
Inductive Definitions in Constraint Programming

Rehan Abdul Aziz Peter J. Stuckey Zoltan Somogyi

Department of Computing and Information Systems,
The University of Melbourne and National ICT Australia (NICTA)

Email: raziz@student.unimelb.edu.au, pjs@csse.unimelb.edu.au, zs@unimelb.edu.au

Abstract

Constraint programming (CP) and answer set pro-
gramming (ASP) are two declarative paradigms used
to solve combinatorial problems. Many modern
solvers for both these paradigms rely on partial or
complete Boolean representations of the problem to
exploit the extremely efficient techniques that have
been developed for solving propositional satisfiability
problems. This convergence on a common represen-
tation makes it possible to incorporate useful features
of CP into ASP and vice versa. There has been signif-
icant effort in recent years to integrate CP into ASP,
primarily to overcome the grounding bottleneck in
traditional ASP solvers that exists due to their inabil-
ity to handle integer variables efficiently. On the other
hand, ASP solvers are more efficient than CP sys-
tems on problems that involve inductive definitions,
such as reachability in a graph. Besides efficiency,
ASP syntax is more natural and closer to the math-
ematical definitions of such concepts. In this paper,
we describe an approach that adds support for an-
swer set rules to a CP system, namely the lazy clause
generation solver chuffed. This integration also nat-
urally avoids the grounding bottleneck of ASP since
constraint solvers natively support finite domain vari-
ables. We demonstrate the usefulness of our approach
by comparing our new system against two competi-
tors: the state-of-the-art ASP solver clasp, and cling-
con, a system that extends clasp with CP capabilities.

Keywords: Answer set programming, constraint pro-
gramming, stable model semantics, inductive defini-
tions.

1 Introduction

Constraint programming (Rossi et al. 2006) is a
declarative programming paradigm that is used to
solve a wide range of computationally difficult prob-
lems. It allows users to encode a problem as a concise
mathematical model, and pass it to a constraint solver
that computes solution(s) that satisfy the model. The
goal of CP is that users should find writing models as
natural and as easy as possible, which requires hid-
ing away all the complexity involved in finding those
solutions inside the constraint solvers, where only the
solvers’ implementers have to see it.

Copyright c©2013, Australian Computer Society, Inc. This
paper appeared at the 36th Australasian Computer Science
Conference (ACSC 2013), Adelaide, South Australia, January-
February 2013. Conferences in Research and Practice in Infor-
mation Technology (CRPIT), Vol. 135, Bruce H. Thomas, Ed.
Reproduction for academic, not-for-profit purposes permitted
provided this text is included.

Motivated by the efficient engineering techniques
developed in the domain of propositional satisfiabil-
ity (SAT) solving (Mitchell 2005), a recent highly
competitive constraint solving approach, lazy clause
generation (Ohrimenko et al. 2009, Feydy & Stuckey
2009) builds an on-the-fly Boolean representation of
the problem during execution. This keeps the size
of the representation small. The propagators record
their results of failed searches as Boolean clauses (no-
goods) so that the solver can later use SAT unit prop-
agation on those clauses to find other instances of that
failure elsewhere in the search tree much more quickly.

Constraint modelling languages allow users to
succinctly define many natural notions, particularly
when using global constraints, which can capture
the entirety of some substructure of the problem.
Global constraints also allow solvers to use effi-
cient specialized reasoning about these substructures.
But constraint modelling cannot naturally capture
some important constructs, such as transitive clo-
sure. (Propositional) definite logic programs do allow
the modelling of transitive closure efficiently, because
they rely on a least model semantics, which ensures
that positive recursion in the rules among a set of
atoms, i.e. circular support between these atoms to
establish each other’s truth, is not sufficient to cause
an atom to be true. When we extend logic programs
to normal logic programs, which allow negative liter-
als in the body, we can extend the least model ap-
proach in at least two ways which still maintain this
property: the stable model (Gelfond & Lifschitz 1988)
and the well-founded model (Van Gelder et al. 1988).

Answer set programming (ASP) (Baral 2003),
based on stable model semantics, is another form of
declarative programming. Answer set solvers take as
input a normal logic program, usually modelling a
combinatorial problem, and calculate its stable mod-
els, each of which corresponds to one of the prob-
lem’s solutions. The incorporation of some of the
engineering techniques originally developed for SAT
solvers (such as nogood learning) in answer set solvers
has resulted in excellent performance (Gebser et al.
2007). The implementation of these techniques re-
lies on translating the normal logic program back to
propositional formulas, an approach which was first
proposed by Lin & Zhao (2004). Representing the
program as its Clark’s completion introduces practi-
cally no overhead, but detecting unfounded sets (Van
Gelder et al. 1988), sets of atoms that are supported
only by each other but have no external support, is
far from straightforward. The main reason for this is
that a program can potentially have a very large num-
ber of unfounded sets (Lifschitz & Razborov 2006).
To tackle this, Gebser et al. (2007) use a principle
similar to lazy clause generation: they calculate and
record unfounded sets lazily during the search, as the

Proceedings of the Thirty-Sixth Australasian Computer Science Conference (ACSC 2013), Adelaide, Australia

41

need arises.
The effectiveness of the above approach motivates

us to incorporate stable model semantics into our
modelling language MiniZinc (Nethercote et al. 2007)
in order to broaden the scope of problems that we
can model; in particular, we are thinking about prob-
lems such as reachability, whose mathematical de-
scriptions require induction. Unless specialized graph
constraints are used (Dooms et al. 2005, Viegas &
Azevedo 2007), these problems cannot be efficiently
handled by existing constraint solvers. In this pa-
per, we propose the use of inductive definitions in
MiniZinc and empirically demonstrate its usefulness.
We describe two implementations of unfounded set
calculation as propagators for the lazy clause genera-
tor chuffed. These implementations are based on the
source pointer technique (Simons et al. 2002) com-
bined with either of the unfounded set algorithms
described by Anger et al. (2006) and Gebser et al.
(2012).

The rest of the paper is organized as follows. Sec-
tion 2 lays out the theoretical background required
for this paper. Section 3 describes, with the help of
a running example, how recursive definitions under
propositional semantics lack the ability to model cer-
tain problems correctly and efficiently, and presents
an extension of the MiniZinc modelling language as a
solution. Section 4 explains how this extension may
be implemented. Section 5 describes one of our two
implementations in detail. We evaluate both imple-
mentations experimentally in Section 6. We then dis-
cuss related work by other authors in Section 7.

2 Background

Constraints and propagators

We consider constraints over a set of variables V. We
divide V into two disjoint sets, namely integer vari-
ables IV and Boolean atoms AV . A literal is an atom
or its negation. A domain D is a mapping: from IV to
fixed finite sets of integers, and from AV to sets over
{>,⊥}. A domain D1 is stronger than a domain D2,
written D1 v D2, if D1(x) ⊆ D2(x) for all x ∈ V. A
valuation θ is a mapping of variables to a single value
in their domains, written {x1 7→ d1, . . . , xn 7→ dn}.
Let vars be a function that returns the set of vari-
ables that appear in any expression. We say that a
valuation θ is an element of the domain D, written
θ ∈ D, if θ(x) ∈ D(x) for all x ∈ vars(θ). A val-
uation θ is partial if vars(θ) ⊂ V and complete if
vars(θ) = V.

