
JWS: A Flexible Web Service

Andrew Cho, Paresh Deva, Ewan Tempero

Department of Computer Science

University of Auckland

Auckland, New Zealand

ewan@cs.auckland.ac.nz

Abstract

Web services have been proposed as means to provide more
convenient access to computation services. An issue that still
must be dealt with is what to do if there is no web service
with the desired functionality. Deploying a new web service
requires expertise in the relevant technologies as well as access
to a web services server. In this paper we present the Java
Web Service, a web service that allows the provision of almost
arbitrary functionality by means of uploading the functionality
as a plug-in at run-time. Plug-ins can also be combined through
a simple scripting mechanism.

Keywords: Flexible computation service, Web ser-
vices, Distributed systems.

1 Introduction

The ability to access computation across a network or
to distribute computation around a network has been
a goal of distributed systems research for many years.
Each new generation of distributed systems technol-
ogy removes one more barrier to providing such an
ability. The most recent step has been the intro-
duction of web services, which provide network ac-
cess to to software systems in an interoperable man-
ner (Booth, D. et al. 2004), meaning that use of the
systems is language and platform independent.

An issue that still remains with web services is
that the services they offer are under the control of
whoever controls the servers. If the required func-
tionality does not exist as a web service, then there
are few options. Those that need new functionality
can create it themselves but if they want to make it
available to others then they face starting and man-
aging their own server. For those who would rather
not take this route, we propose creating a web service
that is flexible — the functionality it provides can be
added to at runtime by any user without affecting ex-
isting users. In this paper, we describe the Java Web
Service (JWS), a web service that can be configured
at runtime to allow almost arbitrary functionality.

Web services are claimed to provide several advan-
tages over other distributed computing technologies,
including:

• Interoperability — Requests and responses are
encoded in neutral formats, such as XML. This
means there is no requirement that client and
server have to agree in advance on programming
language, operating system, or hardware, in or-
der to communication. For example, a Java web

Copyright c©2008, Australian Computer Society, Inc. This pa-
per appeared at the Thirty-First Australasian Computer Sci-
ence Conference (ACSC2008), Wollongong, Australia. Con-
ferences in Research and Practice in Information Technology
(CRPIT), Vol. 74, Gillian Dobbie and Bernard Mans, Ed. Re-
production for academic, not-for profit purposes permitted pro-
vided this text is included.

service client running on OS X could communi-
cate with a web service provider implemented in
C# running on windows.

• Reuse — The interoperability aspect of web ser-
vices allows an existing module to be wrapped
by a web service implementation and have its
functionality made available to clients on differ-
ent software platforms. This avoids the need to
duplicate functionality for each platform.

• Open standards — Web services use open non-
proprietary standards such as XML and HTTP.
This ensures no one company has control over
web services. This has helped the popularity of
web services.

We wish to retain these advantages as much as
possible, while at the same time adding:

• Flexibility — Provide a general computation ser-
vice by supporting any functionality. This flexi-
bility should not come at the cost of down time.
Many clients may be using the service through
the Internet at any time and so restarting the
service with new functionality is not practical.

• Security — The service should not cause harm
to the server that it is running on, such as the
deletion of files.

The basic approach we take is to develop a web
service with a plug-in architecture, in a manner sim-
ilar to applications such as Eclipse (Gamma & Beck
2004). New functionality can be uploaded to the web
services server at run-time, and plug-ins can be com-
bined through a simple scripting mechanism.

The remainder of the paper is organised as fol-
lows. The next section provides the background on
web services necessary for understanding the rest of
the paper. Section 3 describes JWS, with details on
the design and implementation in section 4. Section
5 gives an example use of JWS. In section 6 we give
an evaluation of the success of JWS, and then discuss
related work in section 7. Finally, we give our con-
clusions and discuss possible future work in section
8.

2 Web Services

Web services are software systems that can be used
over a network in an interoperable manner (Booth, D.
et al. 2004). They can be used by any program that
can process eXtensible Markup Language (XML) and
access a network. The simplest form of web services
involves two parties: a web service provider (server)
and a web service requester (client). The web service
provider makes available some functionality that it
performs on behalf of the web service clients. The
client, of which there could be many, consumes the



Figure 1: Web Service Architecture Diagram

web service and calls the provider’s functionality. The
web services concept can also involve a third party, a
web services registry. Clients may browse this registry
for web service providers with specific functionality
and bind to them dynamically. Figure 1 illustrates
this case.

The provider is responsible for publishing its
functionality by implementing a service interface.
Providers are described through a service description
file. This file is written in the Web Service Descrip-
tion Language (WSDL), which is a language for de-
scribing web services based on XML. The service de-
scription file describes the web service’s functionality,
such as the available methods, arguments and return
types, and the service’s network location, and is pub-
lished to the registry (Booth, D. et al. 2004).

