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Abstract

A class of graphs is Kruskalian if Kruskal’s theorem
on a well-quasi-ordering of finite trees provides a fi-
nite characterization in terms of forbidden induced
subgraphs.

Let k be a natural number. A graph is a k-cograph
if its vertices can be colored with colors from the
set {1, . . . ,k} such that for every nontrivial subset
of vertices W there exists a partition {W1,W2} into
nonempty subsets such that either no vertex of W1
is adjacent to a vertex of W2 or, such that there ex-
ists a permutation π ∈ Sk such that vertices with
color i in W1 are adjacent exactly to the vertices with
color π(i) in W2, for all i ∈ {1, . . . ,k}. We prove that
k-cographs are Kruskalian. We show that k-cographs
have bounded rankwidth and that they can be recog-
nized in O(n3) time.

1 Introduction

Progress on tree-decompositions of graphs, such as
rank– and cliquewidth-decompositions, makes it a
point of interest to investigate classes of graphs for
which the cutmatrices in the decomposition take on
a certain shape. It would be nice if one could tell by
the shape of the cutmatrices whether a class of graphs
has a finite characterization in terms of forbidden in-
duced subgraphs.

To make matters clear, we need a few definitions.

Definition 1. A tree-decomposition of a graph G is a
pair (T , f) where T is a ternary tree and where f is a
bijection from the leaves of T to the vertices of G.

Definition 2. Let (T , f) be a tree-decomposition of a
graph G = (V,E). Let e be a line in T and consider the
two sets A and B of leaves of the two subtrees of T − e.
The cutmatrix Me is the submatrix of the adjacency
matrix of G with rows indexed by the vertices of A and
columns indexed by the vertices of B.

Definition 3. (Oum 2005) A graph has rankwidth k
if it has a tree-decomposition such that every cutmatrix
has binary rank at most k.
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Definition 4. Consider a 0, 1-matrixM. LetM′ be the
maximal submatrix of M with no two rows equal and
no two columns equal. The shape of M is a class of
matrices equivalent to M′ under permuting rows, per-
muting columns, and taking the transpose.

A graph is a cograph if it has no induced P4, that
is, a path with 4 vertices. It follows from a character-
ization by Corneil et al. that a graph is a cograph
if and only if it has a tree-decomposition such ev-
ery cutmatrix is shape-equivalent to a submatrix of(

1 0
)

(Corneil et al. 1981).
Another example of a class of graphs that is char-

acterized by shapes of cutmatrices is the class of
distance-hereditary graphs, i.e., the class of graphs
with rankwidth at most one (Howorka 1977, Oum
2005). Distance-hereditary graphs are those graphs
that have a tree-decomposition such that every cut-
matrix has a shape equivalent to a submatrix of(

1 0
0 0

)
(Chang et al. 1997). An obvious consequence

is that the complements of the distance-hereditary
graphs have a tree-decomposition with every cutma-
trix equivalent to

(
1 1
1 0

)
.

A third example is the class of graphs that have
a tree-decomposition such that every cutmatrix is
equivalent to a submatrix of

(
1 0
0 1

)
. This turns out

to be the class of graphs without C5, bull, gem, or
co-gem (Chandler et al. 2009, Hung & Kloks 2009).
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Figure 1: A house, a hole, a domino, a gem, and a
bull. A graph is distance hereditary if it has no in-
duced house hole, domino or gem. The co-gem is the
complement of the gem; that is the union of a P4 with
a single vertex.

A basic difference between the classes of cographs
and distance-hereditary graphs is that the set of for-
bidden induced subgraphs is finite for the class of
cographs while it is infinite for the class of distance-
hereditary graphs. We note that distance-hereditary
graphs have a finite characterization in terms of
vertex-minors (Oum 2005).
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Definition 5. Let k be a natural number. A graph
G = (V,E) is a k-cograph if there exists a coloring of
the vertices with colors from {1, . . . ,k} such that for ev-
ery subset of vertices W ⊆ V with |W| > 2 there exists
a partition {W1,W2} into two nonempty subsets such
that either

i. no vertex of W1 is adjacent to a vertex of W2, or

ii. there exists a permutation σ of the colors such that
vertices of color i in W1 are adjacent exactly to the
vertices of color σ(i) in W2, for all i ∈ {1, . . . ,k}.