A constraint c is a restriction on the values that
a set of variables, represented by vars(c), can be si-
multaneously assigned. In our setting, a constraint c
is associated with one or more propagators that oper-
ate on vars(c). Propagators for a constraint work by
narrowing down the values that the variables of the
constraint can take. More formally, a propagator f is
a monotonically decreasing function from domains to
domains, that is, f(D) v D, and f(D1) v f(D2) if
D1 v D2. A propagator f for a constraint c is correct
iff for all possible domains D, and for all solutions θ
to c, if θ ∈ D, then θ ∈ f(D).

A CP problem is a pair (C,D) consisting of a set
of constraints C and a domain D. A constraint pro-
gramming solver solves (C,D) by interleaving prop-
agation with choice. It applies all propagators F for
constraints C to the current domain D, and it does so
repeatedly until no propagator makes a change (i.e.
until a fixpoint is reached). If the final domain D′

represents failure (D(x) = ∅ for some x) then it back-

tracks to try another choice. If all variables have at
least one element in their domains, but some have
two or more, then the solver needs to make a choice
by splitting the domain of one of these variables into
two parts. This labelling step results in two sub-
problems (C,D′′) and (C,D′′′), which the solver then
solves recursively. If all variables have exactly one
value in their domains, then there are no choices left
to be made, and the domain is actually a valuation.
Whether that valuation satisfies all the constraints
can be trivially checked, although this check is unnec-
essary if the propagators of all constraints are guaran-
teed to find any failures of those constraints. In prac-
tice, solvers use event-driven scheduling of propaga-
tors and priority mechanisms to try to reach fixpoints
as quickly as possible (Schulte & Stuckey 2008).

(Propositional) Normal logic programs

In our proposed system, we divide the set of atomic
variables AV into two disjoint subsets: the set of de-
fault variables DV , and the set of non-default vari-
ables NV . A normal rule r has the form:

a← p1, . . . , pj ,∼n1, . . . ,∼nk

where a ∈ DV and {p1, . . . , pj , n1, . . . , nk} ⊆ AV .
We say that a is the head of r, written rH , and
{p1, . . . , pj ,∼n1, . . . ,∼nk} is the body of r, written
rB . To allow us to represent the truth or falsity of
each rule body, we have the bodyRep function, which
maps each rule body to a new body atom b ∈ NV . We
also have functions that return the positive and neg-
ative atoms in each rule body: if bodyRep(rB) = b,
then pos(b) = {p1, . . . , pj} and neg(b) = {n1, . . . , nk}.
We call the set of positive default literals of the body
b+ = {p | p ∈ pos(b), p ∈ DV}.

A normal logic program (NLP) is a set of normal
rules. We consider an NLP P as a constraint. We
define the following functions for a default atom a
and a body atom b. The set of all body atoms in
the program is bodies(P) = {bodyRep(rB) | r ∈ P};
the set of bodies of the rules whose head is a is
body(a) = {bodyRep(rB) | r ∈ P, rH = a}; the
set of heads supported by b is supHead(b) = {rH |
r ∈ P, bodyRep(rB) = b}; and the set of body
atoms in whose positive parts a ∈ DV appears is
posInBody(a) = {c | c ∈ bodies(P), a ∈ c+}.

We use the concept of positive body-head depen-
dency graph as defined in (Gebser & Schaub 2005).
It is a directed graph (DV ∪ bodies(P), E(P)) where
E(P) = {(a, b) | a ∈ DV , b ∈ posInBody(a)}
∪ {(b, a) | b ∈ bodies(P), a ∈ supHead(b)}.

We associate each strongly connected component
of the graph with a number, and we map every atom
and body literal in the component to this number
through a function scc.

Our implementation of stable model semantics re-
lies on the translation of logic programs into propo-
sitional theories. Given a default atom a ∈ DV ,
the Clark completion (Clark 1978) of its definition,
Comp(a), is the formula a ↔ ∨b∈body(a)b. The com-
pletion of P is the formula:

Comp(P) =
∧
x∈DV

Comp(x)

The following formula ensures that all body literals
are equal to the conjunction of their literals:

Body(P) =
∧

b∈bodies(P)

(b↔
∧

p∈pos(b)

p ∧
∧

n∈neg(b)

¬n)

CRPIT Volume 135 - Computer Science 2013

42

We refer to the conjunctive normal form (CNF) of
the formula Comp(P) ∧ Body(P) as Clauses(P).

Given a valuation θ, a set U ⊆ DV is unfounded
with respect to θ iff for every rule r ∈ P and
bodyRep(rB) = b:

1. rH /∈ U or

2. θ(p) = ⊥ for some p ∈ pos(b) or θ(n) = > for
some n ∈ neg(b) or

3. b+ ∩ U 6= ∅.

Basically, a set is unfounded if every default variable
in it depends on some other variable in it being true,
but none of them have external support, i.e. none of
them can be proven true without depending on other
default variables in the set. This is expressed most
directly by the third alternative. The previous alter-
natives cover two different uninteresting cases: rules
whose heads are not in the potentially unfounded set
we are testing, and rules whose bodies are known to
be false.

Finally, we say that a complete valuation θ satisfies
P , or that θ is a constraint stable model of P iff θ |=
Clauses(P) and there is no U ⊆ DV such that U is
an unfounded set with respect to θ.

Constraint stable models can also be defined
through use of constraint reducts (Gebser et al. 2009).
Given a valuation θ such that vars(θ) ⊇ NV and
vars(θ) ∩ DV = ∅, the constraint reduct of P with
respect to θ, written Pθ, is a version of P that has no
non-default variables. The reduct is computed by first
removing the rules whose bodies have one or more lit-
erals that are not satisfied by θ, and then removing
satisfied non-default atoms from the rule bodies. A
complete valuation θ′ that extends θ is a constraint
stable model of P if θ′ is a stable model of the reduced
program Pθ.

3 Inductive definitions

The goal of this section is to demonstrate the use-
fulness of inductive definitions in constraint mod-
elling languages with the help of an example. Con-
sider the Connected Dominating Set problem.1 Given
a graph G defined by n nodes numbered 1..n
and a (symmetric) adjacency 2D array edge where
edge[i,j] = edge[j,i] = true iff the nodes i and
j are adjacent. A connected dominating set D is a
subset of 1..n such that for each node i, either i or
one of its neighbours is in D, and the set D is con-
nected (each node in D can reach other nodes in D by
a path of edges both of whose endpoints are in D).
The problem is to find a dominating set with at most
k nodes for a given graph.

A MiniZinc (Nethercote et al. 2007) model for this
problem excluding the connectedness condition is:

int: k; % size limit
int: n; % nodes in G
set of int: N = 1..n; % node set
array[N,N] of bool: edge; % edges in G

array[N] of var bool: d; % is member of D?

constraint sum(i in N)(bool2int(d[i])) <= k;
constraint forall(i in N)

d[i] \/ exists(j in N where
edge[i,j])(d[j]);

1See http://dtai.cs.kuleuven.be/events/ASP-competition/
Benchmarks/ConnectedDSet.shtml

But modelling the connectedness condition in CP
is very difficult. We may imagine we can model this
by saying each node in D is adjacent to another node
in D.

constraint forall(i in N)
(d[i] -> exists(j in N, j != i)
(d[j] /\ edge[i,j]);

This model is incorrect, for example for the sym-
metric completion of the asymmetric graph with
edges {(1,2),(2,3),(3,4),(4,5),(4,6),(5,6)}
and limit 4, it has a solution D = {1,2,4,5} which
is dominating but not connected.

