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Abstract

A k-separated matching in a graph is a set of edges
at distance at least k from one another (hence, for
instance, a 1-separated matching is just a match-
ing in the classical sense). We consider the prob-
lem of approximating the solution to the maximum
k-separated matching problem in random r-regular
graphs for each fixed integer k and each fixed r ≥ 3.
We prove both constructive lower bounds and com-
binatorial upper bounds on the size of the optimal
solutions.

1 Introduction

A regular graph of degree r (or simply an r-regular
graph) is a graph, all vertices of which have the same
number r of incident edges. An r-regular graph con-
tains rn/2 edges therefore it is a requirement that
rn must be even. The distance between two vertices
in a graph is the number of edges in a shortest path
between the two vertices. The distance between two
edges {u1, u2} and {v1, v2} is the minimum of the
distances between any two of vertices ui and vj . For
any positive integer k, a k-(separated) matching of a
graph, is a set of edges, M, with the additional con-
straint that the minimum distance between any two
edges in M is at least k (the qualifier ”separated”
will normally be omitted in the remainder of this pa-
per). Let νk(G) be the size of the largest k-matchings
in G. The maximum k-matching (MkM) problem
asks for a k-matching of size νk(G). For k = 1 this
is the classical maximum matching problem. Stock-
meyer and Vazirani (Stockmeyer & Vazirani 1982) in-
troduced the generalisation for k ≥ 2, motivating it
(for k = 2) as the “risk-free marriage problem” (find
the maximum number of married couples such that
each person is compatible only with the person (s)he
is married to). The M2M problem (also known as
the maximum induced matching problem) stimulated
much interest in other areas of theoretical computer
science and discrete mathematics as finding a maxi-
mum 2-matching of a graph is a sub-task of finding
a strong edge-colouring of a graph (a proper colour-
ing of the edges such that no edge is incident with
more than one edge of the same colour as each other
(Erdős 1988, Faudree, Gyárfas & Tuza 1989, Liu &
Zhou 1997, Steger & Yu 1993). The separation con-
straint imposed on the matching edges when k > 2
is a distinctive feature of the MkM problem and the
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main motivation for our algorithmic investigation of
such problems.
MkM is NP-hard (Stockmeyer & Vazirani 1982) for
each k ≥ 2 (polynomial time solvable (Edmonds 1965)
for k = 1). Improved complexity results are known for
M1M (Motwani 1994) on random instances. In par-
ticular it has been proven that simple greedy heuris-
tics a.a.s. (asymptotically almost surely) produce sets
of n

2 − o(n) independent edges (Aronson, Frieze &
Pittel 1998) in dense random graphs and random reg-
ular graphs. A number of results are known on the
approximability of an optimal 2-matching (Cameron
1989, Duckworth, Manlove & Zito 2000, Zito 1999a).
Zito (1999) presented some simple results on the ap-
proximability of an optimal 2-matching in dense ran-
dom graphs.
In this paper, we consider rather natural heuristics
for approximating the solution to the MkM problem,
for each positive integer k, and analyse their perfor-
mance on random regular graphs. We also prove com-
binatorial upper bounds on νk(G) using a direct ex-
pectation argument. The algorithm we present for
M2M was analysed deterministically by Duckworth,
Manlove & Zito (2000) where it was shown to return
a 2-matching of size at least r(n− 2)/2(2r− 1)(r− 1)
in a connected r-regular graph on n vertices, for each
r ≥ 3. Furthermore, it was shown that there exist in-
finitely many r-regular graphs on n-vertices for which
the algorithm only achieves this bound. For the case
r = 3, the cardinality of a largest 2-matching M of
a random 3-regular graph a.a.s. satisfies 0.26645n ≤
|M| ≤ 0.282069n (Duckworth, Wormald & Zito 2002)
(unfortunately the optimistic 0.270413n lower bound
claimed in the paper is not correct).

In the following section we present the model used
for generating regular graphs u.a.r. (uniformly at ran-
dom) and Section 3 gives the randomised algorithms.
The analyses of our algorithms uses differential equa-
tions and a Theorem of Wormald (2001) which we
restate in Section 4. The following Theorem encom-
passes the results of this paper. The proof concerning
the lower bounds appears in Section 5 and in the final
section of this paper we prove the upper bounds.

Theorem 1 For each fixed positive integer k and
fixed integer r ≥ 3 there exist two positive real num-
bers λk = λk(r) and µk = µk(r) such that λkn ≤
νk(G) ≤ µkn a.a.s. if G is an r-regular graph on n
vertices selected u.a.r.

The table below reports the values of λk and µk
for the first few values of r and k. A weaker version
of Theorem 1 was proven in Beis, Duckworth & Zito
(2002) .



