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Abstract

Failure in bridges carry serious consequences so their
appropriate maintenance is paramount. Often, au-
thorities are faced with limited funding and available
contractors who are able to carry out the maintenance
checks and works. Therefore, a predictive model that
can forecast the future state of a bridge component
will enable the authority to prioritise and deploy re-
sources to where it is most needed. The challenge
faced in this paper is the requirement from the Victo-
rian road authorities to develop an effective predictive
model. Prior attempts have been made by using dif-
ferent techniques to construct an alternate predictive
model but with limited results. The problem lie in the
data itself. With data manually recorded by differ-
ent contractors, it is noisy and erroneous. Attempts
to data cleaning has led to little improvement in the
overall model performance. Finally we turned to data
augmentation to increase the proportion of reliable
data. In our quest to do so, we ended up pulling rain-
fall data from the BoM to augment the data provided
by VicRoads. We consider rainfall data as a candidate
for augmentation because literature in civil engineer-
ing has correlated bridge component deterioration to
the presence of water moisture. Since high rainfall
contributes to increased deterioration, leveraging the
rainfall information should lead to improved predic-
tive performance. Initial experiments on the predic-
tive performance of the baseline and “high rainfall”
models suggest the viability of this approach.

Keywords: Markov chains, bridge deterioration mod-
elling, service life, rate of deterioration, data augmen-
tation

1 Introduction

In many countries, bridge failures are increasing due
to ageing of its components. This issue is even more
acute in countries (e.g., Australia) where the popu-
lation is also growing quickly thus, putting on addi-
tional stress to the infrastructure. With limited pub-
lic funds to maintain a wide network of bridges, most
authorities such as VicRoads in Victoria would like to
deploy a Bridge Management System (BMS) to help
optimise maintenance plans for thousands of bridges
under its portfolio. A key component of such a system
is the Bridge Deterioration model, which is a predic-
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tive model that forecasts bridge conditions at a future
date so as to determine maintenance priority.

Our research work was carried out in coopera-
tion with VicRoads in the state of Victoria, Aus-
tralia. VicRoads currently carries a database of more
than 180,000 bridge inspection records for over 7,000
bridges state wide. VicRoads has hoped to use the
inspection data to build a predictive model that will
help optimise their maintenance work schedule so that
the limited public funds can be effectively deployed to
bridges most in need of maintenance at the lowest cost
to each job. The research brief in our case is to anal-
yse their inspection data with the goal of developing
a more accurate predictive model so as to improve the
effectiveness of their system.

There has been considerable research on various
modelling techniques in the area of bridge deteriora-
tion including, Markov Chain models (Ranjith et al.
2011, Wellalage et al. 2014a), envelopment models
(Wakchaure & Jha 2011, Ozbek et al. 2010), and
ANN (artificial neural network) models (Sobanjo n.d.,
Huang 2010). Regardless of the techniques used, the
objective is to further improve the overall predictive
performance of the system. Among these techniques,
Markov Chain-based models are most widely-used
even though it was also well-documented in the lit-
erature recently about their limitations. Many prior
works have been done to overcome these limitations
and the next Section provides the elaboration on these
works.

With the state of the literature suggesting that
the available techniques are limited in delivering the
desired predictive performance, we decided that an
alternate algorithm to construct the model may not
be the best “plan of attack” and so, we looked at
improving the predictive performance by working on
the data. Attempts to enhace the data quality led
to insignificant improvements. We soon realised that
this may not be a good approach too because the
data is obtained through the process of recording the
inspection outcomes manually. To make this worse,
the inspections are done by different contractors and
hence, there is a high level of noise, variation and
error in the data that limits the impact of typical
data cleaning techniques.