A web service client may not know exactly which
web service provider it will interact with. Therefore
the client must “discover” a web service provider.
Web services can be discovered either manually or
automatically. In manual discovery, the client’s devel-
oper may hard-code the client to use a particular web
service. In automatic discovery, web service providers
publish their WSDL documents to a registry service,
such as Universal Description Discovery and Integra-
tion (UDDI). Clients then use this registry service to
search for suitable web service providers, obtain their
WSDL documents, and bind to them dynamically.

After binding, the requester and provider com-
municate by sending Simple Object Access Protocol
(SOAP) messages to each other. SOAP encodes the
parameters and results of a service invocation into
XML. These messages are transported over a commu-
nication protocol such as HTTP, SMTP, FTP, IIOP,
or proprietary protocols.

3 The Java Web Service

The JWS provides a flexible computation service that
clients can invoke over a network. It provides flexi-
bility in two ways: the JWS can compile and execute
almost any Java source code, and JWS has the ability
to have its functionality extended by uploading plug-
ins. These two features combine to allow the JWS to
support almost arbitrary functionality.

Figure 2 provides an overview of the JWS. The
JWS has a minimalist core of a web service inter-
face, script manager, and plug-in manager. The web
service interface receives requests from web service
clients and forwards them to the appropriate compo-
nent. The plug-in manager is responsible for load-
ing, configuring, and invoking plug-ins. The script
manager invokes scripts. Plug-ins and scripts are de-
scribed in more detail in sections 3.2 and 3.3 respec-
tively.

By themselves, these core components provide
very little functionality for clients. All of the useful
functionality are implemented as plug-ins. Plug-ins
provide the first mechanism for the JWS’s flexibil-
ity in that new functionality can be uploaded to the

Figure 2: Overview of the Java Web Service

<?xml version="1.0" encoding="UTF-8"?>
<ExecutionResult ExitValue="0"

PluginName="ExecutionPlugin">
<ExecutionSuccessful>
true

</ExecutionSuccessful>
<ExitValue>
0

</ExitValue>
<Filename>
TestExecSampleClass

</Filename>
<StandardOutput>
Hello World!

</StandardOutput>
</ExecutionResult>

Figure 3: Example document describing the
result from the execute method applied to
TestExecSampleClass
.

JWS as a plug-in. They are integrated dynamically
into the JWS while it is running and this integration
causes no down time.

The compilation and execution plug-ins are re-
sponsible for compiling and executing Java source
code respectively. They provide the second mecha-
nism for the JWS’s flexibility in that they can be
used to execute almost any Java source code. These
plug-ins are bundled with the JWS and are always
available.

3.1 JWS Service Methods

The JWS contains several different service methods
that can be invoked by its clients. These are:

compile This method takes one argument that is a
string. The string represents the code that the
client requires to be compiled. The compilation
plug-in is called from this method and the result
of this call is a string (an XML document) de-
scribing the result of the compilation that is sent
back to the client.

execute This method takes one argument that is the
name of a Java class file and calls the execution
plug-in to execute this file. There is a form of this
method that takes an integer as a second argu-
ment. This argument specifies the amount of the
time that the execution is allowed to continue for
before the execution process is killed. In the first
form of this method, the time is defaults to ten
seconds. As with compile, an XML document is
returned describing the result of the execution.
An example is given in figure 3.

uploadPlugin This is the method that installs a
plug-in provided by the client. Its argument is
an array of byte codes. This method converts
the data into a file and saves this file in the plug-
in repository directory (specified at start-up). A
boolean is returned indicate whether or not the
upload was successful.



<?xml version="1.0" encoding="UTF-8"?>
<plugin name="EchoPlugin"

class="echoplugin.EchoPlugin">
<pluginDescription>

This plug-in is just for testing
</pluginDescription>
<method>

<name>
echo

</name>
<argument>

java.lang.String
</argument>
<description>

Echoes back the given String
</description>

</method>
</plugin>

Figure 4: An example of a plug-in manifest file

getListOfPlugins This method is used to send in-
formation to the client about what plug-ins cur-
rently exist in the plug-in directory. It returns
an XML document containing the names and de-
scriptions of all of plug-ins. It also contains the
names, descriptions and arguments of all of the
methods of the plug-ins.

runScript The runScript method is used to run a
script submitted by the client. It accepts two ar-
guments: script and input. The script is a string
and is of the format specified in section 3.3. The
input is a string that represents the argument to
be used for the first plug-in as specified in the
script. The Script Manager executes the script
and returns an XML document describing the
result of the execution.