M1M M2M M3M M4M
r λ1 µ1 λ2 µ2 λ3 µ3 λ4 µ4
3 0.5 0.5 0.2664 0.2821 0.1264 0.1561 0.0579 0.0946
4 0.5 0.5 0.2295 0.25 0.0798 0.1076 0.0236 0.0501
5 0.5 0.5 0.2046 0.227 0.0559 0.0793 0.0117 0.0294
6 0.5 0.5 0.1861 0.2092 0.0417 0.0611 0.0067 0.0186
7 0.5 0.5 0.1715 0.1947 0.0326 0.0488 0.0042 0.0126
8 0.5 0.5 0.1596 0.1826 0.0263 0.0399 0.0028 0.0089
9 0.5 0.5 0.1496 0.1724 0.0216 0.0335 0.0019 0.0065
10 0.5 0.5 0.141 0.1634 0.0182 0.0285 0.0014 0.0049

2 Uniform Generation of Random Regular
Graphs

Let G(n,r-reg) denote the uniform probability space
of r-regular graphs on n vertices. A well known con-
struction that gives uniformly distributed elements of
G(n,r-reg) is the configuration model (see, for exam-
ple, Chapter 9 in Janson, ÃLuczak & Rućınski (2000)).
Let n urns be given, each containing r balls. A set
F of rn/2 unordered pairs of balls is chosen u.a.r..
Let Ω be the set of all such pairings. Each pairing
F ∈ Ω corresponds to an r-regular (multi)graph with
vertex set V = {1, . . . , n} and edge set E formed by
those sets {i, j} for which there is at least one pair
with one ball belonging to urn i and the other ball
belonging to urn j. Let Ω∗ be the set of all pairings
not containing an edge joining balls from the same
urn or two edges joining the same two urns. A pair-
ing F ∈ Ω∗ corresponds to a simple r-regular graph G
with vertex set V = [n], that is a regular graph with-
out loops or multiple edges. Since each simple graph
corresponds to exactly (r!)n pairings , a regular graph
can be chosen u.a.r. by choosing a pairing F u.a.r.
and rejecting the result if it contains loops or multi-
ple edges. Notice that the first point in a random pair
may be selected using any rule whatsoever, as long as
the second point in that random pair is chosen u.a.r.
from all the remaining free (unpaired) points. This
preserves the uniform distribution of the final pair-
ing. Notation G ∈ G(n,r-reg) will signify that G is
selected according to the model described above.

The configuration model gives a basis for proving
properties of such graphs by performing computations
in Ω and conditioning on the event that the corre-
sponding graph be simple since any event holding
a.a.s. for a random r-regular multigraph also holds
a.a.s. for a random graph in G(n,r-reg).

3 The Algorithms

In this section we describe the simple greedy heuris-
tics used to construct a large k-matching. The algo-
rithms are quite general and may be applied to any
graph. The analyses presented in Section 5 give lower
bounds on the size of the resulting k-matching if the
input graph is a random regular graph.

Dense Matchings

We now describe the algorithm that will be used to
find a large k-matching in a random r-regular graph,
when1 k ≤ 2. Let Γ(u) = {v ∈ G : {u, v} ∈ E} be the
neighbourhood of vertex u.

Algorithm DegreeGreedy(G, k)
Input: a graph G = (V, E) on n vertices.
M← ∅;
while E 6= ∅

pick a vertex u of minimum positive degree in V (G);
pick a vertex v of minimum positive degree in Γ(u);
M←M∪ {{u, v}};
shrink(G, {u, v}, k);

For each iteration of the algorithm, procedure shrink
updates G by removing all edges incident with ver-
tices at distance at most k − 1 from {u, v}.

1we believe that the values reported in Section 1 justify the
attribute ”dense” in the title of this section.

Sparse Matchings

Any obvious adaptation of the algorithm Degree-
Greedy to the case k > 2 fails. The DegreeGreedy
process, which repeatedly picks sparsely connected
edges {u, v} and removes their neighbourhood at dis-
tance at most k − 1, has no permanent record of
the original neighbourhood structure of each vertex.
Hence, an edge chosen to be added to M may cause
the matching not to be k-separated. For k > 2 we
therefore resort to different algorithms. Such algo-
rithms are based on the idea of repeatedly removing
induced copies of a particular type of tree from the
given graph G. Let t0(r) be the trivial tree formed
by a single vertex. Let td(r) be the (rooted) tree ob-
tained by taking r copies of td−1(r) and joining their
roots to a new vertex. For any integer k ≥ 2, the
tree Tk(r) is a rooted tree whose root u has a child v
which is the root of a copy of tbk/2c(r − 1) and r − 1
other children v2, . . . , vr which are roots of copies of
tbk/2c−1(r − 1). In other words, a copy of Tk(r) con-
sists of two complete (r − 1)-ary trees of depth bk

2 c
whose roots are connected by an edge eT = {u, v}.
The matching algorithms used for k > 2 will repeat-
edly try to find induced copies of Tk(r) in G, add eT
to M and remove all edges in Tk(r) from G.