We need to define a base case for connectedness,
and reason about reachability from there in terms of
distance: reach[n,s] means we can reach node n
from base node min_idx (the node in D with least
index) in s or fewer steps. (The var N indicates that
min_idx must belong to the previously defined set N.)

var N: min_idx = min(i in N)
(i + bool2int(not d[i])*n);

array[N,0..n-1] of var bool: reach;
constraint forall(i in N)
(reach[i,0] <-> i == min_idx);

constraint forall(i in N)
(forall(s in 0..n-2)
(reach[i,s+1] <-> (reach[i,s] \/

exists(j in N where edge[i,j])
(d[i] /\ reach[j,s]))));

constraint forall(i in N)
(d[i] -> reach[i,n-1]);

The model defines only min_idx as reachable with
0 steps, and node i is reachable in s+1 steps
(reach[i,s+1]) if it was reachable previously or if
it is in d and there is an adjacent node j reachable
in s steps. The model is correct giving two answers
D = {2,3,4,5} and D = {2,3,4,6}. This model is
very expensive, requiring n*n Boolean variables to de-
fine the final connected set.

Lets consider the ASP model for the same prob-
lem, shown here in gringo syntax:

% select the dominating set
{ dom(U) : vtx(U) }.

% dominating set condition
in(V) :- edge(U,V), dom(U).
in(V) :- dom(V).
:- vtx(U), not in(U).

% connectivity constraints
reach(U) :- dom(U),
not dom(V) : vtx(V) : V < U.

reach(V) :- reach(U), dom(V), edge(U,V).
:- dom(U), not reach(U).

% size bound
:- not { dom(U) : vtx(U) } K, bound(K).

where the input is vtx(i) where i is in 1..n,
edge(i,j) whenever edge(i,j), and bound(k) for
limit k. The size constraint is expressed in negation,
while the dominating set is expressed more obscurely.
The base case that relies on defining minimum in-
dex computation is arguably more transparent. The
biggest difference is the reachability condition which
is much more succinct and much more efficient.

The advantage of the ASP model is that it makes
use of the inductive interpretation of the rules for
transitive closure. The solution D = {1,2,4,5} is

Proceedings of the Thirty-Sixth Australasian Computer Science Conference (ACSC 2013), Adelaide, Australia

43

not generated because the transitive closure compu-
tation cannot generate reach(4) or reach(5) from
reach(1).

In order to incorporate this succinct modelling,
and to take advantage of the efficient solving ap-
proaches for this, we extend MiniZinc with inductively
defined predicates.

For the running example we use an inductive def-
inition of the predicate reach as follows

idpredicate reach(N: i) = i == min_idx \/
exists(j in N where edge[i,j])

(d[i] /\ reach(j));

and add the constraint

constraint forall(i in N)(d[i] -> reach(i));

Inductively defined predicates are allowed to have
only fixed arguments; that is, their arguments cannot
be decision variables. They can use arbitrary Mini-
Zinc in the bodies with the restriction that they can-
not introduce new decision variables, and inductively
defined literals cannot appear inside non-Boolean
constraint expressions. The example above uses the
existing decision variables min_idx and d in the body.

In MiniZinc we assume that inductively defined
predicates have an (extended) stable model semantics
(Gelfond & Lifschitz 1988). At the moment, we have
not defined the stable models of inductive definitions.
Instead, we talk about the constraint stable models of
an equivalent set of normal rules. What the extended
stable models of the inductive definitions should be,
and how the translation of the inductive predicate
into a set of normal rules should work, are both di-
rections for our future research. We comment further
on this topic in Section 8.

4 Mapping inductive definitions to FlatZinc

The first step in solving a MiniZinc model is having
the translator program mzn2fzn map it to FlatZinc, a
lower level language that is easier for solvers to under-
stand and implement. In this section, we show what
this translation has to do for MiniZinc models that
contain inductive definitions.

The first task of the translation is identifying the
default variables used by inductively defined predi-
cates, and defining them properly. The FlatZinc we
want to generate for a default variable named dv is:

var bool: dv;
default_variable(dv);

The first line defines dv as a Boolean variable, while
the second tells the solver that this variable is a de-
fault variable, and not an ordinary Boolean variable.
This line defines a predicate we added to FlatZinc:

predicate default_variable(var bool: v);

Each use of this predicate declares a default
Boolean variable. For our running example from pre-
vious section, we want to generate this FlatZinc:

array[N] of var bool: reach;
default_variable(reach[1]);
...
default_variable(reach[n]);

The second task of the translator is replacing the
inductively defined predicate for each default variable
with a set of normal logic rules that have the same
constraint stable models as that predicate.

To make this possible, we have extended FlatZinc
with a predicate that represents normal rule defini-
tions:

predicate normal_rule(var bool: head,
array[int] of var bool: pos_atoms,
array[int] of var bool: neg_atoms);

As the names suggest, pos_atoms and neg_atoms
contain the atoms appearing in positive and negative
literals in the rule respectively, so the generic normal
rule r shown in Section 2 would be represented as

normal rule(a, [p1, . . . , pj], [n1, . . . , nk])

The head must be a default variable, but the positive
and negative literals have no such restriction.

MiniZinc supports quantifiers, and the inductive
definition of reach in the previous section included
a quantifier. FlatZinc does not allow quantifiers, so
we must eliminate them during translation. This re-
quires knowing the data over which such predicates
operate. For reach, this data is the edge predi-
cate. If the edge predicate contains the three facts
{(1,2),(2,1),(2,2)}, representing a small graph
with two nodes and three edges, we want to trans-
late reach into these constraints:

normal_rule(reach[1],[min_idx==1],[]);
normal_rule(reach[2],[min_idx==2],[]);
normal_rule(reach[1],[d[1],reach[2]],[]);
normal_rule(reach[2],[d[2],reach[1]],[]);
normal_rule(reach[2],[d[2],reach[2]],[]);

The first step in this translation is the replacement
of existential quantifiers in predicate bodies with dis-
junctions. The second step is the replacement of dis-
junctions in bodies with two or more rules. This par-
ticular translation is essentially a form of the Lloyd-
Topor transformation (Lloyd & Topor 1984). While
that is the translation we want to do, we have not
yet implemented either the translation, or the recog-
nition of idpredicate definitions in MiniZinc. Yet
to test the effectiveness of our system, we need some
way to generate FlatZinc code that implements in-
ductive definitions. To do this, we have exploited
mzn2fzn’s existing ability to expand out quantifica-
tions. We have simply added the normal_rule pred-
icate to MiniZinc as well as FlatZinc.

To generate the FlatZinc that we would want gen-
erated from

idpredicate reach(N: i) = i == min_idx \/
exists(j in N where edge[i,j])
(d[i] /\ reach(j));

a MiniZinc user can now write these constraints:

constraint forall(i in N)
(normal_rule(reach[i],[i==min_idx],[]));

constraint forall(i,j in N where edge[i,j])
(normal_rule(reach[i],[d[i],reach[j]],[]));

Basically, until we implement our full translation,
we require users to expand out existential quantifiers
and disjunctions for themselves, although as we have
shown above, this can be conveniently done with the
MiniZinc generator forall.

5 Implementation

Before we describe our implementation in detail, let
us sketch briefly how propagation works in chuffed.
A propagator can subscribe to an event e, written
Subscribe(e). When the event e takes place, the
WakeUp function of the propagator is called. At this
point, the propagator can Queue up for propagation.

