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Abstract

EScript is an extension to Python for solving partial
differential equations on parallel computers. It is par-
allelised for both MPI and shared memory, multi-core
systems using OpenMP. In this paper, we discuss lazy
evaluation as a strategy to reduce the cost of evaluat-
ing the coefficients of PDEs prior to solving. We show
that our implementation provides significant memory
and time savings for a problem involving complex ex-
pressions.

1 Introduction

EScript is a Python extension for solving general
linear, steady state, second order partial differential
equations (PDEs) (Gross et al. 2007). It supports
parallel execution for OpenMP, MPI or both (source
code is available on launchpad (Ipe 2009)). The goal
of escript is to provide users, who are primarily mod-
ellers, with a means to construct and run simulations
on parallel computers without needing expertise in
parallel programming or lower level languages such
as C++. With this in mind, the work described in
this paper had three competing objectives:

1. reduced run time.
2. reduced peak memory usage.

3. minimal disruption to the existing interface and
minimal work on the part of users to apply new
features.

EScript and the simulations built upon it, contain
a significant amount of Python code. Any changes
we make, must be able to work in an interactive
(and interpreted) Python session if required. This in-
terpreted aspect, while making experimentation and
scripting easier for non-programmers, does impose
some constraints on the methods used to improve per-
formance. In particular, this limits techniques which
require preprocessing or precompilation of scripts.

To describe a PDE in escript, functions must be
constructed (or loaded) to form its coefficients. The
coefficients may depend on a PDE solution from a
previous iteration or timestep. They may also depend
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on the solutions to a different PDE in the case of a
coupled problem. In this paper, we discuss the repre-
sentation and evaluation of these coefficient functions.

By default, functions are stored explicitly. That is,
the representation stores a number of floating point
values proportional to the complexity of the domain.
The more operations required to construct a func-
tion and the more complex the objects involved, the
greater the amount of memory required to store in-
termediate functions. As a very simple example, con-
sider the expression

y=ax+0b.
In order to evaluate y, an intermediate result
T =ax

is required. If a and x are simple values then storing
7 won'’t present much of a problem. If they are more
complex objects though, storing their product could
require non-trivial amounts of memory. Such inter-
mediate functions are typically not required once the
final function is computed. For large domains and in-
termediate functions involving tensors, this memory
cost can be significant. This can limit the problem
sizes which can be handled by the system. We inves-
tigate the use of lazy evaluation to reduce the burden
on the system. Lazy evaluation means that “argu-
ments to a function are evaluated only when needed
for computation” (Pandey 2008).

After a brief comment on OpenMP, we will dis-
cuss data representation followed by threading. Sec-
tion 5 contrasts evaluation in functional environments
to escript. Section 6 describes two implementations
of the resolve operation. Performance experiments
follow in Section 7.

2 OpenMP

The OpenMP (omp 2009a) model of shared-memory
parallelism uses a team of threads. Code executes
on a single master thread until it reaches a parallel
region. All threads in the team execute the section.
At the end of the section, execution continues on the
master thread (omp 2009b). In the case of escript,
OpenMP is used primarily to parallelise for loops.

3 Representation

EScript can be compiled to use MPI, OpenMP or
both (hybrid mode). In the case of MPI, function
information is distributed among the MPI processes
at creation time and processed independently. There
may be an aggregation step at the end for opera-
tions such as integration. Since MPI does not present
threading issues, we will ignore it for the purposes of
this discussion.
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Functions are represented in two parts (input and
output). The input to the function is determined by
a Domain object (a mesh) and a point selection strat-
egy (called a FunctionSpace in escript terminology).
For example, the values of the function could be de-
rived from the nodes bounding an element or from
the points in the interior. Storing this information is
the responsibility of the Domain object. Note that
escript itself does not impose any meaning on partic-
ular FunctionSpace IDs; these are determined by the
Domain in use.

Interpolation between different FunctionSpaces
(where possible), is performed by the Domain object.
Regardless of the FunctionSpace in use, the collection
of points representing an element is termed a sample.

It should be noted that while the ordering of sam-
ples and points must be consistent, escript does not
assume a global ordering of points.!

Data objects represent the values (outputs) of
functions and are linked to a particular Domain
and FunctionSpace. Values can be scalars (rank?0)
through to 4-Tensors (rank 4) of various shapes.
Mathematical operations including basic arithmetic,
matrix operations and tensor products are defined on
Data objects. The majority of computation in escript
itself acts on Data objects and evaluating expressions
involving Data is the focus of this paper.