The description given so far is still too general as
there are many possible ways in which an algorithm
may search a graph for a copy of Tk(r), and they are
not all equivalent in terms of the cardinality of the
matching returned. It turns out that the best alter-
native is to start exploring a possible copy of Tk(r)
from one of its leaves and, furthermore to take as a
candidate leaf a vertex of minimum degree in G.

It is therefore convenient to talk of the vertices in
Tk(r) as separated into a number of levels. Level 0 is
formed by a single leaf, level 1 by a vertex of degree
r, level 2 by at least one vertex of degree r and r − 2
leaves. Generally level l (for 0 < l < 2bk

2 c + 1) is
composed of (r − 1)dl/2e−1 vertices of degree r and,
when l > 0 is even, of (r−2)(r−1)l/2−1 leaves. Level
2bk

2 c + 1 is composed of (r − 1)b
k
2 c leaves only. The

k-matching algorithm may be described as follows:

Algorithm Sparse(G, k)
Input: an r-regular graph G = (V, E) on n vertices.
M← ∅;
while possible(G)

(*) pick a vertex w of minimum positive degree in V (G);
uncover a copy of Tk(r) by marking candidate edges

one level at a time;
if (a copy of Tk(r) has been found)
M←M∪ eT ;

(**) shrink(G, k);

The implementation of steps (*) and (**) depends
on k. If k is even w will be picked, if possible, as the
same vertex from where the search for Tk(r) started
in the previous iteration of the main while loop, oth-
erwise a random selection among the vertices of min-
imum positive degree will suffice.

The implementation of shrink also depends on the
parity of k. If k is odd then distinct induced copies
of Tk(r) must also be vertex disjoint. Therefore all
edges incident to the leaves of Tk(r) must be removed
as well.

4 Analysing Algorithms using Differential
Equations

In order to approximate the expected size of the k-
matching returned by our algorithms, we use a result
of Wormald (2001), the setting of which requires the
following general definitions (Wormald 2001).



Denote by G0 the initial r-regular graph and by Gt
for t ≥ 0 the subgraph of the input graph still to be
dealt with at step t of the execution of the algorithm.
The execution of any of our algorithms consists of a
sequence of operations opt, t ≥ 0 with each operation
being one of Opi, i = 1, . . . , r, where Opi consists of
selecting a vertex v of degree i in Gt u.a.r., and then
applying some specified set of tasks, to obtain Gt+1.
A subsetM of E(G) is selected during the operations,
with M0 = ∅ initially, and M =Mt for the graph Gt.
For 0 ≤ i ≤ r, let Yi = Yi(t) denote the number of
vertices of degree i in Gt. Also let Yr+1 denote the
cardinality of the set Mt.

Assume that the expected change in Yi, in going
from Gt to Gt+1, conditional upon Gt and opt, is de-
termined approximately, depending only upon t, opt,
and Y1(t), . . . , Yr+1(t). In some sense, this is a mea-
sure of the rate of change of Yi. We express the as-
sumption by asserting that for some fixed functions
fi,q (x,y) = fi,q (x, y1, . . . , yr+1),

E
(
Yi(t + 1)− Yi(t) | Gt ∧ {opt = Opq}

)
=

fi,q( t
n , Y1

n , . . . , Yr+1
n ) + o(1)

(1)

for i = 1, . . . , r + 1, q = 1, . . . , r such that Yq(t) > 0.
The convergence in o(1) is uniform over all appropri-
ate choices of t and Gt as functions of n with certain
restrictions on Gt which will be specified. Uniformity
over q and i then follows, since there are finitely many
possibilities for these two variables.

Since the initial graph is an r-regular graph on n
vertices, the first operation must apply op0 = Opr.
This typically produces some vertices of degree less
than r, so the next operation is determined by their
minimum degree. Both Opr and Opr−1 typically pro-
duce vertices of degree r−1 but none of smaller (pos-
itive) degrees when Yr−1 is small (say o(n)), so the
second operation normally involves Opr−1, as does
the next, and this remains so until a vertex of smaller
degree, say r − 2, is produced. This causes a tem-
porary hiccup, with an Opr−2, followed by more op-
erations of Opr−1. When vertices of degree r − 1
become plentiful, vertices of smaller degree are more
commonly created, and the hiccups occur more often.
Suppose that at some time t in the process, an Opr−1

creates, in expectation, α vertices of degree r−2, and
an Opr−2 decreases the number of vertices of degree
r − 2, in expectation, by τ . Then we expect each
Opr−1 to be followed by (on average) α/τ operations
of Opr−2. At some stage τ may fall below 0, at which
point the vertices of degree r − 2 begin to build up
and do not decrease under repeated applications of
Opr−2. Then vertices of degree r − 2 take over the
role of vertices of degree r− 1, and we say informally
that the first phase of the process has finished and the
second has begun. The process may continue through
further phases; typically, the jth phase begins with an
increasing abundance of vertices of degree r−j. Note
that by the assumptions above, the asymptotic values
of α and τ in the first phase are the cases j = 1 of
the general definitions