3.2 Plug-ins

A plug-in is a small program that provides certain
functionality. It can be uploaded to the JWS in order
to add new functionality. The JWS’s plug-in archi-
tecture resembles a simplified version of the Eclipse
plug-in architecture (Gamma & Beck 2004). Eclipse
is also an application that has a minimalist core of
functionality that is extended by plug-ins. As with
Eclipse, plug-ins for JWS are packaged within a Java
Archive (JAR) file. This archive contains the plug-
in’s class files and an XML manifest file. The manifest
tells the JWS the name of the plug-in, the class to in-
stantiate, and the methods the plug-in has to offer.
An example of a manifest file is shown in Figure 4.

For the example in figure 4, the name of the
plug-in is “EchoPlugin” and its implementation class
is “echoPlugin.EchoPlugin.” It only defines one
method, “echo”, which accepts a java.lang.String
object as an argument.

The plug-in’s implementation class must imple-
ment an interface specific to JWS called IPlugin so as
to be recognised by the JWS as a plug-in. This inter-
face defines two methods: init() and shutdown().
These methods are called just after instantiation and
before removal respectively. They give the plug-in the
opportunity to configure and release resources.

3.3 Scripts

Clients submit scripts to the JWS that define which
plug-ins should be invoked. Ideally the JWS would
publish any methods that plug-ins make available in
its WSDL document. However if a new plug-in was

NumberPlugin multiplyBy3
EchoPlugin echo

Figure 5: An example of a simple plug-in script

IF FAIL NumberPlugin multiplyBy3
EXIT

ELSE
EchoPlugin echo

ENDIF

Figure 6: An example of a plug-in script with condi-
tional behaviour

uploaded, then the WSDL document would need to
change and this would require the web service’s clients
to re-acquire the latest version of the WSDL and pos-
sibly be recompiled. The JWS would also need to be
recompiled and re-deployed to Apache Axis, because
the JWS’s implementation class would need to imple-
ment these new methods. As we want to avoid down
time, this approach is impractical.

Scripts allow the WSDL document to remain the
same while still enabling new plug-ins to be invoked.
As mentioned above, the JWS defines a method,
runScript(Stringscript,Stringinput), that exe-
cutes the given script using the given input, and re-
turns the result of executing the script. A script is
essentially a list of plug-ins in the order they are to
be executed. Scripts operate in a similar fashion to
the UNIX pipe and filter interaction paradigm with
the output of one plug-in being passed to the input
of the next plug-in.

An example of a script is shown in Figure 5. This
simple script uses two plug-ins. The plug-in named
NumberPlugin has a method called multiplyBy3 that
converts the script’s input to a number, multiplies it
by three, and returns the result. If the input into this
script were “100” then the output after the first line of
the script would be “300.” This result is passed onto
the plug-in named EchoPlugin. The echo method of
this plug-in concatenates its input string with itself.
If this method were executed with an input of “300”
the result would be “300300.” Therefore the result of
executing the example script with an input of “100”
is “300300.”

Scripts also have the ability to support condi-
tional behaviour based upon whether a plug-in suc-
ceeds or not. Figure 6 shows an example of such a
script. This script says: if the NumberPlugin fails
then exit the script, otherwise use the EchoPlugin.
The NumberPluginwill fail if the input into the script
can not be converted into a number. Conditional be-
haviour allows the path of execution to change based
upon the outcome of a plug-in.

Plug-ins can tell the JWS whether they have failed
in their execution in two ways. Firstly, a plug-in can
set an exit value state variable that the JWS will
check. This exit value uses the convention that a
value of zero means the plug-in was successful and a
non-zero value means failure. The second method in-
volves the plug-in returning an XML document. The
root node of the document defines the attribute “Ex-
itValue” that contains the exit value described above
(similar to that shown in figure 3). The exit value
contained within the document will override the exit
value contained within the state variable.

The scripting language is very simple, providing



Figure 7: Architecture of the JWS

only the sequencing and conditional behaviour shown
here, however we believe that this is sufficient for a
wide range of applications.

4 Design and Implementation

4.1 Technologies

Java was chosen because the Java Virtual Machine
(JVM) allows the same compiled source code to be
run on all operating systems where the JVM is avail-
able. This allows development and deployment to be-
come operating system independent.

The web server chosen was Apache Tomcat
(Apache 2006a) due to its ease of deployment and
local expertise. By itself, Apache Tomcat can not
host web services because it does not include an im-
plementation of SOAP. Apache Axis (Apache 2006b)
provides this implementation and also includes sev-
eral tools to aid web service development and deploy-
ment.