We had to undertake a different approach to the
problem. Working with the civil engineers, we learned
about the factors that caused a bridge component to
deteriorate. And according to (Huang et al. 2010,
Zhao & Chen 2002), the most significant deteriora-
tion factors include the age of a bridge, bridge mate-
rial used, traffic volume, and also the amount of rain-
fall a bridge was exposed to. Our assumption from
this background knowledge helps formulate the hy-
pothesis that “if factors contributing to deterioration
of a bridge component” could be included in the de-
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Table 1: Summary of the bridge data set from VicRoads across major regions. Note that the southern region
data set is missing because the south of Melbourne is the Port Philip Bay.

velopment of a predictive model, then there will be a
potential chance to increase predictive performance”.
More importantly, this led us to consider adding qual-
ity data to the otherwise noisy data set. This means
augmenting features that would reduce the propor-
tion of noisy data with the idea that this would help
lift the predictive model over the original baseline.

Among the various factors that contribute to
bridge deterioration, we found that historical rainfall
data is publicly available from the Australian Bureau
of Meteorology (BoM). In this paper, we report our
attempt to verify the above hypothesis by augmenting
the original data set with the rainfall data from the
BoM. Our experiments on the baseline model (built
without consideration to rainfall) and the new “high
rainfall” model (built by focusing on the high rainfall
data sets) suggest the viability of this approach.

To discuss the above, the rest of this paper is or-
ganised as follows. Section 2 first reviewed the cur-
rent works and the outcomes of these attempts. Sec-
tion 3 then presents the reader with an overview of
the bridge inspection records and also introduce the
rainfall data from the BoM. A discussion of how we
augment the data is also mentioned before we discuss
the modelling and validation in Section 4. This is
where we see promising difference between the base-
line bridge deterioration model and the new model
built by considering the high rainfall data. Finally
in Section 5, we conclude by outlining the next steps
following the work in this paper.

2 Literature review

Research on bridge deterioration modelling started a
decade ago and has since seen many various mod-
elling techniques being developed. These techniques
can be classified into three main categories: deter-
ministic models, stochastic models and others.

Deterministic models identify a direct relationship
between condition ratings (a number from 1 to 4
reflecting the degree of deterioration of a bridge or
its components) and the factors affecting bridge de-
terioration. Normally this is done using a regres-
sion model. For example, (Thompson et al. 2012)
described an Average Time to Failure model to de-
termine the average life expectancy of a structure
or a component. In another example, (Madanat &
Ibrahim 1995) attempted to build a common linear
model to describe the deterioration rate over time,
in which the result was linear. These models took
into consideration neither the uncertainties around
bridge deterioration nor the existence of unobserved
explanatory variables. Thus, stochastic models were
developed and its used quickly became popular.

Stochastic models are more capable of capturing
the probabilistic nature of the bridge’s deterioration

process. One major category of stochastic models is
based on the Markov theory. For example, (Jiang
& Sinha 1989) applied Markov Chains to predict
the bridge service life. The transition probabilities
from one state to another was solved by non-linear
programming and was used to evaluate the life ex-
pectancy of a bridge. Another example of the Marko-
vian model being used was reported in the work by
(Cesare et al. 1992), where historical data of 850
bridges in the State of New York was used to pre-
dict the future condition of the bridges. The results
were used to determine the repair policies then.

As stochastic models became popular, its weak-
nesses were also revealed. In (Thompson & Johnson
2005) for example, the authors concluded from their
Markov modelling (on historical data of bridge main-
tenance records in California) that the quality and
quantity of available data would affect the validity
of the model. Most of the historical data set con-
tained a large proportion of good condition records,
from which very few state transitions can be observed.
This was because many records were produced af-
ter maintenance. However the actual maintenance
records were always absent so that such data cannot
be identified and adjusted. In such a situation, the
estimated transition probabilities did not reliably re-
flect the actual bridge deterioration features.