In this paper we look at a class of graphs for which
Kruskal’s theorem provides a proof that they can be
characterized by a finite collection of forbidden in-
duced subgraphs.

Note that, for k = 1, the 1-cographs are the ordi-
nary cographs; this is Gallai’s characterization (Gal-
lai 1967). Note that k-cographs are also (k + 1)-
cographs; we may simply leave some color class
empty. If C is a nonempty color class, i.e., a nonempty
set of vertices with the same color, then the subgraph
induced by C is a cograph.

One of our main results is that for each k there
exists a finite characterization for the class of k-
cographs in terms of forbidden induced subgraphs.
We prove that in Section 3. We end this section with
some of our notational customs and with one signifi-
cant observation.

For two sets A and B we write A + B and A − B
instead of A ∪ B and A \ B. We write A ⊆ B if A
is a subset of B with possible equality and we write
A ⊂ B if A is a subset of B and A 6= B. For a set A
and an element x we write A + x instead of A + {x}
and A− x instead of A− {x}. It will be clear from the
context when x is an element instead of a set.

A graph G is a pair G = (V,E) where V is a finite,
nonempty set, of which the elements are called the
vertices ofG, and where E is a set of two-element sub-
sets of V, of which the elements are called the edges
of G. A graph consisting of a single vertex is called
trivial. We denote edges of a graph as (x,y) and we
call x and y the endvertices of the edge. For a vertex
x we write N(x) for its set of neighbors and we write
N[x] = N(x)+x for the closed neighborhood of x. For
a subset W ⊆ V we write N(W) =

⋃
x∈W N(x) −W

for its neighborhood and we writeN[W] = N(W)+W
for its closed neighborhood. Usually we use n = |V |
to denote the number of vertices of G and we use
m = |E| to denote the number of edges of G.

For a graph G = (V,E) and a subset S ⊆ V of
vertices we write G[S] for the subgraph induced by S,
that is, the graph with S as its set of vertices and with
those edges of E that have both endvertices in S. For a
subsetW ⊆ V we writeG−W for the graphG[V−W].
For a vertex x we write G− x rather than G− {x}. We
usually denote graph classes by calligraphic capitals.

A twin is a module with two vertices. The twin is
false if the vertices are not adjacent and it is true if the
vertices are adjacent. A module is a set M of vertices
such that

x,y ∈M ⇒ N(x) −M = N(y) −M.

Cographs can be characterized as those graphs
for which every nontrivial induced subgraph has a
twin (Brandstädt et al. 1999). We show that the class
of k-cographs is closed under creating twins.

Lemma 1. ‘Creating a twin’ of a vertex x in a graph G
is the operation of adding a new vertex x′ and adding
edges incident with x′ such that x′ and x become twins.
Assume that G is a k-cograph and let G′ be obtained
from G by creating a twin. Then G′ is also a k-cograph.

Proof. Let G′ be obtained by creating a twin x′ of a
vertex x in G. Consider a k-coloring as in Definition 5
and give x′ the same color as x. Let W be a subset
of vertices of G′ with at least two elements. If W =
{x, x′} then let W1 = {x} and let W2 = {x′}. If x and x′
are false twin, then no vertex of W1 is adjacent to a
vertex of W2. If vertices x and x′ are true twins in G′,
then consider any permutation σ that maps the color
of x onto itself, for example the identity map. Then
a vertex with color i from W1 is adjacent to exactly
the vertices with color σ(i) of W2 for all i = 1, . . . ,k
because x and x′ are adjacent. Thus the condition of
Definition 5 is satisfied.
Now assume thatW contains the vertex x′ but not the
vertex x. Then consider the same subset of vertices in
the graph G but with x′ replaced by x. By definition
there exists a partition {W1,W2} satisfying the condi-
tions of Definition 5. Assume x ∈ W1. Then consider
the same partition of W in G′ but with the vertex x
in W1 replaced by x′. Since x and x′ have the same
color and they are twins, the condition of Definition 5
is satisfied.
If W contains x but not x′ then there is nothing to
prove; we can take the same partition of W in G′ as
in G.
Finally, if W contains both x and x′ and at least one
other vertex, then remove the vertex x′ from the set.
In the implied partition {W1,W2} assume that x ∈
W1. Add the vertex x′ also to W1. The claim follows,
and this proves the lemma. �

2 k-Cotrees

In this section we show that for any natural number
k, k-cographs can be recognized in O(n3) time.