From the perspective of the JWS’s clients, the
technology choices have negligible impact. Web ser-
vices are interoperable and the implementation de-
tails of the service, such as the programming language
and choice of server, are hidden away from clients.
The only impact of these choices is that plug-ins must
be written in Java. Allowing plug-ins to be written
in any language was outside the scope of this project
but would further improve the flexibility of the JWS.

4.2 Architecture

Figure 7 shows the process structure of the JWS.
All of the processes shown reside on the server that
hosts the JWS. The main process running on the JWS
server is the Apache Tomcat JVM. This process runs
the Apache Axis web application (not shown), which
in turn runs the JWS. The script manager processes
incoming scripts and uses the plug-in manager to in-
voke plug-ins. The compilation and execution plug-
ins are shown to be within the JWS application be-
cause they are always available.

To compile Java source code the compilation plug-
in writes the source code to a .java file and saves it
on the file system. Then the javac process is started,
which compiles the .java file to a .class file. The
execution plug-in then starts the java process to ex-
ecute the .class file in its own JVM. The plug-in
returns any output that the program sent to either
standard output or standard error.

Unlike submitted Java source code, uploaded plug-
ins are loaded and executed within the same JVM
as the JWS. Submitted Java source code is executed
in its own JVM because it can generate output by
calling System.out.println(...). This method re-
turns output to the JVM’s console and not to the
caller. There is only one console per JVM and if
multiple programs sent their output to the console
it would be difficult to differentiate the output of one
program from another. There is a performance cost
for this decision as we discuss in section 6.

4.3 Security

The security concerns for the JWS are more prevalent
than traditional web services. With traditional web
services the service provider is not modified by the
client. The JWS is not only modified by uploading
plug-ins but arbitrary Java code can also be executed.
Both uploaded plug-ins and submitted source code
could attempt to cause harm to the server. This in-
cludes manipulating the file system (reading, modify-
ing, or deleting files), starting new processes (starting
a UNIX shell and executing commands), or opening a
network connection allowing back-door access to the
server.

To minimise the effect of malicious code harming
the server, Java’s security manager is enabled for both
the Apache Tomcat JVM and the JVM in which sub-
mitted Java source code is executed. By default the
security manager gives all code none of the permis-
sions specified within the Java Security Architecture
framework (Gong 2002). Java security policy files
are used to grant certain permissions to certain Java
classes. The compilation plug-in is allowed to write
to the file system because the compilation process re-
quires writing .java and .class files to the file sys-
tem. The execution plug-in is allowed to read these
files. To maximise security, all uploaded plug-ins are
given no permissions. Uploaded plug-ins can not be
trusted because they could be written by anyone.

Security policy files are incapable of preventing
infinite loops. An infinite loop is a situation where
a program executes continuously inside a loop and
never reaches the condition that tells the program to
exit the loop. To prevent infinite loops from wasting
CPU time on the server, the JWS executes submit-
ted Java code in its own process and kills its process
if it goes beyond a certain time limit. This time limit
can be modified to the client’s demands. More expen-
sive computational tasks will require a longer timeout.
However uploaded plug-ins are executed in the same
process as the JWS so this approach can not be used
for plug-ins that are in an infinite loop. This and
other security issues are discussed in section 6.

4.4 Communicating between plug-ins

To achieve complex behaviour, plug-ins may be
chained together in a script. For example there may
be the need to invoke the execution plug-in after using
compilation plug-in. Coordination between plug-ins
is difficult because plug-ins could potentially be de-
veloped by different developers. If the output of one
plug-in does not match the input of the next plug-in
then the communication breaks down and the oper-
ation will fail. This issue is further complicated by
plug-ins that could potentially pass anything (text,
files, images) to the next plug-in.

Ideally a plug-in will accept and return a string
of text formatted in XML. XML is helpful because it
can be used to represent any object and is machine
readable, allowing it to be processed dynamically at
runtime.



Although passing objects instead of XML would
have improved performance (the task of transforming
objects to XML and back to objects again would be
avoided) it would be a less flexible solution. For a
plug-in to pass an object to another plug-in, the re-
ceiving plug-in must have an implementation of that
object. Therefore there would need to be an agree-
ment between the two plug-ins at design time. This
would severely limit the number of plug-ins a given
plug-in could interact with.

Plug-ins still need to agree to what XML they ex-
pect to receive and produce. This is done by plug-ins
providing a Document Type Definition (DTD) file of
the XML they produce. This file is machine readable
and is a standard way of defining the structure of an
XML document.