Furthermore, (Aboura et al. n.d.) pointed out that
Markov Chains carry the underlying assumption that
the transition probabilities are independent of time.
This however contradicts the fact that the transition
probabilities of a bridge condition to the next state
would change as time passes by, i.e., the longer the
bridge is in a current state, the higher the chance of
it moving to the next successive worse state. To min-
imise this shortcoming, a number of improvements
were made. For example, (Ng & Moses 1998) used
the semi-Markov process to incorporate a time factor
into traditional Markov models. To consider the age
effect, (Sobanjo & Thompson 2011) proposed to in-
corporate the Weibull model into the Markov Chain
while (Maovi & Hajdin 2014) approached this prob-
lem with an EM algorithm to improve the reliability
of the estimated transition probabilities.

In addition to Markov-based techniques, re-
searchers have recently turned to alternate techniques
in an attempt to further improve predictive perfor-
mance. This include the use of Artificial Neural Net-
work (ANN). One example is seen in (Tokdemir et al.
n.d.), who used ANN (and genetic algorithms) to pre-
dict the deterioration of highway bridges. A short-
coming of the ANN (and genetic algorithms in gen-
eral) is that they are computationally intensive. To
reduce the computational time, a hybrid optimisation
was then proposed by (Callow et al. 2013). One of the
strengths of the ANN technique is its ability to deal

CRPIT Volume 168 - Data Mining and Analytics 2015

162



Table 2: A snapshot of the monthly rainfall data from the Bureau of Meteorology (BoM) website.

with some of the data issues that these types of prob-
lems have. In (Lee et al. 2008, Bu et al. 2012) for
example, the Backward Prediction Model was used
to generate additional data to augment the otherwise
limited historical inspection records.

Despite the various techniques and approaches,
Markov-chains remained popular. As (Ng & Moses
1998, Sobanjo & Thompson 2011, Maovi & Hajdin
2014) suggested, the performance of Markov mod-
els could be improved when more reliable methods
are adopted to estimate the transition probabilities.
Therefore, a number of advanced techniques have
been used for transition probability estimation, such
as Markov Chain Monte Carlo (MCMC) simulation
as seen in (Karunarathna et al. 2013, Wellalage et al.
2015). Both works implemented MCMC methods to
obtain transition probabilities that best described the
transition features of the historical data set. While
these efforts focused on the model itself, another fac-
tor, namely input data, is also of great significance
and should be considered when trying to improve the
model performance. As (Huang et al. 2014) pointed
out, the right data is equally crucial.

This research thus makes an attempt to move to-
wards the “right data” by augmentation of the ex-
isting data set with publicly available information.
This creates a richer and also higher quality data in-
put that we then used to establish if an improvement
could be made in terms of predictive performance. If
so, this method is clearly more scalable than focusing
on the specific model as data would be the input to
all. The success reported in this method thus scales
across different approaches to building the model; not
just the Markov Chains used in the experiments of
this paper.

3 Overview of data sources

There are four categories of data sets from two sources
used for the experiments, which are bridge inspection
data and bridge location data from VicRoads, and
weather station data and rainfall data from BoM.

Bridge inspection data This is a collection of his-
torical inspection records about the condition
states of Victorian bridges across regions. The
information of interest is the ratings given to each
bridge structure component at end of each in-
spection. VicRoads adopted a rating scale of 1
to 4, with ‘1’ suggesting that the bridge structure
component is in good condition and 4 to mean
that the component is damaged or has failed. As
shown in Table 1, there are seven regions with the
data from ‘All Area’ containing the data from all
the seven regions. Each data set contains 32 at-
tributes detailing information about the bridge
structure, identification information, condition
ratings of a structure component, and comments
from inspectors.

Bridge location data VicRoads also has data
about the geographical information of a bridge

structure in the form of ‘Latitude’ and ‘Longi-
tude’, i.e. the coordinates of a structure. We
used the bridge’s location to identify the nearest
weather station of a structure so as to obtain the
corresponding rainfall information.

Weather station data The weather station data
was obtained from BoM website. There are two
attributes of interest: station number and coordi-
nates. Station number was a unique ID number
assigned by BoM to a weather station. We used
this information to match up with the historical
rainfall data on the BoM website. The coordi-
nates of the weather stations were used together
with the bridge location information to identify
the bridges that are near to a weather station.