A k-cotree for a graph G = (V,E) is a pair (T , f)
where T is a rooted binary tree and f is a 1-1 map-
ping from the leaves of T to V; the set of vertices of
G. Each leaf is labeled with a color from {1, . . . ,k}.
Each internal node of T , including the root, is labeled
either as a union node, or by some permutation of
{1, . . . ,k}. Two vertices x and y in G are adjacent
if and only if the lowest common ancestor is labeled
with a permutation σ that matches the colors of x
and y.

The following lemma echoes the classic (Corneil
et al. 1981).

Lemma 2. A graph is a k-cograph if and only if it has
a k-cotree representation.

Proof. First assume that G is a k-cograph. Consider a
coloring of the vertices as prescribed in Definition 5.
We construct a k-cotree as follows.
Let {V1,V2} be a suitable partition of V. Construct a
root node r. If no vertex of V1 is adjacent to a vertex
of V2, then label r as a union node. Otherwise, label
r with the permutation that matches the color classes
of V1 with the color classes of V2. If V1, or if V2 con-
sists of a single node then create a leaf and label it
with the color of that vertex. Otherwise, recursively
construct k-cotrees for G[V1] and for G[V2] and make
the roots of those two trees adjacent to r. By con-
struction, two vertices x and y are adjacent in G if
and only if their lowest common ancestor is labeled
with a permutation that matches their colors.
Consider a graph G = (V,E) and let (T , f) be a binary
k-cotree that represents G. The labels at the leaves
provide a coloring of the vertices. Let W ⊆ V be
a nontrivial subset of vertices and consider the low-
est common ancestor p in T of the leaves that are
mapped to the vertices of W. The two subtrees at p
partition W into two nonempty subsets W1 and W2
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and the permutation σ at p makes vertices with color
i in the left subtree adjacent to the vertices with color
σ(i) in the right subtree. This shows that the graph is
a k-cograph. �

Lemma 3. Let G = (V,E) be a k-cotree and let (T , f)
be a k-cotree representation of G. Consider the tree-
decomposition (T ′, f) obtained from (T , f) by removing
the root and by making the two children of the root
adjacent in T ′. Then every cutmatrix of (T ′, f) is shape-
equivalent to a submatrix of

(
Ik 0

)
, where Ik is the

k× k identity matrix.

Proof. Let p be a child of the root r of T . Let e be the
line in T that connects p to r. If r is labeled as a union
node, then the cutmatrix of e is a zero matrix. Other-
wise, assume that r is labeled with a permutation σ.
Then the cutmatrix at e is equivalent to a submatrix of
the permutation matrix that matches vertices of color
i in the subtree at p to vertices with color σ(i) in the
other subtree. Note that some color classes may be
empty.
Now consider an arbitrary node q, not equal to r, and
let q1 and q2 be two children of q in T . Let Q be the
set of vertices of Gmapped to leaves in the subtree of
q. LetQ1 ⊂ Q be the set of leaves in the subtree at q1.
We consider the cutmatrix of the line e′ that connects
q1 with q, with rows indexed by the vertices of Q1.
Let e be the line that connects qwith its parent. By in-
duction, we may assume that vertices of Q that have
the same color, have the same neighbors in the rest of
the graph and that vertices of Q that have different
colors have no common neighbors in the rest of the
graph. Consider a subset of vertices of Q1 with the
same color. They have the same neighbors in V −Q.
By definition of a k-cotree they have the same neigh-
bors in Q2 and thus they have the same neighbors in
V − Q1. Furthermore, vertices in Q1 with different
colors have no common neighbor in V −Q and they
have also no common neighbor in Q2.
Summarizing, vertices ofQ1 with the same color have
the same neighbors in V − Q1 and vertices of Q1
with different colors have no common neighbors in
V − Q1. Since there are only k colors, this shows
that the shape of the cutmatrix at e′ is equivalent to
a submatrix of

(
Ik 0

)
. This proves the lemma. �

Lemma 4. k-Cographs have rankwidth at most k.

Proof. By definition, a graph has rankwidth k if it
has a tree-decomposition such that every cutmatrix
has binary rank at most k. By Lemma 3, k-cographs
have such a tree-decomposition. �

Theorem 1. For every natural number k, there exists
an O(n3) algorithm that recognizes k-cographs.