αj(x,y) = fr−j−1,r−j (x,y) ,
τj(x,y) = −fr−j−1,r−j−1 (x,y) , (2)

where

x =
t

n
, y(x) =

Y(t)
n

. (3)

Since each Opr−j is followed (on average) by αj/τj

operations of Opr−j−1, we expect the proportion of
operations involving an operation of the former type

to be 1/(1 + αj/τj) = τj/(τj + αj), and of the latter
type to be αj/(τj + αj). This suggests that, if yi as
prescribed in (3) were a differentiable function of a
real variable, its derivative would satisfy

dyi

dx
= F (x,y, i, j) (4)

where F (x,y, i, j) is equal to

τj

τj + αj
fi,r−j (x,y) +

αj

τj + αj
fi,r−j−1 (x,y) (5)

if j ≤ r − 2, and it is just

fi,1 (x,y) (6)

for j = r − 1. Our assumptions will ensure that the
phases proceed in an orderly fashion, and that the last
possible phase is j = r − 1, in which all operations
are Op1.

We will work with the parameters of fi,` in the
domain

Dε = {(x,y) : 0 ≤ x ≤ r,
0 ≤ yi ≤ r

for 1 ≤ i ≤ r + 1, yr ≥ ε}
(7)

for some pre-chosen value of ε > 0. The behaviour of
the process will be described in terms of the function
ỹ = ỹ(x) = (ỹ1(x), . . . , ỹr+1(x)) defined as follows,
with reference to an initial value x = x0 = t0/n of
interest:

ỹi(x0) = Yi(t0)/n, i = 1, . . . , r + 1, and
inductively for j ≥ 1, ỹ is the solution of (4)
with initial conditions y(xj−1) = ỹ(xj−1),
extending to all x ∈ [xj−1, xj ], where xj is
defined as the infimum of those x > xj−1
for which at least one of the following holds:
τj ≤ 0 and j < r − 1; τj + αj ≤ ε and
j < r − 1; ỹr−j ≤ 0; or the solution is outside
Dε or ceases to exist.

(8)

The interval [xj−1, xj ] represents phase j, and the
termination condition ỹr−j = 0 is necessary to en-
sure that the process does not revert to the con-
ditions of phase j − 1. Typically it will eventuate
that ỹr−j(xj−1) = 0 but ỹr−j(x) > 0 for x greater
than, but close to, xj−1, which permits phase j to
endure for a non-empty interval [xj−1, xj ], provided
τj stays positive on such an interval. We require
that this inductive definition of ỹ continues for phases
j = 1, 2, . . . , m, where

m denotes the smallest j for which either
j = r − 1, or any of the termination condi-
tions for phase j in (8) hold at xj apart from
xj = inf{x ≥ xj−1 : τj ≤ 0}.

(9)

We will impose conditions to ensure that the in-
tervals in the definition of ỹ representing phases
1, 2, . . . , m are nonempty. These conditions are firstly

τj > 0 and
τj + αj > ε at (xj−1, ỹ(xj−1))

for 1 ≤ j ≤ min{r − 2,m}.
(10)

Also



fr−1,r−1 > 0 at (x0, ỹ(x0)),
f ′r−j,r−jτj + fr−j,r−j−1f

′
r−j−1,r−j > 0

at (xj−1, ỹ(xj−1))+
for 1 < j ≤ min{r − 2, m},

f ′r−j,r−j > 0 at (xj−1, ỹ(xj−1))−
for 1 < j ≤ m,

f ′1,1 > 0 at (xr−2, ỹ(xr−2))+
if m = r − 1,

(11)

with f ′ denoting df(x,ỹ(x))
dx and (x, ỹ(x))+ and

(x, ỹ(x))− referring to the right-hand and left-hand
limits as functions of x.

We now restate (Wormald 2001, Theorem 1) which
we will use in the following section to analyse the
performance of our algorithms.