CRPIT Volume 135 - Computer Science 2013

44

Since a single event can wake up more than one prop-
agator, each propagator has a priority; any woken
propagators are added to the queue in priority order.
The Propagate function of a propagator is called after
all the higher priority propagators have finished. The
code of the Propagate function can choose to Requeue
itself after it has done some work, if it wants higher
priority propagators to run before it does some more
work.

For unfounded set calculation, we have imple-
mented two approaches taken from existing litera-
ture. The first one is based on the approach outlined
by Gebser et al. (2007), which is the combination of
smodels’ source pointer technique (Simons et al. 2002)
with the unfounded set computation algorithm de-
scribed by Anger et al. (2006). The second approach
follows Gebser et al. (2012) in combining the source
pointer technique with a different unfounded set com-
putation algorithm (described in that paper). We call
our implementation of the first approach anger, and
the second one gebser, after the authors of their un-
founded set algorithms.

Computing unfounded sets is inherently more ex-
pensive than most other propagators. We therefore
want to invoke the unfounded set propagator as rarely
as possible, which requires its priority to be low. This
low priority is required for another reason as well:
the algorithms used by the unfounded set propagator
need to run after unit propagation has finished, so
that they have access to a consistent valuation of all
the Boolean solver variables. If they do not, then the
work that they do is likely to turn out to be wasted.

In the rest of this section, we will describe the first
approach in detail, and then briefly outline the second
approach. For all the algorithms used in this section,
we assume that they access the valuation θ.

Initial calculations

When the solver is initialized, prior to any propaga-
tion and search, we calculate Clauses(P) and record
its clauses. We could also optimize Clauses(P) by ex-
ploiting any equivalences present in it (Gebser et al.
2008), but we do not (yet) do so. For example, if one
atom a is known to be exactly equivalent to a body b,
because a is defined by only one clause represented by
b, we can consistently use one constraint variable for
both a and b. Doing so reduces both the number of
variables the solver needs to manage, and eliminates
the propagation steps that would otherwise be needed
to keep them consistent.

We then calculate the strongly connected compo-
nents of the body-head graph implicit in P. We num-
ber each component, and assign each default atom
and body the number of the component it is in. The
only atoms of interest are those whose components
contain more than one atom, since only they can ever
participate in an unfounded set. The calculation of
the SCCs allows us to distinguish between these cyclic
atoms, and all other atoms, which are acyclic.

Establishing source pointers

Both our unfounded set detection algorithms are
based on the idea of source pointers. Each cyclic de-
fault atom has a source, which is a non-false body b
such that atoms in b+ are not unfounded. As long
as the source of an atom is non-false, the atom has
evidence of not being unfounded. If the source of an
atom becomes false, then we must look for another
source for it; if we cannot find one, then the atom is
part of an unfounded set.

Algorithm 1 EstablishSourcePointers()

1: for each atom a do source(a)← ⊥
2: for each body b do
3: if θ(b) 6= ⊥ then ct(b)← |b+| else ct(b)←∞
4: if ct(b) = 0 then
5: if θ(b) = > then
6: MustBeQ .add(b)
7: else
8: MayBeQ .add(b)
9: while MustBeQ 6= ∅ do
10: b← MustBeQ .pop()
11: for a ∈ supHead(b) : source(a) = ⊥ do
12: source(a)← >
13: for c ∈ posInBody(a) do
14: ct(c)← ct(c)− 1
15: if ct(c) = 0 then
16: if θ(c) = > then
17: MustBeQ .add(c)
18: else
19: MayBeQ .add(c)
20: while MayBeQ 6= ∅ do
21: b← MayBeQ .pop()
22: for a ∈ supHead(b) : source(a) = ⊥ do
23: source(a)← b, Subscribe(b = ⊥)
24: for c ∈ posInBody(a) do
25: ct(c)← ct(c)− 1
26: if ct(c) = 0 then MayBeQ .add(c)
27: for each atom a : source(a) = ⊥ do θ(a) = ⊥

We initialize the source pointers of default vari-
ables before beginning search. Our initialization,
shown in Algorithm 1, partitions the set of default
atoms into three disjoint sets: MustBeTrue, the set of
atoms that are true in every constraint stable model
of P; MayBeTrue, the atoms that can be true in some
constraint stable model; and CantBeTrue, atoms that
cannot be true in any constraint stable model. Atoms
in MustBeTrue cannot be part of any unfounded set,
and the unfounded atoms in CantBeTrue can be set
to false at this early stage. Only atoms in MayBeTrue
actually require source pointers; we record the source
“pointers” of atoms in MustBeTrue as >, and the
source pointers of atoms in CantBeTrue as ⊥.

Algorithm 1 describes a bottom-up calculation
which is similar to the Dowling-Gallier algorithm
(Dowling & Gallier 1984). The algorithm keeps two
queues of bodies, MustBeQ and MayBeQ , that we use
to incrementally build MustBeTrue and MayBeTrue
respectively. If for some b ∈ bodies(P), θ(b) = > and
b+ ⊆ MustBeTrue, then we add body b to MustBeQ .
Otherwise, if θ(b) 6= ⊥ and b+ ⊆ MustBeTrue ∪
MayBeTrue, then we add b to MayBeQ . Since the
heads of a body b in MayBeQ can become true due
to b, we set their sources to b. Whenever we assign
the id of a solver variable b to be the source of another
variable a, we make the propagator subscribe to the
event b = ⊥, since if b becomes false, the propagator
must determine a new source for a (or construct an
unfounded set from a if one exists).

The algorithm works by keeping a count ct(b) for
each body b. Before the end of the first while loop,
ct(b) represents the number of atoms in b+ that we
need to find in MustBeTrue before we can put the
heads supported by b into MustBeTrue. After the
end of the first while loop, when there is no possibil-
ity left of finding any atoms that must be true, ct(b)
represents the number of atoms in b+ that we need
to find in MayBeTrue before we can put the heads
supported by b into MayBeTrue.

At the end, we set all the atoms that do not have a
source to false, since these atoms that cannot be true
in any constraint stable model of the program.

Proceedings of the Thirty-Sixth Australasian Computer Science Conference (ACSC 2013), Adelaide, Australia

45

Algorithm 2 WakeUp(b = ⊥)
1: if first wakeup on current search tree branch then
2: U ← ∅, P ← ∅
3: for each atom a : source(a) = b do
4: if θ(a) 6= ⊥ then
5: P.add(a)
6: Queue()

Algorithm 3 Propagate()

1: U ← U \ {a ∈ DV | θ(a) = ⊥}
2: P ← P \ {a ∈ DV | θ(a) = ⊥}
3: while U = ∅ do
4: if P = ∅ then return
5: a← P.pop()
6: if θ(a) 6= ⊥ then
7: if ∃b ∈ body(a) : θ(b) 6= ⊥ and scc(a) 6= scc(b) then
8: source(a)← b, Subscribe(b = ⊥)
9: else
10: UnfoundedSet(a)
11: a← U.remove()
12: if θ(a) 6= > then Requeue()
13: θ(a) = ⊥
14: add loop nogood(U, a)

The WakeUp and Propagate functions

EstablishSourcePointers() subscribes our propagator
to events that record the source of a default variable
becoming false. When such events happen, the sub-
scription system will call the WakeUp function in Al-
gorithm 2, which delegates most of its work to the
Propagate function in Algorithm 3. These two func-
tions jointly manage two global variables: U , which
contains atoms that form an unfounded set, and P ,
which contains atoms that are pending an unfounded
check. These variables are global because they must
retain their values across all the propagation invoca-
tions in a propagation step between two consecutive
labelling steps. We set both variables to be empty
the first time we get control after a labelling step.