5 JWS in Action

This section demonstrates how the flexibility of JWS
would be used to build an application. The applica-
tion we developed is called the Online Learning Appli-
cation (OLA). This application aims to help beginner
Java programmers learn the Java syntax. Students go
to the OLA’s website and are asked to perform Java
programming exercises. An example exercise may be
to write a for-loop that prints the numbers from one
to ten. Students would then write a small piece of
Java code that performs this task. The OLA would
then compile and execute the student’s submission,
and compare the result of execution against an ex-
pected answer.

Using the OLA as a motivating example for the
JWS raises some challenging issues. Novel solutions
are required because these issues are not encountered
with traditional web service implementations. These
issues are outlined below:

• In addition to the JWS acting as an execution
engine by executing Java code, it must also be
able to compile Java code. Together, compilation
and execution provide a flexible mechanism for
performing computational tasks.

• Security concerns arise because the JWS could be
asked to execute any code that students submit
to it. This code could attempt to delete files from
the server. Such behaviour must be prevented.

• Plug-ins must be able to be integrated into the
JWS despite plug-ins and the JWS being devel-
oped by different people. Standardisation is re-
quired so that all plug-ins can be integrated into
the JWS.

• It is desirable to have plug-ins that can communi-
cate with each other. There must be some agree-
ment on how to pass output from one plug-in to
the input of the next plug-in. For example, the
compilation plug-in should pass its output to the
execution plug-in. The execution plug-in should
be able to interpret the compilation plug-in’s out-
put and execute any compiled classes.

• Functionality should also be invoked condition-
ally. For example if the compilation plug-in fails
in compiling Java source code, the execution
plug-in should not be invoked.

• Some plug-ins require the allocation of machine-
dependent resources. For example, the compi-
lation plug-in must have access to a directory to
compile its .class files to. This directory will be
different for every server the plug-in is deployed
on.

Figure 8: Overview of the Online Learning Applica-
tion

for (int i = 1; i <= 10; i++)
System.out.println(i);

Figure 9: Expected submission for a Java exercise

An overview of the OLA and its relationship with
the JWS is shown in Figure 8. The OLA does not
implement much functionality. It essentially passes
students’ submissions to the JWS for compilation and
execution, and checks the result against an expected
answer. This feedback is then passed back to the
student. This demonstration illustrates how applica-
tions can be composed quickly by leveraging existing
services. Any gaps in functionality can be filled by
uploading a plug-in to the JWS.

Students access the OLA through their web
browser and complete Java exercises. If the OLA
asked the student to write the code that prints the
numbers from one to ten, the student would be ex-
pected to write something similar to the code shown
in Figure 9.

The OLA uses the script shown in Figure 10, with
the student’s code snippet as the input, to invoke the
JWS.

First, the WrapperPlugin’s wrap method is in-
voked. Java requires code to be declared within a
class. This plug-in wraps the student’s submission
with a class declaration and returns the result. For
the above example, this plug-in would produce some-
thing similar to the class shown in Figure 11.

The name of class is made unique by append-
ing a random number to the end. This minimises
the chance that saving the .java and .class files
to the file system will conflict with existing .java
and .class files. These files need to be periodically
deleted.

The rest of the script says the code should be com-
piled with the CompilationPlugin. If compilation is
successful then ExecutionPlugin is used to execute
the code. Any output from standard output or stan-
dard error is sent back to the OLA. The OLA checks
this result against an expected answer and informs
the student whether they were correct or not.

If the student’s submission does not compile, the
script will return the compiler’s compilation error
messages. These messages are difficult to understand
and pose a significant obstacle for beginner program-
mers (Flowers et al. 2004, Lang 2002). It would be
helpful if the OLA had the ability to convert these
messages to a more understandable format. This gap
in functionality can be filled by developing a plug-in.

WrapperPlugin wrap
IF SUCCESS CompilationPlugin compile

ExecutionPlugin execute
ENDIF

Figure 10: Script used by the OLA to invoke the JWS



public class Test123456789
public static

void main(String[] args)
for (int i = 1; i <= 10; i++)

System.out.println(i);

Figure 11: Student’s code inside a class declaration

WrapperPlugin wrap
IF SUCCESS CompilationPlugin compile

ExecutionPlugin execute
ELSE

CompilationErrorPlugin transform
ENDIF

Figure 12: Script with the CompilationErrorPlugin

CompilationErrorPlugin was developed to perform
this task. It examines the compiler’s error messages,
attempts to match them against a catalogue of errors,
and replaces them with a more descriptive message.
The only change the OLA requires to use this new
plug-in is to add an else condition to its script as
shown in Figure 12.

This new script says if compilation does not suc-
ceed, then the compilation error plug-in should be
used to transform the output of the compilation plug-
in (compilation errors) into a more understandable
format.