Theorem 2 ((Wormald 2001)) Let r ≥ 3, for 1 ≤
i ≤ r let Yi(t) denote the number of vertices of degree i
in Gt, and let Yr+1(t) denote |Mt|. Assume that for
some fixed ε > 0 the operations Opq satisfy (1) for
some fixed functions fi,q(x, y1(x), . . . , yr+1(x)) and
for i = 1, . . . , r+1, q = 1, . . . , r, with the convergence
in o(1) uniform over all t and Gt for which Yq(t) > 0
and Yr(t) > εn. Assume furthermore that

(i) there is an upper bound, depending only upon r,
on the number of edges deleted, and on the num-
ber of elements added to M (i.e. |Mt+1|−|Mt|),
during any one operation;

(ii) the functions fi,q are rational functions of x,
y1, . . . , yr+1 with no pole in Dε defined in (7);

(iii) there exist positive constants C1, C2 and C3
such that for 1 ≤ i < r, everywhere on Dε, fi,q ≥
C1yi+1−C2yi when q 6= i, and fi,q ≤ C3yi+1 for
all q.

Define ỹ as in (8), set x0 = 0, define m as in (9), and
assume that (10) and (11) both hold. Then there is
a randomised algorithm for which a.a.s. there exists
t such that |Mt| = nỹr+1(xm) + o(n) and Yi(t) =
nỹi(xm) + o(n) for 1 ≤ i ≤ r. Also ỹi(x) ≡ 0 for
xj−1 ≤ x ≤ xj, 1 ≤ i ≤ r − j − 1 (1 ≤ j ≤ m).

5 Algorithm Analyses

5.1 Analysis for k ≤ 2

The results proven in this section are identical to
those reported for k ≤ 2 in (Beis, Duckworth &
Zito 2002). However the analysis given here is simpler
and it results in systems of differential equations that
can be numerically solved much more quickly than
those described in (Beis, Duckworth & Zito 2002).

Consider the algorithm DegreeGreedy for finding
a large k-matching (k ≤ 2) as described in Section 3.
Here, in the specification of Opq operation (which se-
lects a random vertex u of degree q) the set of ran-
domised tasks consists of choosing a vertex v and re-
moving all edges incident with vertices at distance at
most k − 1 from {u, v}.

We may verify the hypotheses of Theorem 2. First
we will show that (1) holds when Yr(t) > εn (for any
ε > 0).

In the remainder of this paper if P(. . .) is a logical
expression (typically obtained by applying boolean
connectives to simple relational operators on integers)
then [P(. . .)] is a function that returns one (zero)
if the logical expression evaluates to True (resp.
False).

Let X =
∑r

i=1 iYi. The probability of creating a
vertex of degree i− 1 when removing an edge chosen

at random from those incident to some given vertex
in the graph is asymptotically:

Pi =
iYi

X

Denote by Sb
a the sum of all Pi’s for a ≤ i ≤ b. The

expected change in Yi due to removing an edge from
a vertex of unknown degree can be approximated by
−Qi(0) where:

Qi(0) = Pi − Pi+1 with Pr+1 = 0.

Using the same reasoning the expected change in Yi
due to the removal of a random edge incident to a
given vertex in the graph and the removal of any other
edge incident to the other end-point of the initial edge
is asymptotically −Qi(1) where:

Qi(1) =
r∑

z=1

Pz([i = z] + (z − 1)Qi(0)).

We calculate the expected change in Yi when per-
forming an Opq operation (i.e. selecting a vertex u of
degree q) by conditioning on the minimum degree of
a vertex in Γ(u) and then on the number of vertices
of minimum degree in Γ(u).

The probability that the minimum degree of a ver-
tex in Γ(u) is x, is χx + o(1) where

χx = (Sr
x)q − (Sr

x+1)
q

The expected change in Yi, conditioned to the min-
imum degree in Γ(u) being x, due to the removal of
all edges incident with the chosen minimum degree
vertex v ∈ Γ(u) and, for k = 2, all remaining edges
incident to vertices in Γ(v), is φi,x + o(1) where

φi,x = −[i = x]− (x− 1)Qi(k − 1)

The probability that |Vx∩Γ(u)| = d (where 1 ≤ d ≤ q)
given that the minimum degree of the vertices in Γ(u)
is x, is βx,d + o(1) where

βx,d =

(
q
d

)
(Px)d(Sr

x+1)
q−d

χx

The expected change in Yi due to the removal of all
edges incident with the d−1 vertices in Vx∩Γ(u)\{v},
conditioned on the minimum degree in Γ(u) being x,
is ψi,x,d + o(1) where

ψi,x,d = (d− 1)(−[i = x]+
+[k = 1 ∧ i = x− 1]− [k = 2](x− 1)Qi(0))

The expected size of Vm ∩ Γ(u) (where x + 1 ≤ m ≤
r) given that the minimum degree in Γ(u) is x and
|Vx ∩ Γ(u)| = d, is εx,d,m + o(1) where

εx,d,m = (q − d)
Pm

Sr
x+1

with the convention that the expected value is zero if
x = r.
The expected change in Yi due to the removal of any
edge incident with a vertex of degree m in Γ(u), is
γi,x,d,m + o(1) where

γi,x,d,m = −[i = m]
+[k = 1 ∧ i = m− 1]− [k = 2](m− 1)Qi(0)



Finally, the asymptotic expression for fi,q can be writ-
ten as

−[i = q] +
∑r

x=q χx

(
φi,x +

∑q
d=1 βx,d

(
ψi,x,d +

∑r
m=x+1 εx,d,mγi,x,d,m

))
1 ≤ i ≤ r

(12)

and fr+1,q = 1 since an edge is added to M following
each Opq.