When an invocation of WakeUp tells us that a
body b is false, we add the atoms supported by b to the
pending queue P unless they are already known to be
false. However, we do not process the pending queue
immediately; we let higher priority propagators run
first, to allow them to tighten the current valuation as
much as possible before we process the pending queue
in our own low priority Propagate function.

The Propagate function starts by removing all the
atoms that have become false from both U and P .
(Other propagators with higher priorities can set an
atom in P to false after the WakeUp that put that
atom in P .)

If U is not empty, we remove an atom a from U ,
set it to false, add its loop nogood (see below) to the
set of learned constraints, and requeue the propaga-
tor to allow propagators of higher priority efficiently
propagate the effects of setting a to false. This may or
may not fix the values of all the atoms in the updated
U . While it does not, each invocation of Propagate
will set another unfounded atom to false.

For a given set of default atoms U ⊆ DV , we
denote the set of external bodies as EB(U) = {b |
b ∈ bodies(P), supHead(b) ∩ U 6= ∅, b+ ∩ U = ∅}.
The loop nogood of a set U with respect to an atom
a ∈ U is loop nogood(U, a) = (¬a∨b1∨ . . .∨bn) where
EB(U) = {b1, . . . , bn} (Gebser et al. 2007). This cap-
tures the idea that an atom in a set cannot be true
unless one of the external bodies of the set is true.

When there are no more known-to-be-unfounded
atoms left, we look for atoms in the pending queue
that can be part of an unfounded set. If the pending

queue is empty, then there cannot be any more un-
founded sets, and we are done. If there is an atom a
in P , we test whether it is supported by an external
body, a body b in a lower SCC. If it is, then a is not
unfounded. If it isn’t, then it is possible that a is part
of an unfounded set, and we invoke UnfoundedSet to
check if a can be extended to an unfounded set. If
the call fails and leaves U = ∅, we try again with a
different member of P . If it succeeds, we handle the
newly-made unfounded set the same way as we han-
dle unfounded sets that already exist when Propagate
is invoked.

Unfounded set calculation

Algorithm 4 is based on the unfounded set algorithm
by Anger et al. (2006). Its key local data structure is
Unexp, which contains the bodies that may contain
external support for some of the atoms in U . A body
variable b can support an atom a only if it represents
the body of one of the rules of a, it is not false, and
it does not contain any atoms that are themselves
unfounded. If b is in a lower SCC than a, then we
take its valuation as a given; if it is not false, then
it supports a and therefore a cannot be declared un-
founded; if it is false, then it does not support a. If
it is in the same SCC as a, then b may or may not
support a; we need to find out which. That is why
we put into Unexp the set of bodies that may support
the atoms in U . To help us to do this, we define the
function maysupport(a) as {b | b ∈ body(a), θ(b) 6=
⊥, b+ ∩ U = ∅, scc(b) = scc(a)}. The algorithm uses
two other data structures, SAtoms and SBodies (S
is for supported in this context): SAtoms contains
atoms that have been proven to be not unfounded,
while SBodies contains externally supported bodies.
A non-false body b is externally supported if every
atom in b+ is either in SAtoms, or belongs to a dif-
ferent component.

The algorithm processes the unexplored bodies in
Unexp one by one. It looks at the positive default
atoms in each such body. Those that are in SAtoms
or in a lower SCC are known to support b; the oth-
ers are not. We compute nks(b, curscc,SAtoms) as
the set of not-known-to-be-supporting atoms in b:
nks(b, curscc,SAtoms) = {p | p ∈ b+ : p /∈ SAtoms
and scc(p) = curscc}

If this is not empty, then then we need to test the
atoms in it to see whether or not they actually do
support b. If the test on Line 10 succeeds for an atom
p, then we have found a source for p. The algorithm
records this source. It then removes p from P and
adds it to the set of supported atoms. If the test
on Line 10 fails, then the algorithm makes p part of
the unfounded set U . The definition of Unexp says
that bodies whose positive atoms are in U must not
be in it; on line 17 we remove from it the bodies
that would now violate that invariant. To allow later
iterations of the outermost loop to check whether p
can be supported via other bodies, we then add those
possible bodies to Unexp. All these changes may have
reduced the set of not-known-to-be-supporting atoms
to the empty set, which is why we compute that set
again.

If the set of not-known-to-be-supporting atoms is
empty, either originally or after being recomputed,
then we know b is externally supported (Line 20).
This means that all atoms in U that have a rule
whose body is represented by b are now supported by
b. We compute R as the set of these atoms, and we
record b as their source. We also remove them from
U and P , and add them to SAtoms. Adding them to

CRPIT Volume 135 - Computer Science 2013

46

Algorithm 4 UnfoundedSet(a)

1: curscc ← scc(a)
2: U ← {a}
3: Unexp ← maysupport(a)
4: SAtoms ← ∅, SBodies ← ∅
5: while Unexp 6= ∅ do
6: b← Unexp.pop()
7: if nks(b, curscc,SAtoms) 6= ∅ then
8: [b is not externally supported]
9: for p ∈ nks(b, curscc,SAtoms) do
10: if ∃c ∈ body(p) : θ(c) 6= ⊥ and

(scc(c) 6= curscc or c ∈ SBodies) then
11: if scc(source(p)) = curscc then
12: source(p)← c, Subscribe(c = ⊥)
13: if P.contains(p) then P.remove(p)
14: SAtoms.add(p)
15: else
16: U.add(p)
17: Unexp ← Unexp \ {d | d ∈ Unexp, p ∈ d+}
18: Unexp ← Unexp ∪maysupport(p)
19: if nks(b, curscc,SAtoms) = ∅ then
20: [b is externally supported]
21: SBodies.add(b)
22: R← {r | r ∈ U, b ∈ body(r)}
23: for r ∈ R do
24: source(r) = b
25: Subscribe(b = ⊥)
26: while R 6= ∅ do
27: r ← R.pop()
28: U.remove(r)
29: P.remove(r)
30: SAtoms.add(r)
31: for j ∈ posInBody(r) : θ(j) 6= ⊥ and

∀t ∈ j+, (t ∈ SAtoms or scc(t) 6= curscc) do
32: SBodies.add(j)
33: for a ∈ supHead(j) ∩ U do
34: source(a)← j, Subscribe(j = ⊥)
35: R.add(a)
36: Unexp ←

⋃
p∈U maysupport(p)

SAtoms may make more bodies qualify for member-
ship of SBodies, which in turn may provide external
support for more atoms. We put any such atoms into
R as well, and we keep going until everything in R
has been processed. Once we have removed as many
atoms as possible from U and have reached a fixpoint,
we reinitialize Unexp based on the final value of U .

Second approach

Our second implementation, gebser, differs from our
first, anger, only in its use of a different unfounded
set algorithm. We have taken that algorithm directly
from (Gebser et al. 2012), so here we just give its out-
line. The algorithm uses the concept of a scope, which
is an upper bound on U . The algorithm computes the
scope by starting with P , and extending it through a
fixpoint algorithm. It then computes U by restricting
the scope to a single SCC.