Proof. The definition of a k-cograph can be ex-
pressed in monadic second-order logic. Since the
graphs have bounded rankwidth this proves the
claim (Oum 2005). �

In a recent paper we introduced the concept of
simple-width (Hung & Kloks 2009). A graph has
simple-width k if it has a tree-decomposition such
that every cutmatrix is shape-equivalent to some ma-
trix with at most k rows and at most k columns. It is
easy to see that

r(G) 6 s(G) 6 2r(G),

where r(G) is the rankwidth of G and s(G) is the
simple-width of G. The benefit of simple-width lies
in the fact that characterizations of graph classes, de-
fined in terms of permitted shapes of cutmatrices, are

easier to obtain. In the mentioned paper we char-
acterize graphs with simple-width 2. Note that no
characterization is known of graphs with rankwidth
at most two.

3 Forbidden induced subgraphs

In this section we show that for every natural number
k, k-cographs can be characterized by a finite set of
forbidden induced subgraphs.

Let’s call a k-cograph partitioned if it comes
equipped with a (good) k-coloring of the vertices.

Theorem 2. Let k be a natural number. Partitioned
k-probe cographs are well-quasi-ordered by the induced
subgraph relation.

Proof. A cotree is a binary tree with a bijection from
the leaves to the vertices of the graph and internal
nodes labeled as join- or union-operators (Corneil
et al. 1981). Two vertices are adjacent in the graph
if and only if their lowest common ancestor is a
join-node. Kruskal’s theorem (Kruskal 1960, Hig-
man 1952) states that trees, with points labeled by
a well-quasi-ordering, are well-quasi-ordered with
respect to their lowest common ancestor embed-
ding. Pouzet observed that this implies that cographs
are well-quasi-ordered by the induced subgraph re-
lation (Pouzet 1985) (see also (Damaschke 1990,
Thomassé 2000)). For partitioned k-cographs we
equip each leaf with a label that is a color from
{1, . . . ,k}. Each internal node receives a label which
is either a union label or a permutation of the colors.
Two vertices are adjacent if their lowest common an-
cestor is a permutation-node and if their colors are
matched by the permutation at that node. Kruskal’s
theorem implies the claim. �

It is interesting to notice that Theorem 2 implies
that k-cographs do not have long induced paths. This
implication can be deduced as follows. Let [P1,P2, . . .]
be an infinite sequence of k-colored paths of increas-
ing length and assume that they are all partitioned
k-cographs. Construct graphs P′i by creating a false
twin with the same color of each of the two endpoints
of Pi. Then each P′i is also a partitioned k-colored co-
graph since this class of graphs is closed under creat-
ing false twins. The sequence [P′1,P′2, . . .] is an infinite
sequence and P′i is not an induced subgraph of P′j as
long as i 6= j. This contradicts Theorem 2.

Theorem 3. Let k be a natural number. The class of
partitioned k-cographs can be characterized by a finite
set of forbidden induced, colored subgraphs.

Proof. Consider a sequence [G1,G2, . . .] of k-colored
graphs which are not partitioned k-cographs. As-
sume that for each vertex x in Gi = (Vi,Ei) the
subgraph induced by Vi − x is an induced k-cograph
(i = 1, 2, . . .). Assume also that each Gi is equipped
with a ‘root’ ri which is a vertex of Gi and assume
that all roots r1, r2, . . . have the same color.
For i = 1, 2, . . ., consider k-cotrees of Gi − ri as in
Theorem 2. Extend the labels at the leaves with an
additional label-entry 0 or 1 that indicates whether
the vertex, that is mapped to the leaf, is adjacent to
ri or not. Consider the well-quasi-ordering of these
labeled trees by the lowest-common-ancestor order-
ing. Kruskal’s theorem implies that there must exist
i < j such that Gi is an induced subgraph of Gj. This
proves the theorem. �

We close this section with a similar proof for the
unpartitioned case.
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Theorem 4. Let k be a natural number. The class of
k-cographs is characterized by a finite set of forbidden
induced subgraphs.