Hypothesis (i) of the theorem is immediate since
in any operation only the edges involving the selected
vertex and its neighbours are deleted, and a bounded
number of edges are added to M. The functions fi,q

satisfy (ii) because from (12) their (possible) singu-
larities satisfy s = 0, which lies outside Dε since in
Dε, s ≥ yr ≥ ε. Hypothesis (iii) follows from (12)
again using s ≥ yr ≥ ε and the boundedness of the
functions yi (which follows from the boundedness of
Dε). Thus, defining ỹ as in (8) with t0 = 0, Yr(0) = n
and Yi(0) = 0 for i 6= r, we may solve (4) numerically
to find m, verifying (10) and (11) at the appropriate
points of the computation. It turns out that these
hold for each r which was treated numerically and
that in each case m = r − 2, for sufficiently small
ε > 0. For such ε, the value of ỹr+1(xm) may be
computed numerically, and then by Theorem 2, this
is the asymptotic value of the size of M at the end of
some randomised algorithm. So the conclusion is that
a random r-regular graph a.a.s. has a k-matching of
size at least nỹr+1(xm) + o(n).

Note that (by Theorem 2) ỹi(x) ≡ 0 in phase j for
1 ≤ i ≤ r− j−1, and by the nature of the differential
equation, ỹi(x) will be strictly positive for i > r −
j. So by (8) and (9), the end of the process (for ε
arbitrarily small) occurs in phase r − 2 when either
τj + αj ≤ ε or ỹ2 becomes 0. Numerically, we find
it is the latter. This is numerically more stable as a
check for the end of the process than checking when
ỹr reaches 0, since the derivative of the latter is very
small.

5.2 Analysis for k > 2

The machinery used to analyse the algorithm for
k ≤ 2 is equally well suited for this case. To complete
the analysis we only need to define the randomised
tasks specified by an Opq operation and the asymp-
totic expressions for fi,q. Details depend again on the
parity of k and are given, separately, in the forthcom-
ing sections.

5.2.1 Details for even k.

An Opq operation consists of the selection of a ran-
dom vertex w of degree q followed by an attempt of
finding q copies of Tk(r) around w.

The asymptotic expression for fi,r is

−[i = q]− q

(
Qi(0) +

∑k−1
l=0

∏l
m=0 Pm

(
(r − 1)bl/2c[i = r − 1] + (r − 1)bl/2c+1Qi(0)

))

for 1 ≤ i ≤ r
(13)

where Pm represents the probability of succeeding at
level m. Success at level m occurs if the right combi-
nation of vertex degrees is found at level m+1. Hence
Pm is asymptotically equal to (Pr)(r−1)bm/2c

when m
is even, and it is 1− (1−Pm−1)r−1 otherwise. If suc-
cess does occur at level l (i.e. the right event happens

at level l + 1) then the previously accounted for con-
tribution to fr−1,q given by the removal of a single
edge incident to each of the (r − 1)bl/2c vertices of
degree r at level l + 1 must be detracted, and then
all edges connecting vertices at level l + 1 with those
at level l + 2 can be removed. This is asymptotically
equal to −(r− 1)bl/2c[i = r− 1]− (r− 1)bl/2c+1Qi(0).

Similarly the asymptotic expression for fr+1,q is
q
∏k−1

m=0 Pm as q attempts are made to add an edge
to the matching during an Opq operation.

5.2.2 Details for odd k.

Here, an Opq operation consists of the selection of a
random vertex w of degree q followed by an attempt
of revealing a Tk(r) structure around w. The analysis
for this case is complicated by the requirement that
distinct copies of Tk(r) must be vertex disjoint. The
expected change in Yi can be computed, as in the case
k ≤ 2, by conditioning on the degree distribution in
Γ(w) but major differences arise. First of all we must
condition on the maximum degree in Γ(w) and some
interesting updates occur only if this maximum de-
gree is r. Secondly this conditioning needs to be per-
formed at successive levels in the retrieval of a copy
of Tk(r) (otherwise the current trial has no hope of
finding a copy of Tk(r)). Finally the major complica-
tion in the asymptotic expression for fi,q comes from
the need to be able to delete all edges incident with
the leaves of Tk(r) and these leaves (in the graph) can
have arbitrary degree.