6 Experiments

We benchmarked our implementations anger and geb-
ser against two competing systems. The first is a
combination of clasp (version 2.0.6) and gringo (ver-
sion 3.0.4), which we call cl+gr in our tables for
brevity. The second is clingcon (Gebser et al. 2009)
(version 2.0.0-beta), which is an extension of clasp
with CP capabilities. We ran all the benchmarks on
a Lenovo model 3000 G530 notebook with a 2.1 GHz
Core 2 Duo T6500 CPU and 3 GB of memory running
Ubuntu 12.04. We repeated each experiment with a
timeout five times, and each experiment without a

Solved Opt AvgPct

RoutingMin cl+gr N/A N/A N/A
clingcon 19 3 69.1
gebser 19 8 33.5
anger 18 9 33.9

RoutingMax cl+gr N/A N/A N/A
clingcon 22 0 100.0
gebser 27 0 42.2
anger 27 0 37.4

Table 1: Results for routing on 34 instances

timeout twice; the results we present are their aver-
ages.

We ran two sets of benchmarks. The first set con-
sists of different instances of two routing problems,
which are slightly modified versions of the models
used in the experiments by Liu et al. (2012). Our
reason for selecting these two problems is that they
involve not just reachability, but also variables with
large finite domains. The two problems differ only
in their objective; they use the same data represen-
tation and impose the same set of constraints. Each
instance of these problems is specified by

• a weighted directed graph (V,E,w) where w :
E 7→ N,

• a source node s ∈ V ,

• a set of destination nodes D ⊆ V \ {s}, and

• a deadline for each destination f : D 7→ N.

Their solutions consist of two parts:

• a cycle-free route (r0, r1, . . . , rk) where r0 = s,
(ri, ri+1) ∈ E for all i ∈ {1, ..., k − 1}, and for
each d ∈ D, d = ri for some i ∈ {1, ..., k}, and

• a time assignment t : V 7→ N such that t(r0) =
0, t(ri+1) ≥ t(ri) + w(ri, ri+1) for all i ∈
{1, ..., k − 1}, and for each d ∈ D, t(d) ≤ f(d).

For the RoutingMin problem, the objective is min-

imizing the total delay
∑
d∈D

(f(d)−t(d)). For the Rout-

ingMax problem, the objective is maximizing the to-
tal delay.

Table 1 presents our results on 34 instances each
of RoutingMin and RoutingMax. The sizes of the
graphs in those instances range from 21 to 87 nodes.
The Solved column gives the number of instances for
which the named solver computed a result (which may
or may not be optimal) within the timeout period,
which was one minute. The Opt column gives the
number of these instances for which the solver not
only computed the optimal result, but also proved it
to be optimal.

Since the sizes of the instances vary significantly,
the minimum and maximum values of the total delay
differ greatly as well. Averages of the delays are there-
fore not an appropriate representation of the overall
quality of the solutions from a solver. Therefore we
express the quality of each solution as a percentage of
the maximum delay computed by any solver on the
relevant problem instance. If all the solvers compute
a delay of 0, we score all solvers as 0% for Routing-
Min and as 100% for RoutingMax. The AvgPct col-
umn shows the average of these percentages for the

Proceedings of the Thirty-Sixth Australasian Computer Science Conference (ACSC 2013), Adelaide, Australia

47

cl+gr flat anger gebser
o/a prop o/a prop

WR (S/8) 894.49 10.22 166.74 95.39 456.71 7.58

WR (U/7) 24.14 8.89 41.20 28.44 53.06 1.29

GP (S/7) 9.69 2.88 656.69 4.13 659.27 2.86

GP (U/6) 43.02 0.95 221.38 9.76 243.08 3.54

CDS (S/7) 26.80 0.39 74.98 44.53 27.24 0.50

CDS (U/8) 1618.22 0.64 566.47 318.65 395.84 4.86

MG (S/15) 2.56 32.95 43.04 42.14 0.86 0.03

Table 2: ASP problems, geometric restart, no timeout

cl+gr flat anger gebser

WR (S/8) 148.21 (5/1) 9.86 149.12 (4/1) 96.74 (5/1)

WR (U/7) 101.68 (5/1) 11.68 36.68 (0/0) 49.10 (0/0)

GP (S/7) 39.24 (0/0) 2.58 21.36 (0/0) 46.52 (0/0)

GP (U/6) 169.22 (5/1) 0.91 123.96 (3/1) 121.72 (0/0)

CDS (S/7) 185.09 (10/2) 0.41 102.79 (5/1) 127.88 (5/1)

CDS (U/8) 274.77 (10/2) 0.69 321.20 (20/4) 314.56 (20/4)

MG (S/15) 5.07 (0/0) 52.86 49.95 (5/1) 1.37 (0/0)

Table 3: ASP problems, Luby restart, with timeout

instances for which all the solvers get a solution. All
the solvers were run with a slow restart strategy that
used a Luby sequence (Luby et al. 1993) with a restart
base of 400.

Due to the large domains involved, grounding is
very inefficient, which causes cl+gr to run out of mem-
ory on all our test instances, even the smallest. For
RoutingMin, all the solvers solve roughly the same
number of instances, but anger and gebser get op-
timal solutions on almost three times as many in-
stances, and the average quality of their solutions is
also better by about a factor of 2. (For minimiza-
tion, better performance is represented by smaller
percentages, while for maximization, it is represented
by larger ones.) For the instances of RoutingMax that
all the solvers can solve, clingcon invariably generates
the best solutions. However, clingcon generates solu-
tions for substantially fewer instances than anger and
gebser, showing that it is not as robust.

Our second set of benchmarks is a selection of
problems taken from the second ASP competition 2:
Wire Routing (WR), Graph Partitioning (GP), Con-
nected Dominating Set (CDS), and Maze Generation
(MG). For each of these problems, we report on their
satisfiable (S) and unsatisfiable (U) instances in sep-
arate rows of both Tables 2 and 3; the numbers af-
ter the forward slashes give the number of instances
in each category. Table 2 shows results for a setup
in which all the solvers were run using the default
restart strategy of clasp (geometric restart, with the
restart threshold starting at 100 conflicts, multiplied
by 1.5 after each restart) and without time limits,
while Table 3 shows the results when all the solvers
were run with a Luby sequence restart strategy with
restart base 10, and with a timeout of 10 minutes.

The numbers in the slots of Table 2 all represent
an average runtime, in seconds, over all the problem
instances represented by the row. The cl+gr column
gives the average time taken by cl+gr to solve those
instances. The flat column gives the average time
taken to flatten the MiniZinc model to FlatZinc. The
anger and gebser overall (o/a) columns give the aver-
age time taken to solve the resulting FlatZinc models
using the anger and gebser variants of our implemen-

2See http://dtai.cs.kuleuven.be/events/ASP-competition/
SubmittedBenchmarks.shtml

tation. The anger and gebser prop columns give the
average times taken by our propagator within those
overall solution times.

The numbers in time slots of Table 3 also repre-
sent average execution times; the execution time will
be the timeout time (600 seconds) if the solver does
not complete before then. Table 3 omits propagation
times to make room for the numbers in parentheses
after each average execution time. These represent
respectively the number of runs on which the given
solver failed to produce a solution before the timeout,
and the number of instances to which those runs be-
long. (For example, 4/1 means that of the five runs
on a problem instance, one produced a solution, but
four did not.) Neither table has a column for cling-
con, since the purpose of Tables 2 and 3 is to com-
pare gebser and anger with a native ASP solver on
pure Boolean problems. The results of running these
problems on clingcon would be the same as the results
of cl+gr, since these problems have nothing to do with
the difference between cl+gr and clingcon, namely the
finite domain extension present in clingcon.

