept is straightforward: 
we transform the image into an appropriate basis and then 
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code only the important expansion coefficients. The crux is 
finding a good transform, a problem that has been studied 
extensively from both a theoretical  and practical standpoint. 
The most notable product of this research is the wavelet 
transform; switching from sinusoid-based representations to 
wavelets marked a watershed in image compression and is the 
essential difference between the classical JPEG (Pennbaker 
and Mitchell,1993) and modern JPEG-2000 standards 
(Skodras, Christopoulos and Ebrahimi, 2001). Image 
compression algorithms convert high-resolution images into a 
relatively small bit streams (while keeping the essential 
features intact), in effect turning a large digital data set into a 
substantially smaller one. Compressive sensing (CS) (Donoho, 
2006) is a way to avoid the large digital data set to begin with 
and that can build the data compression directly into the 
acquisition. 

Compressive sensing (CS), proposed by Donoho (2006), 
Emmanuel Cand`es (2006) and Micheal Elad(2007) et al, is a 
new developing novel theory that permits, under certain 
conditions, signals to be sampled at sub-Nyquist rates via 
linear projection onto a random basis while still enabling exact 
reconstruction of the original signal. As applied to 2D images, 
however, CS faces several challenges including a 
computationally expensive reconstruction process and huge 
memory required to store the random sampling operator. 
Recently, several fast algorithms, as mentioned by Figueiredo, 
Nowak, Wright (2007), Do, Gan, Nguyen, Tra (2008), Haupt 
and Nowak (2006), have been developed for CS 
reconstruction, while the latter challenge was addressed in the 
works (Gan, 2007) using a block-based sampling operation. 
Projection-based Landweber iterations were proposed to 
accomplish fast CS reconstruction while simultaneously 
imposing smoothing with the goal of improving the 
reconstructed-image quality by eliminating blocking artifacts. 

In this work, we propose this same basic framework of 
block-based CS sampling to replace the traditional sampling 
and compressing process. We will address their advantages and 
merits in detail, and give the comparisons with the classical 
JPEG and modern JPEG-2000 standards. Different transforms 
(e.g., wavelet transform, contourlet transform and cosine 
transform) and different kinds of images (including normal 
pictures, infrared images, texture images and synthetic aperture 
radar (SAR) images) are tested in the experiments. Results 
shows that CS reconstruction which is based on directional 
transform (contourlet transform) outperforms equivalent 
reconstruction using common wavelet and cosine transforms. 
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We arrange the paper as follows: the background of 
Compressive Sensing are depicted in section 2; in section 3 we 
provide the contourlet transform (Do and Vetterli, 2005) and 
sampling strategy; the thresholding parameter associated with 
projection Landweber recovery algorithm is discussed in 
section 4. And the experiments and comparisons are given 
subsequently. Finally we summarize our results and prospect 
our future work. 

2. Background of Compressive Sensing 
Consider a real-valued, one-dimensional, discrete-time signal 
x, written as x(n), n=1,2,…,N, and an orthonormal basis, 
represented in terms of N×1 vectors �ψ�����

�  with  the 
vectors �ψ�� as its columns, thus x = ∑ s�ψ�

�
���  or x = ψscan 

be obtained, where s is the N×1 vector of coefficients s� =
〈x, ψ�〉 = ψ�

�x . Supposing K elements of the s�  coefficients 
are nonzero or largest and (N-K) are zero or negligible, x is 
called K-sparse or compressible, in which case we are 
interested. Quite often, the requisite sparsity will exist with 
respect to some transform Ψ. 

According to a common linear measurement course 
y� = 〈x, ϕ�〉, the inner products between x and �ϕ�����

�
 can be 

calculated.  Thereafter a compressed signal representation is 
acquired directly by compressive sensing, which is indeed 
only M dimensions thus avoiding N samples in data 
acquisition system. By substituting Ψ  and arranging ϕ�

� as 
rows in an M×N matrix Φ and consequently Θ = ΦΨ being an 
M×N sensing matrix, the measurements y can be written as 
follow: 

� = �� = ��� = ��   (1) 

How we recover the signal? In this case, the key to CS 
recovery is the production of a sparse set of significant 
transform coefficients s.  