Proof. Let [G1,G2, . . .] be an infinite sequence of
graphs that are not in the class of k-cographs. As-
sume furthermore that each Gi satisfies the property
that Gi − x is a k-cograph for any vertex x of Gi. Sin-
gle out one vertex ri in each Gi and label each vertex
of Gi − ri with a 0 or a 1, depending whether it is
adjacent to ri or not. Consider furthermore a (good)
k-coloring for each Gi − ri. Thus we obtain a se-
quence of k-colored graphs [G1 − r1,G2 − r2, . . .] with
an additional 0/1-label at each vertex. By Kruskal’s
theorem there must exist i < j such that the the la-
beled graph Gi −ri is an induced subgraph of Gj −rj.
Since we may assume that no two graphs Gi and Gj

are equal, this proves the theorem. �

Note that Theorem 4 gives an alternative proof for
the fact that k-cographs can be recognized in O(n3)
time. Let Ok be the (finite) set of forbidden in-
duced subgraphs for k-cographs. Thus a graph is a
k-cograph if and only if it has no element of Ok as
an induced subgraph. Because Ok is finite, this is a
monadic second-order characterization. Note how-
ever, that in this case the proof is nonconstructive;
Kruskal’s theorem does not provide the set Ok.

4 Explicit results

Let’s satisfy some of our cravings for practicalities;
some discouraging news to start with.

Theorem 5. A graph G is a 2-cograph if and only if it
has no induced C5, gem, C7, C8, C9, C10, and P10.
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Figure 2: Some forbidden induced subgraphs for 2-
cographs; C5 and the gem. The C7, C8, C9, C10, and
P10 are also forbidden but are not depicted.

Proof. (Sketch). Consider the class G of graphs that
have a tree-decomposition such that every cut matrix
is shape-equivalent to a submatrix of

(
1 0
0 1

)
.

It has been established that a graph G is in G if
and only if G has no induced C5, gem, co-gem nor
bull; i.e., the switching graph of C5 (Cameron 1994,
Hung & Kloks 2009). Note that 2-cographs are ob-
tained from graphs in G by creating false twins of cer-
tain subtrees; that is, 2-cographs are obtained from
graphs of G by a series of replacements, where in-
duced subgraphs of G are replaced by a union of sub-
graphs of G such that vertices with the same color
have the same neighbors outside. Since 2-cographs
are closed under creating false twins, we only need
to check which forbidden induced subgraphs for G are
2-cographs and which remain forbidden for the class
of 2-cographs. It is easy to check that the bull, co-
gem, P6, P7, P8, and P9 are 2-cographs. This proves
the theorem. �

We find it surprising that the list is so long, already
for the case of 2-cographs. One good, and very useful
thing that comes out of it is this:

Corollary 1. 2-Cographs are perfect.

We end this report with the description of an easy
recognition algorithm for 2-cographs.

Theorem 6. There exists an O(n4) algorithm for the
recognition of 2-cographs.

Proof. A 2-cograph G can be seen as a ‘P4-free struc-
ture,’ which we define next.
Consider a 2-cotree (T , f) with leaves colored black
and white. If G is nontrivial, then there exist two
leaves with a common ancestor in T . Either the two
leaves are twins, or they are pairs of vertices x and y
with different colors; that is, x and y have no com-
mon neighbors.
Consider a subtree with three or four leaves. If G has
enough vertices than such a subtree exists. In the case
of a subtree with 3 leaves, one pair of leaves have a
common ancestor q and there is point p which has
two children, namely q and the third leaf. In the sec-
ond case there are two pairs of leaves, each with a
common ancestor. Assume that G has no twins. Con-
sider the first case. Let x and y be the two leaves with
a common ancestor and let z be the third leaf. Then x
and y have different colors, thus they have no com-
mon neighbors outside {x,y}. Either the vertex z has
the same neighbors as x, or it has the same neighbors
as y outside {x,y, z}. A similar situation occurs when
the subtree has 4 leaves.
Define a structure with two kinds of ‘points.’ The first
type of points are the pairs of vertices with different
colors that have a common ancestor in T . The second
type of points are the single vertices that do not occur
in points of the first type.
The structure is defined by the property that every
sub-structure, induced by a subset of the points, has a
‘structure-twin.’ Such a twin in the structure is either

(i) a pair of points that are vertices of G that are
twins in G; or

(ii) two points; one a pair {x,y} and the other a ver-
tex z such that either z and {x,y} are disjoint or
such that z is adjacent to exactly one of x and y.
Furthermore, either x and z or y and z have the
same neighbors outside {x,y, z}; or

(iii) two points; both pairs, say {x,y} and {p,q}. Ei-
ther they are disjoint, or they are pairwise con-
nected. Furthermore, either {x,p} and {y,q}, or
{x,q} and {y,p} have the same neighbors out-
side {x,y,p,q}, and these two neighborhoods
are disjoint.