Since when performing an Opq operation all ver-
tices have degree at least q, the probability that the
maximum degree among the vertices whose degree is
affected by the removal of (r − 1)c edges be x, with
q ≤ x ≤ r is χc

x + o(1), where

χc
x = (Sx

q )(r−1)c − (Sx−1
q )(r−1)c

.

The probability of having exactly d vertices of such
maximum degree in the experiment outlined above is
βc

x,d + o(1) where βc
x,d is equal to

(
(r−1)c

d

)
(Px)d(Sx−1

q )(r−1)c−d

χc
x

but βc
q,(r−1)c = 1 and βc

x,d = 0 if x = q and d 6= (r−1)c

or χc
x = 0.

The expected number of vertices of degree m, with
q ≤ m < x, given that the maximum degree of the
vertices affected by the (r − 1)c edge removals was x
and that there are d vertices of such degree, is εc

x,d,m+
o(1) where

εc
x,d,m =

{
0 if Sx−1

q = 0
((r − 1)c − d) Pm

Sx−1
q

otherwise

The expected change in Yi due to the removal of all
remaining edges out of a vertex of (initially) degree
m, given that it has d siblings of maximum degree x
is chgi,x,d,m + o(1) where

chgi,x,m = −[i = m]

+[x 6= r ∧ i = m− 1]− [x = r](m− 1)Qi(0)

Finally, the asymptotic expression for fi,q can be writ-
ten as

fi,q =
= −[i = q]− qQi(0) +



(1− (1− Pr)q)
(
− [i = r − 1] +

r∑
x=q

χ1
x

(
(−[i = x] + [x 6= r ∧ i = x− 1] + [x = r]Ξb

k
2 c

1 ) +

d−1∑

d=1

β1
x,d

(
(r − 1)chgi,x,x +

x−1∑
m=q

ε1
x,d,mchgi,x,m

)))

for 1 ≤ i ≤ r

and

fr+1,q = (1− (1− Pr)q)P0

b k
2 c−1∏

l=1

P (r−1)l

r Pl

Ξb
k
2 c−1

1 models the behaviour of the algorithm
from level two onwards. For example for k = 3
it is Ξ0

1 = −(r − 1)Qi(1). Assume, generally, that
the algorithm has reached an even level where there
are (r − 1)a−1 vertices of degree r, we remove the
r − 1 edges incident with each one of them and
we change the degree of (r − 1)a vertices which all
must have degree r initially. This happens with
probability P

(r−1)a

r . Then we expose the remaining
r − 1 edges from all of them and we have a suc-
cess if there is at least 1, out of the possible r − 1,
(r− 1)a-tuple being composed of vertices with degree
r. The success probability Pa can be approximated
as 1− (1− P

(r−1)a

r )r−1.
Since we condition on the maximum degree (see χc

x),
when x 6= r we certainly have a failure. If x = r the
success or failure depends on the number of vertices
of degree r and in some cases on the arrangement
of such vertices. Let d be the number of vertices of
degree r out of the (r − 1)a+1 edges that have been
exposed. Clearly, when d < (r−1)a we have a failure
with probability 1. On the other hand, when d ≥
(r− 1)a + (r− 2)((r− 1)a − 1) the success is certain.
In any other case we may have either a failure or a
success.
In case of a failure the behaviour of the algorithm can
be described by

Aa = d(−[i = r] + [i = r − 1]) +
r−1∑
m=q

εa+1
r,d,m(−[i = m] + [i = m− 1]).

Let (r − 1)a ≤ d < (r − 1)a + (r − 2)((r − 1)a − 1),
for d fixed there are Λ =

(
(r−1)a+1

d

)
equiprobable

cases for the arrangements of the vertices of degree
r. We can choose (r−1)a vertices of degree r in r−1
ways in order to have a success and the remaining
d − (r − 1)avertices of degree r may be distributed
in any of the

(
(r−2)(r−1)a

d−(r−1)a

)
possible ways. Hence there

are Θ = (r−1)
(
(r−2)(r−1)a

d−(r−1)a

)
successful cases and Λ−Θ

unsuccessful ones. Of course in case of a success the
algorithm may proceed at the next even level where
either it starts the above procedure all over again or
it has reached the final level. The former case (where
it starts again) can be described by the following re-
cursion.