The potential for functionality of the OLA is
not limited by the JWS. For example a user could
decide to extend the OLA to accept a language
other than Java by writing a plug-in that would
provide this functionality, or if a user feels the
CompilationErrorPluginplug-in is insufficient, they
can write a better one to be used in its place.

Similarly, the OLA does very simple checking that
the student’s submission is correct. This checking
could be made more sophisticated, in which case it
could be incorporated into the OLA application code
itself, or made in to a plug-in and uploaded to the
JWS server. This plug-in would then be available for
anyone else to use.

The OLA requires user code to be executed on the
web server, so security becomes an issue. The security
policy (mentioned in section 4) for the user-submitted
code is specified just before the code is actually run.
This is allowable as security policies can be specified
when a process is started up for execution, which oc-
curs when the execution plug-in is used. This allows
different policies to be specified for different code; so
trusted users can use a less stringent policy, which
grants more permissions.

For the OLA, a timeout facility is used to ensure
that user submitted code that would never complete,
such as infinite loops that would continually run but
never get any closer to finishing, does not stall the
server. After a set amount of time the code would
time out (the ’timeout time’). This is implemented
utilising the timeOutTime specified in the execution
plug-in. For the OLA, the timeout time is set to ten
seconds, as only beginner code is expected to be sub-
mitted, resulting in quick execution times.

6 Evaluation

The primary goals of this work were to develop a dis-
tributed computation system with functionality that
is not determined just at deployment time, but allows
changes to functionality with no down time, is inter-
operable, that is, was usable by any client regardless
of the programming language, operating system, or
hardware of the client, and is secure. By using web
services and Java for interoperability, and a plug-in
architecture for flexibility, JWS does, in theory, meet
these goals.

We have provided evidence of the JWS’s flexibility
and interoperability in a more practical sense by de-
veloping OLA. We face that same problem of any new
“enabler” technology. The technology by itself pro-
vides no directly observable functionality, so to really
prove its usefulness requires devoting significant re-
sources developing many different uses of it. In our
case, we chose OLA because it exercises all the fea-
tures provided by JWS in a single application, and we
feel it is representative of a large class of applications
of the kind that JWS is intended to support.

In particular, OLA has requirements that motivate
the need for flexibility. Had OLA been developed as
a standard web service, then its behaviour would be
fixed at that time. If, for example, it is determined
that the deployed presentation of compilation errors
is not informative enough, the users must wait until a
better presentation is produced and deployed. With
our implementation of OLA users can provide their
own plug-in to present such information.

JWS does, however, have its limitations.

• Computational tasks must be specified in Java,
either by submitting Java source code or a plug-
in. No support is provided for executing source
code in other programming languages.

• The JWS is a designed to perform computational
tasks and can not be used to display user inter-
faces and graphics.

• The Java security manager prevents code from
causing harm to the server. Any tasks that re-
quire operations such as writing to the file sys-
tem, the creation of new processes, or use of
network connections will result in security vio-
lations. Currently there is no mechanism that
grants permissions to uploaded plug-ins.

As mentioned earlier, the decision to execute sub-
mitted Java source code in its own process as opposed
to loading it into the same process as JWS has a per-
formance cost. Figure 13 gives an indication as to
what this cost is. It shows the cost of performing a
compilation, execution in a new process, or execution
in the existing process. These timings were done us-
ing a Java class that executed an empty for-loop for
approximately 16 milliseconds. The tests were run
100 times and the results averaged to minimise ran-
dom variation. While this is a fairly simplistic test,
it does provide the information we are interested in.
From the test we can see that executing in a new
process takes on average 140 milliseconds longer than
executing in the same process. In the context of the
various other performance costs associated with web
services, we feel this extra time is acceptable.

There are a number of directions that JWS could
go. As JWS provides a general computation ser-
vice, it would be interesting to extend it to provide
a distributed parallel computation service. To realise
the benefits of parallel computing, this would require
developing a a plug-in that allows one JWS server
to communicate to other JWS servers. This plug-
in would need to disseminate the computational task



Figure 13: Performance of compilation and execution

amongst the other JWSs and recombine the results.
This plug-in would require permission to open net-
work connections. Ideally this plug-in should be bun-
dled with the JWS in a similar manner as the compi-
lation and execution plug-ins.

If parallel computation can be realised the JWS
will resemble the Globus (Globus 2006) system.
Globus provides the Globus Toolkit, which is used
to create grid computing solutions and has become a
middleware standard for a number of grid projects.
Globus’ web services grid resource allocation man-
ager (WS-GRAM) provides dynamic deployment of
web services.