However, the CS theory tells us that when the matrix 
� = �� has Restricted Isometry Property (RIP) (Baraniuk, 
Davenport, DeVore and Wakin, 2008),then it is indeed possible 
to recover the K largest coefficients s. The RIP is closely 
related to an incoherency property between � and �, where 
the rows of � do not provide a sparse representation of the 
columns of �and vice versa. The RIP and incoherency hold for 
many pairs of bases, including for example, delta spikes and 
Fourier sinusoids, or sinusoids and wavelets. When RIP holds, 
the idea recovery procedure searches for the s with the smallest 
ℓ� norm consistent with the observed y. 

�� = arg min‖��‖�   such that  ��′ = �    (2) 

This optimization will recover a K-sparse signal with high 
probability, but unfortunately solving formula (2) is a non-
deterministic polynomial (NP) hard problem, and several 
alternative solution procedures have been proposed. Perhaps 
the most prominent of these is basis pursuit (BP) (Chen, 
Donoho and Saunders,1998) which applies a convex relaxation 
to the ℓ� norm problem resulting in an ℓ� norm optimization. 

�� = arg min‖��‖�   such that  ��′ = �   (3) 

Although BP can be implemented effectively with linear 
programming, its computational complexity is often high, 
leading to recent interest in reduced complexity relaxations as 
well as in greedy BP variants, including matching pursuits 
(MP), orthogonal matching pursuits (OMP) and sparsity 
adaptive matching pursuits (SAMP). Such algorithms 
significantly reduce computational complexity at the cost of 
lower reconstruction quality. 

As an alternative to the pursuits class of CS reconstruction, 
techniques based on projections have been proposed already 
(Haupt and Nowak, 2006). Algorithms of this class form �� by 
successively projecting and thresholding; for example, the 
reconstruction in 0 starts from some initial approximation �̂(�) 
and forms the approximation at iteration i+1 as follows: 

�̂�(�) = �̂(�) + �
�

ΨΦ�(� − ΦΨ�̂(�)) (4) 

�̂(���) = ��̂�(�), ��̂�(�)� ≥ �(�)

0, ����
   (5) 

Here, �  is a scaling factor uses the largest eigenvalue of 
ΦTΦ), while �(�)  is a threshold set appropriately at each 
iteration. It is straightforward to see that this procedure is a 
specific instance of a projected Landweber (PL) algorithm. 
Like the greedy algorithms of the pursuits class, PL-based CS 
reconstruction also provides reduced computational complexity. 
Additionally, and perhaps more importantly, the PL 
formulation offers the possibility of easily incorporating 
additional optimization criteria (Mun and Fowler,2009). 

3. Contourlet Transform and Sampling Strategy 

3.1 Contourlet Transform 
Two prominent families of such directional transforms are 
contourlets and complex-valued DWT. The contourlet 
transform preserves interesting features of the traditional 
DWT, namely multiresolution and local characteristics of the 
signal, and, at the expense of a spatial redundancy, it better 
represents the directional features of the image. The 
directional filter bank (DFB) is the key tool to capture the high 
frequency elements of images whereas grips low frequency 
elements poorly.  

 
Fig.1. Pyramid Directional Filter Bank (PDFB) 

Therefore, a multi-resolution scheme is combined to 
remove them before the DFB, and thus Laplace pyramid (LP) 
is considered to allow further sub-band decomposition to be 
affected on its bandpass images which can be nourished into a 
DFB to efficiently track down the directional information. We 
call it pyramidal directional filter bank (PDFB)  in respect that 
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LP is iterated frequently on the coarse image while DFB 
holding the fine image allowing for a different number of 
directions at each scale. The illustration is showed in Fig.1. It 
has the redundancy of 33% owing to the LP, and a perfect 
reconstruction. 

3.2 Sampling strategy 
There are numerous matrices working well with compressive 
sensing framework. It is somewhat surprising that the 
measurement matrix can be a random, noise-like matrix, for 
example i.i.d Bernoulli or Gaussian random variables. And in 
many cases the measurement matrix is a casual, quasi-Toeplitz 
matrix.  