Ξb
a = −(r − 1)aQi(0) + P

(r−1)a

r

(
− [i = r − 1](r − 1)a +

r−1∑
x=q

χa+1
x

( (r−1)a+1∑
d=1

βa+1
x,d

(
d(−[i = x] + [i = x− 1]) +

x−1∑
m=q

εa+1
x,d,m

(−[i = m] + [i = m− 1])
))

+

χa+1
r

( (r−1)a+1∑
d=1

βa+1
r,d

([d < (r − 1)a]Aa +

[d ≥ (r − 1)a + (r − 2)((r − 1)a − 1)](Ξb
a+1 + ξa

i,d) +

[d ≥ (r − 1)a ∧ d < (r − 1)a + (r − 2)((r − 1)a − 1)]Ba)

))

with

ξa
i,d = −(r − 1)a[i = r] + (d− (r − 1)a)chgi,r,r +

r−1∑
m=q

εa+1
r,d,mchgi,r,m

The latter case (where the algorithm has reached the
final level) can be described by the following base case

Ξb
b = −(r − 1)bQi(1)

The behaviour of the algorithm in the cases where we
may have either success or failure can be described
by

Ba =
Θ
Λ

(Ξb
a+1 + ξa

i,d) + (1− Θ
Λ

)Aa

6 Upper Bounds

Let G ∈ G(n,r-reg) be a graph generated using the
configuration model given in Section 2. Let Qk be the
event “G contains at least one k-matching of size y”.
We will show that there exists a positive real number
µk such that when µ > µk and y = µn then Pr[Qk] =
o(1), thus proving the upper bound in Theorem 1. Let
Q′

k be the corresponding event defined in F ∈ Ω (that
is, on pairings that correspond to n-vertex r-regular
multigraphs). Since any event holding a.a.s. for a
random pairing also holds a.a.s. for a random graph
in G(n,r-reg) we can estimate Pr[Qk] by performing
all our calculations on random pairings.

Let Xk = Xk(F, r, n, y) be the number of k-
matchings in a random pairing. We calculate an
asymptotic expression for E(Xk) and show that when
y = µkn, then E(Xk) = o(1), thus proving the up-
per bound in Theorem 1 through Markov’s inequal-
ity. Let XM be a random indicator which equals one
if M is a k-matching of size y in a random pairing
and zero otherwise. Then E(Xk) =

∑
M E(XM) =(

n
2y

)
E(XM). Notice that E(XM) is the probability

that a set of 2y vertices forms a k-matching which is
equal to2 Rk/(rn− 1)!!. Thus

E(Xk) =
(

n

2y

)
Rk

(rn− 1)!!

with Rk being the number of configurations in which
M is a k-matching. Such configurations have a very
special structure. It is well known (Janson, ÃLuczak &
Rućınski 2000) that a.a.s. random regular graphs con-
tain very few short cycles. This implies that Rk can
be computed by counting the number of ways in which
y copies of (pairings corresponding to) Tk(r) can be
“embedded” in a pairing. There are (2y − 1)!!r2y

ways of forming the matching edges. The remain-
ing 2y(r− 1) points in M (the “matching urns”) can
be paired in r2y(r−1)(n − 2y)2y(r−1) ways. We select

2The semifactorial is defined to be n!! = n(n − 2) · · · 3 · 1 =
(2m)!/m!2m when n = 2m− 1 is odd



2y(r−1)2 more urns to pair the points at distance one
from the matching edges (in the same way as above)
and we repeat this until we have paired the points at
distance bk/2c − 1 (the final step involving the selec-
tion of the leaves of Tk(r)). There is a difference in the
number of pairings, between k-odd and k-even, when
we select the leaves of Tk(r) (corresponding to urns
at distance bk/2c from the matching edges) since only
when k is odd the leaves must be distinct. Finally, if
k is odd

Rk =

r2y(2y − 1)!!
b k

2 c∏

i=1

(
r2y(r−1)i(

n− 2y

i−1∑

j=0

(r − 1)j
)
2y(r−1)i

)
(Υ− 1)!!

whereas if k is even

Rk = Rk−1

(
rn− r2y

b k
2 c−1∑

j=0

(r − 1)j
)
2y(r−1)b

k
2 c

with

Υ = nr −
(
2y + 4y

bk/2c∑

i=1

(r − 1)i
)

Setting y = µn and using the standard Stirling’s ap-
proximation for the factorials the expressions for the
expectations E(Xk) have the form f(r, µ)n. Therefore
for each r there is µk(r) > 0 such that f(r, µ) < 1 for
µ > µk(r).

Maximal vs. non-maximal k-matchings.

It should be remarked that slightly smaller values of
µk(r) than those reported in the table in Section 1
can be numerically computed counting maximal k-
matchings (a stronger 0.28206915 value for µ2(3) is re-
ported in (Duckworth, Wormald & Zito 2002)). How-
ever we preferred to keep the simpler exposition pre-
sented above as the magnitude of the improvements
(less than 10−5 for each r ≥ 3 and k = 2 and even
smaller for larger k) makes the more complicated
analysis rather un-appealing.
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