The current form of JWS is as secure as the Java
security manager is. The security policy we use rules
out most security concerns when using JWS. As men-
tioned in section 4.3, security policies cannot prevent
all malicious behaviour from occurring. An uploaded
plug-in could execute an infinite loop and the JWS
will be blocked while waiting for plug-in to finish.
Since uploaded plug-ins are executed in the same pro-
cess as the JWS itself, killing the process would also
kill the JWS, Apache Tomcat, and any other web ap-
plications Apache Tomcat was hosting at the time.
This issue could be addressed by executing uploaded
plug-ins within their own process and killing their
process if a timeout is exceeded. This is the same
method for terminating infinite loops in submitted
Java source code.

Like other web services, the JWS can benefit from
the incorporation of the Web Services Security (WSS)
policy (Open 2006). This policy aims to provide web
services with message integrity and confidentiality. It
specifies mechanisms for encrypting messages and au-
thenticating clients and servers.

The WSS policy mentioned above provides a
mechanism for authenticating clients but does not
provide a mechanism for authenticating uploading
plug-ins. It could be possible for an authenticated
client to upload an untrustworthy plug-in. This could
be addressed by using the JAR signing and verifica-
tion tool, which is part of the Java Security Architec-
ture (Gong 2002). This tool allows JAR files to be
digitally signed so that the JWS can be sure about
the origins of the plug-in. This is only part of solution
because there must be some mechanism that ensures
only trustworthy plug-ins are signed.

Currently the only resource that uploaded plug-
ins are allowed to manipulate are the arguments that
are passed to it. To allow more powerful plug-ins,
such as the parallel computing plug-in, plug-ins must
be able to request resources from the JWS. Grant-
ing resources is non-trivial because the JWS will not
know what resources a plug-in requires until it is re-
quested. In addition, the JWS and plug-ins have no
prior agreement, therefore an arbitrary plug-in could
request an arbitrary resource. The compilation and
execution plug-ins are given a directory to write files
to through the plug-ins’ constructors. However these

plug-ins are special case because they were developed
as an integral part of the JWS. Foreign plug-ins can
not be passed resources through their constructor be-
cause the JWS has no idea what resources are re-
quired.

The plug-in could specify the type of resource it
requires in its manifest file. For example, the paral-
lel computing plug-in could request a network con-
nection by specifying the value “network connection”
within a resources tag element and ideally the JWS
will grant the plug-in the ability to create network
connections. But there are still issues, such has how
the JWS and plug-in developers know that the value
“network connection” should be used as opposed to
“socket connection,” “network,” or even “network
permission”.

Even if the JWS understood what the plug-in was
requesting, it still may not know what object to re-
turn. For example, if the JWS was asked to provide a
directory it may not be clear whether the JWS should
return a string that represents a path to the directory,
a URL, or a java.io.File object.

Prior agreement is required. The JWS could pub-
lish a list of resources and the values used to retrieve
them as comments in its WSDL document or even a
website. However this requires the plug-in developer
to know the JWS it will be uploading the plug-in to
at design time and modifying the plug-in’s manifest
file for each JWS server. This is inflexible and fragile
if the JWS changes.

7 Related Work

Researchers have attempted to make web services
more flexible as well. Most approaches relate to the
dynamic composition of web services. This involves
creating complex web services by dynamically inte-
grating several simple web services together. In Sam
et al.’s (Sam et al. 2006) implementation of this ap-
proach web service clients provide a specification of
the web service they require to a registry service. If
there are no web service providers that match the
specification exactly, the registry returns the closest
match. Then additional web services are used to fill
the gaps in functionality and make the original web
service match the user’s specification more closely.

Sam et al. use the example of a Japanese tourist
wanting to book a hotel in France via a web service.
The registry returns a web service that allows the
tourist to book French hotels however, it is in French
and uses Euros as its currency, which is meaningless
for the Japanese tourist. Intermediary web services
are used to convert French to Japanese and Euros to
Japanese Yen.

Although the hotel booking web service is made
more flexible, it relies on these intermediary web ser-
vices to already exist in the registry. Even if an inter-
mediary web service does exist it may not fit the user’s
requirements exactly. In contrast, the JWS allows
users to modify the JWS’s functionality by uploading
a plug-in. Since users can develop their functionality
their requirements are matched exactly.

Another project looking at dynamic web services
is the “Web Services Management Layer” (WSML)
project (Verheecke et al. 2003). This project aims
to remedy the problems caused by the traditional
“Wrapper” approach to web services design, which is
a static methodology, used in development environ-
ments such as Microsoft .NET. The WSML project
creates a layer in between the web application and
web service. This provides a layer of abstraction that
can be used to allow “hot-swapping” of web services
at run time. Different modules are present in this



layer, controlling areas such as security and transac-
tion management (Verheecke et al. 2003).