The overall results in Table 2 are mixed. On
WR/U, GP/S, GP/U and (due to flattening) MG/S,
cl+gr clearly beats both anger and gebser. On WR/S
and CDS/U, both anger and gebser clearly beat cl+gr.
On CDS/S, cl+gr clearly beats anger, but edges out
gebser by just a whisker. The overall winner on these
tests is clearly cl+gr.

However, this picture changes when we switch our
attention to Table 3. Even after including flattening
time, gebser is faster than cl+gr on four of the seven
problem sets (WR/S, WR/U, GP/U, CDS/S), and it
is slower on only three (GP/S, CDS/U and MG/S). It
is also more robust, failing to find a solution on only
six problem instances, compared to seven for cl+gr.
Our other system anger is less robust, failing to find
solutions on eight problem instances, though for two
of these, it did solve them on some runs. However,
to compensate for this, anger is the fastest system on
three problem sets (WR/U, GP/S, CDS/S).

The propagation time columns in Table 2 show
that anger spends a lot more time on unfounded set
propagation than gebser. In some cases, such as
WR/S, this pays off handsomely, in the form of more
effective pruning of the search space. In some other
cases, such as CDS/U, anger spends less time outside
the propagator than gebser, so anger seems to get bet-
ter pruning, but not enough to pay back the extra cost
of the propagator itself. And on most problems in Ta-
ble 2, the extra cost of its propagator does not even
help anger get better pruning. This suggests that we
should investigate whether one can blend the two un-
founded set calculation algorithms in order to achieve
the pruning power of anger (Anger et al. 2006), or
something close to it, at an efficiency closer to that of
gebser (Gebser et al. 2012).

7 Related work

The closest modelling system to our approach is the
IDP system (Wittocx et al. 2008b) which extends clas-
sical logic with the use of inductive definitions. Like
our proposed extension of MiniZinc, IDP allows ar-
bitrary first order formulae in the rule bodies of its
inductive definitions while most ASP systems allow
only normal rules. Unlike ASP solvers which apply
the closed world assumption (an atom that cannot be
derived is assumed to be false) to entire programs,
our system and IDP can localize it to only a certain
part of the program: default atoms for us, and def-
initional atoms for IDP. IDP handles constraints by

CRPIT Volume 135 - Computer Science 2013

48

grounding, just as a traditional ASP system.
There has been significantly more effort in recent

years to integrate CP into ASP systems than to inte-
grate ASP into CP systems. The principal advantage
of ASP over CP systems is the ability to use recur-
sive definitions, particularly to model transitive clo-
sure. On the other hand, pure answer set solvers have
a serious efficiency problem when dealing with prob-
lems that involve finite domain variables. This is why
most research in this area has focused on integrating
efficient finite domain handling in ASP systems, re-
sulting in a new domain of research called constraint
answer set solving (Drescher 2010).

The systems described by Baselice et al. (2005),
Mellarkod & Gelfond (2008), Mellarkod et al. (2008)
view both answer set and constraint solvers as black
boxes, and their frameworks do not allow the incorpo-
ration of modern engineering techniques such as no-
good learning and advanced backjumping. The cling-
con system (Gebser et al. 2009), while it implements
nogood learning and backjumping, still treats the CP
solver as an oracle that does not explain its prop-
agation to the ASP solver, and works around this
shortcoming by using an indirect method to record
nogoods generated by propagation done by the CP
solver. All these systems have to incur some over-
heads for communication between the ASP and CP
solvers.

The approach described by Drescher & Walsh
(2010) avoids this overhead by translating the CP
part of the problem into ASP rules, and achieves its
efficiency through unit propagation on these rules;
that paper also gives their translation of the alldiff-
erent global constraint. One shortcoming of this ap-
proach is its reliance on an a priori ASP decompo-
sition of global constraints; the example of the per-
formance gains achieved by techniques such as lazy
clause generation strongly suggests that such decom-
positions should be done lazily. Their more recent
paper (Drescher & Walsh 2012) overcomes this short-
coming by allowing lazy nogood learning from exter-
nal propagators. The resulting system is close to what
we have implemented, and shows promising perfor-
mance in comparison with clingcon. The mingo sys-
tem described by Liu et al. (2012) does translation
in the other direction: it translates an ASP program
(extended with integer and real variables) to a mixed
integer program.

The unique feature of constraint languages and
solvers that distinguishes them from other declarative
systems like ASP, SMT, and SAT is the use of global
constraints, and the existence of extremely efficient
propagators to solve these constraints. Other solvers
usually rely on a single propagation method such
as unit propagation. Specialized propagation tech-
niques for global constraints, such as the one given
by Schutt et al. (2011) for the cumulative constraint,
allow much stronger and more efficient propagation
than approaches using decomposition and unit prop-
agation.

8 Conclusion

We have shown a method for adding answer set pro-
gramming capabilities to the general purpose con-
straint programming language MiniZinc. The re-
sulting system is much better at solving combined
ASP/CP problems than existing systems, and we
hope that our examples have convinced readers that
such problems can be expressed more naturally in the
syntax of MiniZinc than in the syntax of ASP lan-
guages. MiniZinc is also more flexible: it can express

constraints on non-Boolean variables (such as inte-
gers, floats and sets); it can express complex Boolean
expressions more naturally, and (with the exception
of disjunctions in heads) it can express all ASP ex-
tensions, including weight constraints, choice rules,
cardinality constraints, integrity constraints, and ag-
gregates such as sum, count, min and max.

We have shown two implementations of our ex-
tensions to MiniZinc. Our benchmark results show
that both these systems can solve combined ASP/CP
problems that cannot be solved by cl+gr, even though
its ASP component, clasp, won the last two compe-
titions for pure ASP solvers. We have also shown
that our system is competitive with clingcon, an ex-
tension of clasp, on such problems, being better on
some tasks, worse on others.

We have several directions for future work. We will
start by implementing our proposal for the inductive
predicate syntax in MiniZinc, which should allow pro-
grammers to model problems more naturally, without
manually grounding normal rules. We intend to in-
vestigate different ways to map these predicates to
FlatZinc. We will look at the approaches used by the
grounder of the IDP system (Wittocx et al. 2008a)
and the transformation to ASP rules described by
Mariën et al. (2004). Adopting some of these ap-
proaches may require moving from the stable model
semantics to the well-founded semantics; the jury is
still out on which users find more natural. We plan
to investigate moving the grounding phase entirely to
runtime, as proposed by the lazy grounding scheme
of Palù et al. (2009) and the lazy model expansion
scheme of De Cat et al. (2012). We also intend to
look into incorporating other efficient features of ASP,
such as preprocessing (Gebser et al. 2008). Finally, we
intend to see whether we can construct an unfounded
set algorithm that combines the efficiency of Gebser
et al. (2012) with the more effective pruning of Anger
et al. (2006).

Acknowledgments: NICTA is funded by the
Australian Government as represented by the Depart-
ment of Broadband, Communications and the Digital
Economy, and by the Australian Research Council.
We are grateful to Geoffrey Chu for helping us to
understand chuffed, to Guohua Liu for providing us
with clingcon encodings of routing problems, and to
the Potassco mailing list users for their timely replies
to our queries about clingcon.

References

Anger, C., Gebser, M. & Schaub, T. (2006), Ap-
proaching the core of unfounded sets, in ‘Proceed-
ings of the International Workshop on Nonmono-
tonic Reasoning’, pp. 58–66.