In block-based compressive sensing (BCS), the two 
dimensional image is divided into MB×MB blocks and sampled 
with an ordinary random Gaussian matrix in our experiments. 
That is, suppose that ��  is a vector representing, in raster-scan 
fashion, block i of input data X. The corresponding ��  is then  

�� = Φ���     (6) 

Where Φ� is an �� × �� orthonormal measurement matrix 
with �� = [�

�
��], [∙] is to round down to the nearest integer. 

Φ = �

Φ� 0
0 Φ�

⋯ 0
0

⋮ ⋱ ⋮
0 0 ⋯ Φ�

�  (7) 

Using BCS rather than random sampling applied to the 
entire raw data X has several merits. First, the measurement 
operator Φ�  is conveniently stored and employed because of 
its compact size. Second, the encoder does not need to wait 
until the entire image is measured, but may send each block 
after its linear projection. Last, an initial approximation X with 
minimum mean squared error can be feasibly calculated due to 
the small size of Φ� . Here we employ blocks of size B=32. 

4. Theresholding Parameter 
As originally described in the work (Haupt and Nowak, 2006) , 
projection Landweber (PL) algorithm used hard thresholding 
in the form of (5). To set a proper � for hard thresholding, we 
employ the universal threshold method of soft-thresholding. 
Specifically, in (5), 

�(�) = ��(�)�2����   (8) 

Where λ is a constant control factor to manage convergence, 
and K is the number of the transform coefficients. As in 0, �(�) 
is estimated using a robust median estimator, 

�(�) = ������(���(�)�)
�.����

   (9) 

Hard thresholding inherently assumes independence 
between coefficients. However, bivariate shrinkage is better 
suited to directional transforms in that it exploits statistical 
dependency between transform coefficients and their 
respective parent coefficients, yielding performance superior to 
that of hard thresholding. A non-Gaussian bivariate distribution 
was proposed for the current coefficient and its lower-
resolution parent coefficient based on an empirical joint 

histogram of DWT coefficients. However, it is straightforward 
to apply this process to any transform having a multiple-level 
decomposition, such as the directional transforms we consider 
her. Specifically, given a specific transform coefficient ξ and 
its parent coefficient ξ pin the next coarser scale, the T(∙) 
operator in PL is the MAP estimator of ξ, 

T(ξ, λ) =
�������

���
���(�)

��
�

�

������
�

∙ �  (10) 

Where (�)� = 0 ��� � < 0 else (�)� = � . �(�)  is the 
median estimator of (9) applied to only the finest-scale 
transform coefficients; and, again, λ is a convergence-control 
factor. Here, is the marginal variance of coefficient ξ estimated 
in a local 3×3 neighborhood surrounding ξ as in the paper 
(Endur and Selesnick, 2002). 

5. Experimental Result 
To evaluate the proposed method on image reconstruction, we 
deploy several experiments within the BCS framework 
coupled with PL recovery algorithm. 

Tests are processed on Core 2 CPU 2.53 GHz 2.53 GHz, 
2.00GB memory computer. The test data are including normal 
pictures, infrared images, texture images (Lazebnik, Schmid 
and Ponce, 2005) and synthetic aperture radar (SAR) images 
(Cumming and Wong, 2005). Size of samples is set to 512*512. 
Samples are showed in Fig.1. 

 Fig.2. Samples (512*512) used in tests. 

5.1 results in different sampling ratio  
To test the effectiveness of different sampling ratio, M/N, we 
choose contourlet domain as the sparse domain in which we 
sampled Lena (512*512) at several different ratio with random 
Gaussian matrix. BCS coupled with PL algorithm are applied 
to acquire the reconstructed image. Fig. 3 shows the 
experimental visual impression results. 

 We note that blocking artifacts is eliminated while yielding 
BCS coupled with projected Landweber recovery. The 
clearness of reconstruction is along with the sampling ratio, the 
bigger the ratio, the clearer the reconstruction. 

Proceedings of the 38th Australasian Computer Science Conference (ACSC 2015), Sydney, Australia,
27 - 30 January 2015

5



 

5.2 results in different transform 
The transform domain is the important component of BCS 
framework. Whether data are sparse or not is due to the 
transform domain. Here we arrange three different sparse 
domains to test how they affect the quality of reconstructed 
image. The three transform methods are DCT, DWT and 
contourlet transform respectively.  Table 1-4 compare PSNR 
for several different transform at several measurement ratios, 
M/N. 