The final component is the solver. In the escript
distribution, the PDE is converted to a sparse matrix
representation and passed to the Paso sparse matrix
solver. This paper will not directly discuss the per-
formance of Paso either.

Operations on Data objects could be thought of as
batch operations in that the same operation is per-
formed on each value of the collection. Since the val-
ues in the Data object (function output) must corre-
spond to points in the Domain, it might be tempting
to view Data as an array. But this analogy breaks
down when the Domain is distributed across multiple
processes.

Internally, Data objects act as proxies for instances
of the DataAbstract class which actually store the
values. This allows flexibility in switching represen-
tations without disturbing the rest of the system. For
the rest of the paper, we will use “node” to refer to
instances of DataAbstract rather than to parts of a
mesh.

For the purposes of this paper, Data objects ref-
erence one of two types of nodes: Ready and Lazy.
Ready (or non-lazy) nodes store their values explic-
itly. Lazy nodes represent maths operations and link
to other lazy nodes in a directed acyclic graph (DAG)
to represent expressions. Special identity nodes are
used to wrap ready nodes so they can be added to
the graph. The acyclic property of the graph is guar-
anteed because a lazy node can only be formed using
existing nodes. For example, if three Data variables
P, @, R which store their values in nodes V1, V2, V3
(Figure 1(a)), then the expressions:

S=P+Q

T =S/R

result in the DAG shown in Figure 1(b).

Once in the DAG, a node is never modified except
when a sub-expression is replaced by a ready node.
The root of an expression is the node directly refer-
enced by the Data object (which might not be a root
in the underlying DAG). The roots in Figure 1 are
the nodes pointed to by dotted lines.

1This is particularly true when MPI is involved and the same
samplelD may represent different entities on different machines.

2We follow the terminology from Python where the rank of an
object is the number of indices required to identify a component.
The shape of an object is the range of values for each index.
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Figure 1: A DAG representing an expression. Cir-
cles represent Data objects, squares represent Ready
nodes and diamonds represent lazy nodes. Empty di-
amonds represent identity operations. Solid lines are
DAG edges, dotted lines show ownership of nodes.

The lifetimes of interrelated Domain, Function-
Space and DataAbstract nodes are managed using
shared pointers from Boost (boo 2009). So for exam-
ple, Data have a shared pointer to their DataAbstract
node while FunctionSpaces hold a shared pointer to
their Domain. (Boost also allows us to make these
wrappers transparent to Python.)

Sharing DataAbstract nodes between Data objects
makes for efficient copy and return operations but it
introduces complications.?> When nodes are shared or
incorporated into a lazy expression, they must keep
their values from that point in time. Users should
not need to be aware that a particular Data object
uses shared values, so escript implements transparent
copy on write (COW)(Glass & Ables 2003). Any Data
method which modifies values, checks to see if it is the
sole owner of the node. If not, it makes a copy of the
node, transfers ownership to a it and modifies the
copy instead.

4 Threading

EScript employs the following threading model. The
Python layer (both user scripts and escript modules)
is assumed to be single threaded. Some objects and
methods are implemented in C++/C and these are
parallelised using OpenMP and MPI.

No multithreading apart from OpenMP is used.
Hence, there are no threading issues to consider apart
from those within individual parallel regions. Because
some of the memory allocation is based on the num-
ber of threads in use, we assume that the number of
threads available to OpenMP does not change. For
this reason we also do not use nested OpenMP paral-
lel regions.

In theory, the sole owner requirement for COW
could be checked using the .unique() method on
Boost pointers but threading issues prevented this.
Specifically, it proved difficult to differentiate between
a node being passed from one owner to another and
a node with two owners. Instead, we maintain a list
of which Data objects own which nodes. To simplify

3“Copies” here refers to objects created at the C++ level (pos-
sibly indirectly by calling Python methods), not the Python assign-
ment statement (which leads to two references to the same object).
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matters involving large DAGs which encode a num-
ber of expressions, once a node becomes part of a lazy
expression it is assumed to always be shared.

5 Lazy Evaluation

Lazy evaluation is “popular in functional program-
ming languages (those with no effects) and rarely
found elsewhere” (Friedman & Wand 2008). Hudak’s
1989 survey (Hudak 1989) lists lazy evaluation as one
of the distinguishing features of modern functional
languages. His definition includes the idea that a par-
ticular expression be evaluated at most once.