Rainfall data BoM provides rainfall data at the
daily, monthly and annual levels. As the bridge
inspection data was recorded with respect to each
inspection year, annual rainfall amount (in mil-
limetres) was selected for augmentation. Once
the nearest weather station is determined for
a structure, its corresponding inspection record
was extended with an annual rainfall amount cal-
culated from the rainfall data recorded by that
weather station.

As (Huang et al. 2014) discussed, there are a few
data issues regarding the bridge data that should be
dealt with before applying them to the model. In this
research, following data issues were considered as well
as pre-processing steps were conducted.

In taking advice from (Huang et al. 2014) to en-
sure that the data is of high quality prior to model
development, we undertook data cleaning within the
constraints available. This includes the following is-
sues.

• Some of the records have “inspection dates” that
were before the registered “construction dates”.
Others have missing “construction dates”. Such
records cannot be used for Markov Chain mod-
elling since we need to determine the age of a
bridge as part of the modelling. These records
were eliminated from the data set. Fortunately,
these offending records only accounted for 0.03%
of the entire data set.

• Most of the condition ratings are recorded as
‘1’, suggesting that maintenance was conducted
throughout the inspections. For the inspection
records available for analytics, VicRoads does
not have the maintenance records making it diffi-
cult to identify which inspection record was made
after a maintenance. For example, an inspec-
tion on a given day was recorded with a con-
dition rating of ‘2’ but the following inspection
record saw that condition rating being revised to
a ‘1’. Without access to the maintenance records,
it is unclear whether the change from ‘2’ to ‘1’
was a result of a maintenance or a difference
in judgement by the inspectors. In this paper,
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Table 3: Summary of features selected and the rationale for selecting a feature in the data set.

we assumed that the component was maintained
whenever an improvement of condition was found
between two consecutive records. The compo-
nent age was then recalculated based on this as-
sumption.

• Table 2 shows a snapshot of how the rainfall data
looks like on the BoM. As we can see in the snap-
shot, the amount of rainfall is not recorded every
month because there are times where the weather
station did not operate as expected, or that the
BoM isn’t sure of the reliability of the data. In
such cases, the rainfall for that month is missing.
To extrapolate the annual rainfall data which we
need, we impute the missing values with the sta-
tistical long term mean obtained from the BoM
website. Once all values are incorporated, the
annual rainfall is then calculated for our purpose.

• Lastly, we need to select the best features for
building our model. According to (Guyon & Elis-
seeff 2003, Kira & Rendell n.d.), feature selection
is an essential process in model construction es-
pecially when there are many irrelevant features
in the data set. As we fuse the four data sources
for model training, we should select only relevant
features. This involves first creating the ‘joined’
data set by mapping the bridge location data and
the weather station to identify the bridges’ prox-
imity to weather station. Once that’s done, we
can pull the relevant annual data for each bridge
structure. We then obtain a subset of features
as the basis for building our model. The selected
features are given in Table 3.

For benchmarking purposes, we went with the
popular Markov Chains approach, building both the
baseline and the “high rainfall” models. The output
of running the Markov Chains is a Transition Prob-
ability Matrix derived from the bridge age and con-
dition ratings. Figure 1 shows how the data set is
used to build the two models for comparison. The
full data set was split into a number of sub-sets based
on component number in order to examine the ef-
fects of the rainfall from component-level. Each sub-
set, which can be named as ‘all rainfall group’, was
then classified into ‘high rainfall’ group if the rainfall
amount is no less than 600mm and ‘low rainfall’ group
otherwise. The value ‘600mm’ is a statistical long-
term average annual rainfall provided by BoM web-
site. Different rainfall groups were used to train the
same Markov Chain model respectively, from which
the results were used for prediction on the same test-
ing data set in order to compare the prediction accu-
racy. The 90/10 split is the typical model validation
ratio with 10 folds applied to each evaluation as de-
scribed in Section 4.