The idea of making the execution of program
code a web service comes from a project on verifying
dynamic reconfigurations of systems (Warren et al.
2006). This project extended OpenRec, a framework
that comprises a reflective component model plus an
open and extensible reconfiguration management in-
frastructure, by integrating it with the Alloy analyser
(Jackson 2002). The integration of the existing Open-
Rec framework, written in Python, and Alloy, written
in Java, was achieved by delivering Alloy as a web ser-
vice.

8 Conclusions

The key objectives of this work were to create a ser-
vice that is interoperable and flexible enough to allow
new functionality to be added without down time and
secure enough to prevent harmful behaviour from oc-
curring at the server. JWS meets these goals through
it being a web service and through its plug-in archi-
tecture and ability to compile and execute submitted
Java code. Plug-ins can be submitted and will become
available at run-time without affecting the server. A
further advantage of its plug-in architecture is that
plug-ins are available to any client of JWS, giving
further opportunities for reuse.

Plug-ins are invoked through a simple scripting
language. Scripts allow users to specify which plug-
ins are invoked and the order of execution of these
plug-ins. Simple conditional processing is provided.
Whether such a simple language is sufficient for all
envisioned uses of JWS is the subject of future work.

Security of the JWS is implemented through use of
the Java Security Framework. The minimum number
of permissions that still allow the JWS to function are
given. No permissions are currently given to uploaded
plug-ins, so no uploaded code can damage the server.
The only security concern in the current implemen-
tation is that denial-of-service is possible through the
submission of a long-running plug-in, something that
could be addressed through alternative implementa-
tions. Indeed, the security policies of the current im-
plementation probably reduce the flexibility of JWS
more than is necessary, and providing a more flexible
security model is also the subject of future work.

We are not the first to consider how to provide
more flexibility in web services, but we have taken a
different approach to other projects, namely provid-
ing a mechanism to give the user more control over
the functionality provided by the web service. We
believe our minimalistic design provides a convincing
proof-of-concept that our approach is viable.

References

Apache (2006a), ‘Apache Tomcat’, Apache Software
Foundation http://tomcat.apache.org.

Apache (2006b), ‘Web services - Axis’, Apache Soft-
ware Foundation http://ws.apache.org/axis.

Booth, D. et al. (2004), ‘Web services architecture:
W3c working group note 11 february 2004’, Re-
trieved 23rd August, 2006 from http://www.w3.
org/TR/ws-arch.

Flowers, T., Carver, C. & Jackson, J. (2004), Empow-
ering students and building confidence in novice
programmers through gauntlet, in ‘Proceedings of
the 34th ASEE/IEEE Frontiers in Education Con-
ference’, pp. 10–13.

Gamma, E. & Beck, K. (2004), Contributing
to Eclipse: Principles, Patterns, and Plug-Ins,
Addison-Wesley.

Globus (2006), ‘Globus’, The Globus Alliance http:
//www.globus.org.

Gong, L. (2002), ‘Javatm 2 platform security
architecture’, Retrieved April 26, 2006 from
http://java.sun.com/j2se/1.5.0/docs/guide/
security/spec/security-spec.doc.html.

Jackson, D. (2002), ‘Alloy: a lightweight object
modelling notation’, ACM Trans. Softw. Eng.
Methodol. 11(2), 256–290.

Lang, B. (2002), Teaching new programmers: A Java
toolset as a student teaching aid, in ‘Proceedings
of the Inaugural Conference on the Principles and
Practice of Programming’, pp. 95–100.

Open, O. (2006), ‘Oasis web services secu-
rity (wss) tc’, Retrieved August 27, 2006
from http://www.oasis-open.org/committees/
tc home.php?wg abbrev=wss.

Sam, Y., Boucelma, O. & Hacid, M.-S. (2006), Web
services customization: a composition-based ap-
proach, in ‘ICWE ’06: Proceedings of the 6th in-
ternational conference on Web engineering’, ACM
Press, New York, NY, USA, pp. 25–31.

Verheecke, B., Cibrán, M. A. & Jonckers, V. (2003),
AOP for Dynamic Configuration and Management
of Web Services, in ‘The International Conference
on Web Services - Europe’, pp. 137–151.

Warren, I., Sun, J., Krishnamohan, S. & Weeras-
inghe, T. (2006), An automated formal approach
to managing dynamic reconfiguration, in ‘ASE
’06: Proceedings of the 21st IEEE International
Conference on Automated Software Engineering
(ASE’06)’, IEEE Computer Society, Washington,
DC, USA, pp. 37–46.