The Haskell functional language (Thompson 1999)
uses this form of laziness (outermost function appli-
cation evaluated first and expressions only evaluated
once) for its expression processing. For functions de-
fined by conditionals, Haskell only performs enough
evaluation to determine which branch of the condition
to take. That is, it performs short circuit evaluation.

In the case of escript, there is a single condi-
tional type operation (a masked copy) and it does
not, currently permit short circuit or lazy evaluation
(although it could be simply modified to do so).

The main benefits of lazy evaluation for
functional languages are (Thompson 1999)(Hudak
1989)(Pandey 2008):

1. Expressions need not be evaluated at all if they
are not required.

2. Since lists do not always need to be represented
explicitly, programs can be written to deal with
conceptually infinite lists.

Our requirements differ from the functional set-
ting. We do not need to process infinite objects. We
do allow large objects to be examined a chunk at a
time though, and our operations make use of this ca-
pability. However, user scripts must request this op-
eration explicitly for their own use.

Our expressions only include values and operations
from a predefined set. As such, they cannot contain
arbitrary user defined functions. Our implementation
links directly to values, so there are no names (func-
tions or variables) which require forming a closure.
We also differ from the functional version in that ex-
pressions may (depending on implementation strat-
egy) be evaluated more than once. This is because
caching the complete result is something we wish to
avoid.

6 Resolution

Values of a function represented as lazy data can be
resolved in two ways. Either the function can be
queried one sample at a time or it can be completely
resolved, that is all samples are evaluated and the re-
sult stored as a new function. Because of the extra
memory required, we wish to avoid complete resolu-
tion as much as possible. Note that the process for
assembling a sparse matrix to solve, only requires one
sample at a time.

In the current build, Lazy data will be completely
resolved when one of the following occurs:

e .resolve() is called on the expression.

e An attempt is made to set the value of the func-
tion at a point.*

e A masked copy is attempted.

e An operation is performed which depends on all
points for its value, such as integrate().

4This operation is permitted in escript but not encouraged.

e The expression becomes too large.

Apart from the first point, these may change in the
future. The size constraint refers to either the total
number of descendants or the height of the expression
root (or both).

Some care must be taken when acting on lazy or
shared data because escript may need to resolve or
duplicate the data. In both cases memory may be al-
located, deallocated and ownership may change. For
this reason, we require that issues of resolution and
node creation be settled before entering parallel sec-
tions. This restriction is only of concern to implemen-
tors.

We have implemented two strategies for evaluat-
ing samples in Lazy expressions. In both cases, the
expression is evaluated using a recursive post-order
traversal.

6.1 Temporary Buffer (Method 1)

A Dbuffer is created and passed into the evaluation
to function somewhat like a stack. To evaluate each
node, space is reserved for the result and the remain-
ing space is available to evaluate the node’s children.
Evaluation returns a pointer to the buffer (and an off-
set within the buffer) containing the result. This is
to avoid copying data from non-lazy nodes under the
Identity operation. The size required for the buffer is
computed using a modified Sethi-Ullman register la-
belling algorithm (Appel & Palsberg 2002). Once the
result has been retrieved, the buffer can be disposed
of.

6.2 Per-Node Cache (Method 2)

Each node has a buffer big enough to store a single
sample for each OpenMP thread. When the value of
a sample for a lazy node is computed, it is stored in
this buffer. Again we make an exception for identity
nodes which wrap non-lazy values. The final value of
the sample can be retrieved from the root node of the
expression. The size limits on expressions described
above were introduced primarily for Method 1 and
should be relaxed or removed for this method.

7 Performance

The experiments for this paper were carried out on a
single compute node® of an SGI ICE 8200 EX. The
code was compiled with support for OpenMP thread-
ing but not MPI. Please note that understanding the
applications from which these tests are derived is not
necessary to understand the performance changes.

7.1 Experiment 1 — Power Law

Here a script to compute power law values(Muhlhaus
& Regenauer-Lieb 2005) was run for a single OpenMP

thread®. See Appendix A for details of the script.
Both lazy resolution methods were tested. Fig-
ure 2 shows the peak memory and real time use for
runs with various numbers of elements. The val-
ues plotted are averaged over ten runs. The mem-
ory use for the two lazy methods is reasonably simi-
lar, although Method 1 (temporary buffer) is slightly
smaller. The run time for Method 1 was significantly
higher than non-lazy while Method 2 (node cache)
was only slightly higher.