Obviously, a graph is a 2-cograph if and only if there is
a corresponding ‘P4-free structure,’ that is a structure
with no induced P4 of points. Two points are adjacent
in the structure if there is an induced subset of points
for which the points are adjacent structure-twins, that
is, they are structure-twins and there is at least one
edge in G between the corresponding subsets of ver-
tices. The recognition problem for 2-cographs boils
down to the identification of the points of a corre-
sponding structure.
Our algorithm builds a P4-free structure, if it exists. It
mimics the building of a 1-cotree by grouping twins;
in that algorithm one repeatedly searches for a twin,
and then removes one of the two vertices from the
graph.
We start with a collection of feasible subtrees consist-
ing of all single vertices and of all pairs of colored
vertices that have no common neighbors. Each sub-
tree is represented, either by a point which is a pair
of vertices, or by a point which is a single vertex. For
each subtree the algorithm maintains a list of leaves.
Two subtrees T1 and T2 merge if the points are
structure-twins. Consider two subtrees represented
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by structure-twins. Consider the graph G induced by
the vertices in the two points and the vertices that do
not appear in the leaves of T1 and T2 nor in the lists
of vertices that are ‘covered’ (see below).

a. If T1 and T2 are twins, and if T1 has two colors
and T2 only one, then we say that T1 ‘covers’ T2.
For each subtree the algorithm maintains a list of
vertices that are covered by it. In this case the
set of leaves of T2 is added to the list of vertices
covered by T1. In this case no subtree is deleted
from the list.

b. If both points that represent T1 and T2 are single
vertices that are twins in G then delete one of the
two subtrees from the list. Make a union of the list
of leaves.

c. If two subtrees are structure-twins such that both
have pairs of vertices with different colors, then
delete one of them from the list. Make a union of
the list of leaves and of the list of vertices that are
covered.

Note that a 2-cotree is a subtree Ti such that every
vertex of G appears as a leaf of Ti, or is covered by Ti.
To prove the correctness one may observe that, in the
first case there exists a 2-cotree, with T1 and T2 as
subtrees, if and only if there exists a 2-cotree that
contains T1 as a subtree. In the second and third case,
one easily observes that there exists a 2-cotree that
contains T1 and T2, if and only if there exists a 2-
cotree that contains one of them as a subtree.
There are O(n2) basic building blocks, and since a
2-cotree has O(n) nodes, the algorithm builds a 2-
cotree in O(n3) steps or decides that no such tree
can exist because there are no more possible merg-
ers. The update of the list of vertices that are covered
by a subtree takesO(n) time in each step. This proves
the theorem. �

5 Concluding remark

Chang et al. show that distance-hereditary graphs
can be regarded as tree-decompositions where sub-
trees are equipped with a ‘twinset.’ The adjacencies
between subtrees are joins or unions of the twin-
sets (Chang et al. 1997). The twinsets are cographs.

As mentioned at the start of this report, cographs
have tree-decompositions with cutmatrices equiva-
lent to submatrices of

(
1 0
)

and distance-hereditary
graphs have tree-decompositions with cutmatrices
equivalent to submatrices of

(
1 0
0 0

)
.

Consider the class of graphs that have a tree-
decomposition such that every cutmatrix has a shape
equivalent with some submatrix of(

1 0 0
0 1 0
0 0 0

)
.

These graphs could be defined as graphs built from
subtrees that are equipped with a ‘2-twinset.’ These
2-twinsets are induced 2-cographs.

Finally, to characterize the graphs with rankwidth
at most 2, one needs to consider tree-decompositions
where cutmatrices have shapes equivalent to a sub-
matrix of (

1 1 0
1 0 0
0 0 0

)
.

This class contains the ‘probe distance-hereditary
graphs.’ A graph is probe-distance hereditary if it is
a distance-hereditary graph minus the edge-set of an
arbitrary induced subgraph (Chandler et al. 2009).
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