Baral, C. (2003), Knowledge representation, reason-
ing and declarative problem solving, Cambridge
University Press.

Baselice, S., Bonatti, P. A. & Gelfond, M. (2005),
Towards an integration of answer set and constraint
solving, in ‘Proceedings of the 21st International
Conference on Logic Programming’, Sitges, Spain,
pp. 52–66.

Clark, K. L. (1978), Negation as failure, in H. Gallaire
& J. Minker, eds, ‘Logic and Data Bases’, Plenum
Press, NY, pp. 127–138.

De Cat, B., Denecker, M. & Stuckey, P. (2012),
Lazy model expansion by incremental grounding,

Proceedings of the Thirty-Sixth Australasian Computer Science Conference (ACSC 2013), Adelaide, Australia

49

in ‘Technical Communications of the 28th Inter-
national Conference on Logic Programming’, Bu-
dapest, Hungary.

Dooms, G., Deville, Y. & Dupont, P. (2005),
CP(graph): introducing a graph computation do-
main in constraint programming, in ‘In proceedings
of the 11th International Conference on Principles
and Practice of Constraint Programming’, Sitges,
Spain, pp. 211–225.

Dowling, W. & Gallier, J. (1984), ‘Linear time al-
gorithms for testing the satisfiability of proposi-
tional Horn formulae’, Journal of Logic Program-
ming 1, 267–284.

Drescher, C. (2010), Constraint answer set program-
ming systems, in ‘Technical Communications of the
26th International Conference on Logic Program-
ming’, Dagstuhl, Germany, pp. 255–264.

Drescher, C. & Walsh, T. (2010), ‘A translational
approach to constraint answer set solving’, CoRR
abs/1007.4114.

Drescher, C. & Walsh, T. (2012), Answer set solving
with lazy nogood neneration, in ‘Technical Com-
munications of the 28th International Conference
on Logic Programming’, Budapest, Hungary.

Feydy, T. & Stuckey, P. J. (2009), Lazy clause gener-
ation reengineered, in ‘Proceedings of the 15th In-
ternational Conference on the Principles and Prac-
tice of Constraint Programming’, Lisbon, Portugal,
pp. 352–366.

Gebser, M., Kaufmann, B., Neumann, A. & Schaub,
T. (2007), Conflict-driven answer set solving, in
‘Proceedings of the 20th International Joint Con-
ference on Artificial Intelligence’, Hyderabad, In-
dia, p. 386.

Gebser, M., Kaufmann, B., Neumann, A. & Schaub,
T. (2008), Advanced preprocessing for answer set
solving, in ‘Proceedings of the 18th European Con-
ference on Artificial Intelligence’, Patras, Greece,
pp. 15–19.

Gebser, M., Kaufmann, B. & Schaub, T. (2012),
‘Conflict-driven answer set solving: From theory
to practice’, Artif. Intell 187, 52–89.

Gebser, M., Ostrowski, M. & Schaub, T. (2009), Con-
straint answer set solving, in ‘Proceedings of the
25th 25th International Conference on Logic Pro-
gramming’, Pasadena, CA, pp. 235–249.

Gebser, M. & Schaub, T. (2005), Loops: Relevant or
redundant?, in ‘LPNMR’, pp. 53–65.

Gelfond, M. & Lifschitz, V. (1988), The stable model
semantics for logic programming, in ‘ICLP/SLP’,
pp. 1070–1080.

Lifschitz & Razborov (2006), ‘Why are there so many
loop formulas?’, ACM Transactions on Computa-
tional Logic 7(2), 261–268.

Lin, F. & Zhao, Y. (2004), ‘ASSAT: computing an-
swer sets of a logic program by SAT solvers’, Arti-
ficial Intelligence 157(1-2), 115–137.

Liu, G., Janhunen, T. & Niemela, I. (2012), Answer
set programming via mixed integer programming,
in ‘Proceedings of the 13th International Confer-
ence on Principles of Knowledge Representation
and Reasoning’, pp. 32–42.

Lloyd, J. W. & Topor, R. W. (1984), ‘Making Pro-
log more expressive’, Journal of Logic Programming
1(3), 225–240.

Luby, M., Sinclair, A. & Zuckerman, D. (1993), ‘Opti-
mal speedup of Las Vegas algorithms’, Information
Processing Letters 47, 173–180.

Mariën, M., Gilis, D. & Denecker, M. (2004), On the
relation between ID-logic and answer set program-
ming, in ‘JELIA’, pp. 108–120.

Mellarkod, V. S. & Gelfond, M. (2008), Integrat-
ing answer set reasoning with constraint solving
techniques, in ‘Proceedings of the 9th Interna-
tional Symposium on Functional and Logic Pro-
gramming’, Ise, Japan, pp. 15–31.

Mellarkod, V. S., Gelfond, M. & Zhang, Y. (2008),
‘Integrating answer set programming and con-
straint logic programming’, Ann. Math. Artif. In-
tell 53(1-4), 251–287.

Mitchell, D. G. (2005), ‘A SAT solver primer’, Bul-
letin of the EATCS 85, 112–132.

Nethercote, N., Stuckey, P. J., Becket, R., Brand, S.,
Duck, G. J. & Tack, G. (2007), MiniZinc: Towards
a standard CP modelling language, in ‘Proceedings
of the 13th International Conference on the Prin-
ciples and Practice of Constraint Programming’,
Providence, RI, pp. 529–543.

Ohrimenko, O., Stuckey, P. J. & Codish, M. (2009),
‘Propagation via lazy clause generation’, Con-
straints 14(3), 357–391.

Palù, A. D., Dovier, A., Pontelli, E. & Rossi, G.
(2009), Answer set programming with constraints
using lazy grounding, in ‘ICLP’, pp. 115–129.

Rossi, F., Beek, P. v. & Walsh, T. (2006), Handbook of
Constraint Programming (Foundations of Artificial
Intelligence), Elsevier Science, New York, NY.

Schulte, C. & Stuckey, P. (2008), ‘Efficient constraint
propagation engines’, ACM Transactions on Pro-
gramming Languages and Systems 31(1), Article
No. 2.

Schutt, A., Feydy, T., Stuckey, P. J. & Wallace,
M. G. (2011), ‘Explaining the cumulative propa-
gator’, Constraints 16(3), 250–282.

Simons, P., Niemelä, I. & Soininen, T. (2002), ‘Ex-
tending and implementing the stable model seman-
tics’, Artificial Intelligence 138(1–2), 181–234.

Van Gelder, A., Ross, K. A. & Schlipf, J. S. (1988),
Unfounded sets and well-founded semantics for gen-
eral logic programs, in ‘Proceedings of the ACM
Symposium on Principles of Database Systems’,
pp. 221–230.

Viegas, R. D. & Azevedo, F. (2007), GRASPER,
in ‘Proceedings of the 13th Portuguese Confer-
ence on Artificial Intelligence’, Guimarães, Portu-
gal, pp. 633–644.

Wittocx, J., Mariën, M. & Denecker, M. (2008a),
GIDL: A Grounder for FO, in ‘Proceedings of
the Twelfth International Workshop on Non-
Monotonic Reasoning’, pp. 189–198.

Wittocx, J., Mariën, M. & Denecker, M. (2008b), The
idp system: a model expansion system for an ex-
tension of classical logic, in ‘LaSh’, pp. 153–165.

CRPIT Volume 135 - Computer Science 2013

50