The results indicate that the method proposed in this paper 
with contourlet transform achieves the best performance while 
comparing to DCT and DWT at most situation. When 
processing normal pictures (e.g., Lena, camera man), even the 
ratio is 0.1, the PSNR is still bigger than 27 dB. The quality of  
infrared images is best,  though the performance of recovering 
texture images are not as good as others, the PSNR of texture 
images are still bigger than 22 dB.

 
Fig.3. Lena images reconstruct by BCS at several different measurement ratios. 

 

 
Sampling Ratio (M/N) 

0.1 0.3 0.5 0.7 0.9 

DCT 
(dB) 26.9312 32.9196 37.6894 42.8479 51.0102 

DWT 
(dB) 26.7073 34.1173 38.1720 42.9766 50.1631 

contour-let 
(dB) 27.0130 33.4483 39.2668 44.2272 51.4630 

Table 1: PSNR of  normal picture construction 

 
Sampling Ratio (M/N) 

0.1 0.3 0.5 0.7 0.9 

DCT 
(dB) 30.5914 39.3815 42.1293 47.5500 54.1839 

DWT 
(dB) 31.8296 39.6365 43.4529 47.2825 53.6248 

contour-let 
(dB) 32.7676 39.4583 43.6540 47.6550 54.3889 

Table 2:  PSNR of  infrared image construction 

5.3 compared with other recovery algorithm 
There are many compressed sensing (CS) recovery 
algorithms that have been proposed in recent years. Fig. 4 
compares PSNR for Lena constructed by several recovery 
algorithms, like Compressive Sampling Matching Pursuit 
(CoSaMP) (Deanna and Tropp, 2001), Orthogonal Matching 
Pursuit (OMP) (Tropp and Gilbert, 2007), Subspace Pursuit 
(SP) (Wei and Milenkovic, 2009), Iteratively Reweighted 
Least Square (IRLS) (Rick and Yin, 2008). Experimental 
results indicate that the proposed BCS is better than others, 

though it costs more processing time. PSNR of BCS coupled 
with PL recovery is about 10 dB bigger that others at every 
sampling ratios. The fastest recovery algorithm is OMP, and 
the most comparable algorithm is IRLS.  
 

 
Sampling Ratio (M/N) 

0.1 0.3 0.5 0.7 0.9 

DCT 
(dB) 21.5634 26.5158 30.5417 34.8218 41.9503 

DWT 
(dB) 22.6660 27.5789 31.7323 35.8283 42.0184 

contour-let 
(dB) 22.6698 27.5935 31.6669 36.2512 43.0598 

Table 3:  PSNR of  texture image construction  

 
Sampling Ratio (M/N) 

0.1 0.3 0.5 0.7 0.9 

DCT 
(dB) 24.1353 25.7467 27.4719 29.8822 34.7068 

DWT 
(dB) 24.6089 26.3536 28.2731 30.8574 35.8162 

contour-let 
(dB) 24.4337 26.2443 28.0803 30.5767 35.4295 

Table 4: PSNR of  SAR image construction 
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Fig.4. PSNR of Lena reconstructed from different 
recovery algorithm at several different measurement 

ratios. 

6. Conclusion 
Recent theory of Compressive Sensing (CS) provides us 
with a novel concept that an unknown sparse signal can be 
exactly recovered with an overwhelming probability even 
with highly sub-Nyquist-rate samples. These characteristics 
of CS have attracted many attentions in radar applications. 
In this paper, we examined the use of  recently proposed 
block-based compressive sensing (BCS) coupled with PL 
recovery algorithm. Through comparing the quality of 
different kinds of images, it shows that it works best in 
infrared images, and when dealing with texture images, the 
performance of reconstruction is reducing. Other popular CS 
algorithms  are also tested in this paper, results show that the 
proposed method reconstruction is promoting  not only 
sparsity but also smoothness. The proposed method 
encourages  superior image quality, particularly at infrared 
images. However, as we can see, lots of work is waiting to 
be settled because the reconstruction performance has not 
arrived at its peak yet. As we all know the measurements are 
not the full information of the resource, sparing samples 
should always be in accordance with the overall power 
budget and the waveform design and sampling techniques 
should consider, hence some kind of reweighing and 
denoising steps should be introduced to the recovery stage.  
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