Figure 1: Building two Markov Chain models with
the first using the data set from VicRoads and the
second, using the data set from VicRoads that has
been augmented with rainfall data. The predictive
performance of these two models are then compared.

Table 4: A description of the various components.
Where “other materials” are mentioned, this means
materials other than steel, precast concrete, case-in-
Situ concrete or timber.

4 Modelling and Validation

Markov Chain-based model was used for data train-
ing and its performance was evaluated by the pre-
diction accuracy of bridge future condition on test-
ing data set. The parameters of the Markov model,
namely the transition probabilities, were obtained
using Metropolis-Hastings Algorithm (MHA) imple-
mented in Matlab. MHA is one of the most popu-
lar methods of Markov Chain Monte Carlo (MCMC)
simulation, which is powerful to simulate multivari-
ate distributions [28]. A number of research, such
as (Karunarathna et al. 2013, Tran 2007, Wellalage
et al. 2014b), have used MHA to calibrate the Markov
Chains to obtain transition probabilities.

A Markov model describes a system that transits
from state i to state j at a single time interval with
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Table 5: Experimental results for the Western data set over 10 folds. The numbers are the average RMSE
values for the 10% test data in the given fold tested on both the baseline and the “high rainfall” model. A
smaller RMSE value indicates a lower error rate between the actual “overall condition rating” (OCR) and the
predicted OCR. Between the Baseline and “high rainfall”, the model that has a lower RMSE value indicates
better performance. As an example, in Fold 1, on Component 24C, the baseline model produces a RMSE value
of 0.899 while the “high rainfall” model produces a 0.078 RMSE value. This means that the “high rainfall”
model has produced a better predictive performance for this particular run.

Table 6: The average RMSE value over 10 folds for each data set and a given component. This table summarises
the RMSE results obtained across eight similar tables that we have used for recording our experiment results.
Table 5 shows an example of what the eight tables looked like, which is used for determining the average RMSE
values here.

a fixed probability pij , all of which consists a transi-
tion probability matrix (TPM). In this study, there
are four discrete transition states (from 1 – ‘perfect’
to 4 – ‘worst’) in the bridge deterioration process ac-
cording to VicRoads. It is assumed that the bridge
condition will either remain in the present state or
transit to another worse state. The one-year transi-
tion probability matrix is given in Equation 1.

P =


p11 p12 p13 p14
0 p22 p23 p24
0 0 p33 p34
0 0 0 1


(1)

The initial condition state of a bridge is denoted as
a condition state vector C0 = [ 1 0 0 0 ]. The predicted
condition state vector Ct after t years is calculated
by Equation 2, where P is the transition probability
matrix and Ci

t , i ∈ [ 1, 2, 3, 4 ] is the probability of the
bridge condition being in state i at year t.

Ct = C0 × P t = [C1
t C2

t C3
t C4

t ] (2)

The result from Equation 2 is then used to calcu-
late an “overall condition rating” (OCR) using Equa-
tion 3, which is the expected value obtained by con-
sidering the probability values in the state vector.

OCR =
4∑

i=1

i× Ci
t (3)

The modelling process was repeated based on dif-
ferent rainfall groups (see Figure 1). After the data
preparation steps, for each component in each region,
the All Rainfall Group (ARG) was split into two sets,
i.e. Low Rainfall Group (LRG) and High Rainfall
Group (HRG). With the assumption that high rain-
fall would have greater impact on bridge deteriora-
tion, ARG data and HRG data were applied to train
the Markov model respectively. 90% of each data set
was used for training while both groups predicted on
the 10% of HRG data.

As the bridge inspection data were recorded in
component-level, the same sets of components from
each region should be selected for modelling in or-
der to compare the prediction results. Moreover, the
modelling results will be less valid if very little num-
ber of records for a component is available for train-
ing and testing. Therefore, five components were se-
lected from each region with the number of testing
data greater than ten. Table 4 provides the compo-
nent number with its corresponding component type
based on VicRoads inspection manual.

Each model was validated by using a separate test-
ing data set as well as ten-fold validation. Also,
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Table 7: A summary of the predictive performance
differences (see Table 6) between the baseline and
“high rainfall” models. The numbers in this table
is obtained by comparing the difference between the
RMSE value of the baseline model to the “high rain-
fall” model. Since a higher RMSE value suggests
lower predictive accuracy, a positive number in the
difference suggests that the “high rainfall” model has
performed better in the region’s data set on a specific
component. Where the “high rainfall model” per-
formed better, the result is marked in grey. Over
all the results show promising results of augmenting
external data sources to improve predictive perfor-
mance.

the performance of each model is validated with the
root mean square error (RMSE) as shown in Equa-
tion 4, where y and ŷ are the “overall condition rat-
ing” (OCR) predicted by the baseline and the “high
rainfall” model. The closer the RMSE value is to 0,
the better the model performance is.

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (4)

An example of the RMSE values for baseline data
and “high rainfall” data is given in Table 5. This
data set contains inspection records from the western
regions of Victoria. A high RMSE value means that
the error is high and therefore lower predictive perfor-
mance. In Table 5, each component is tested 10 times
(folds) on a different set of test records. The predic-
tive errors are then noted and the test conducted on
both the baseline model and the “high rainfall” model
for each component. Since we have eight data sets,
there are eight such table of results from our exper-
iment so Table 5 gives an idea of what the results
look like. To determine if the “high rainfall” model
actually performs better, we first obtained the aver-
age RMSE values across the 10 runs to arrive at the
results in Table 6.

Finally, we compute the difference of these aver-
age RMSE scores between the baseline and the “high
rainfall” model. This difference, for each component
across the eight data sets, are shown in Table 7. What
we can see from the experiment results is that com-
ponents 51S, 52O and 55S see good performance im-
provements while components 24C and 54O seem not
to respond well with our method. Looking at the ma-
terial used for these components (Table 1, we could
draw the following conclusions

• 51S and 55S are components made of steel while
24C is a component made of cast-in-Situ con-
crete. Consistent with the literature, a steel com-
ponent is more likely to be impacted by rainfall
due to water corrosion (than cast-in-Situ con-
crete).

• 54O is the waterway part of a bridge made of
materials other than steel, precast concrete, cast-
in-Situ concrete or timber. This means that this

material has to withstand the presence of water
and therefore the rainfall data should not have
any impact.

5 Summary and Future Work

This paper presents our preliminary results on our
work with VicRoads to implement a bridge deterio-
ration model to enable the development of a bridge
management system. The challenges of the work lie
with the noisiness of the data and access to informa-
tion required for data cleaning is limited. Therefore
an alternative approach to improve the data quality is
paramount before considering the various predictive
models that one can use. Our strategy was to look
at augmenting the data set with sources of data that
are known to be reliable. In doing so, the proportion
of the noisy and erroneous data is reduced, giving the
model a better chance of producing good predictive
performance. The use of rainfall data from the BoM
verifies the possible viability of this approach. On the
five major components of interests to bridge inspec-
tors, the overall performance improvement seen in the
model that utilises the high rainfall data suggests that
this is a plausible direction to take.

In the near term, we will be conducting further
studies on the use of rainfall data from the BoM. This
would include

• Verifying if the long term annual rainfall average
(600mm) is a good determinant of the high rain-
fall characteristics. We are keen to investigate
this long term average because our own study
with the rainfall associated with our bridges av-
erage at around the 800mm mark rather than
600mm. It would be important to find out how
the “high rainfall” model would perform if the
cut-off point for selecting the high rainfall subset
is raised to 800mm.

• Considering the use of more advanced models
rather than Markov chains with this data to see
what impacts the augmented data set could bring
to different algorithms for building bridge dete-
rioration models.

The outcomes of these two investigation will even-
tually lead to insights on the best choice of algorithm
for model training and the final augmented data set
to use, including the exploration of other data sources
to add to the data set, e.g., traffic and weather infor-
mation, which too contribute to bridge deterioration.
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