532 GB RAM and two quad-core 2.8Ghz Xeon processors. The
version of escript was repository revision 2532.
5That is, OMP_NUM_THREADS=1.

73



CRPIT Volume 107 - Parallel and Distributed Computing 2010

Memory vs Elements (unmodified)
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Figure 2: Unmodified Powerlaw

7.2 Repeated Sub-Expressions

The temporary buffer method uses less memory than
the second method because the same storage can be
used to evaluate multiple nodes. In memory intensive
problems though, both methods use less memory than
the non-lazy method.

The run time for Method 1 can be reduced by forc-
ing nodes which appear multiple times to be resolved
first before resolving the main expression. This means
that the values can be retrieved directly instead of be-
ing recomputed. This has two drawbacks:

1. More memory is required to hold the extra re-
solved expressions. This is particularly signifi-
cant if the results are of high rank. For example
the Drucker-Prager tests in Section 7.3 contain
rank 4 tensors.

2. The user must examine their expressions to de-
termine suitable variables for early resolution
and the order in which to do so. For example
if f is a function of g (and both are repeated ex-
pressions), then g should be resolved first. If not,
the work to evaluate g will be done twice.

Next we make two changes to the computation.
Computing the power law values builds an expression
n(0+w)/(nh?+w). We resolve 1, 0, w before building
the main expression.

Secondly, we rearrange calls to the L*°-norm so
that sub-expressions are evaluated first. The perfor-
mance for this modified version can be seen in Fig-
ure 3. Memory use for lazy resolution is still below
non-lazy resolution. The time spent for Method 1
now approximates non-lazy time, while Method 2 is
lower. Note that the memory usage in Figure 3(a) is
worse than in Figure 2(a).

7.3 Experiment 2 — Drucker-Prager

A script (see Appendix B) to compute coefficients for
Drucker-Prager flow (Gross et al. 2008) was run for a
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single OpenMP thread. Only Method 2 (node cache)
was used for lazy testing. See Figures 4, 5 for results
(values shown are averaged over ten runs). In both
2D and 3D domains, Method 2 shows significantly
lower costs in both time and space. In Figure 5(a)
the non-lazy version could not complete the 512, 000
element test (presumably due to exhausting available
memory).

8 Discussion

When the two lazy evaluation methods are assessed
against our goals (memory, time and ease of use),
we have some success. For less complex expressions
such as those in the power law tests, there is some
reduction in memory use. There is a time penalty
involved however, so employing lazy evaluation for
this problem would only be of benefit in cases where
memory consumption is close to system limits.

The presence of repeated subexpressions seems to
severely limit the usefulness of Method 1 (temporary
buffer). As we showed in Section 7.2, these prob-
lems can be reduced be strategic calls to resolve()
and reordering of expressions but this comes at the
price of ease of use. Adding additional resolves also
increases memory useage (contrast Figure 2(a) with
Figure 3(a)). Deciding on the size limits for expres-
sions also requires some care.

On the other hand when used on Drucker-Prager,
Method 2 (node cache) showed significant reductions
in both memory and time for large instances. In fact
it rendered larger instances accessible.

Currently, lazy evaluation in escript can be
switched on or off at runtime. Doing this with
Method 2 seems to be the best policy.

Further work in this area should be directed to
making automatic resolution more intelligent and pro-
viding more specific guidance for users as to when a
problem is “large enough” for lazy evaluation to pro-
vide significant benefits.
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A Power Law script

This is the script used in the power law tests (some
boilerplate and irrelevant lines removed). The NE
variable should be set to the number of elements re-
quired.

SIDE=int (math.ceil (float (NE)**x(1./2)))
setEscriptParamInt ("TOO_MANY_LEVELS",15)
setEscriptParamInt ("TOO_MANY_NODES",500)

d=Rectangle (SIDE,SIDE) .getX()+(1,1)

pl=PowerLaw(numMaterials=3, verbose=False)

pl.setDruckerPragerLaw(tau_Y=100.)

pl.setPowerLaws(eta_N=[2.,0.01,25./4.]1, \
tau_t=[1, 25.,64.], power=[1,2,3])

pl.setEtaTolerance(l.e-8)

z=pl.getEtaEff (length(d))

z.resolve()
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B Drucker Prager script

This is the script used in the drucker prager tests
(some boilerplate and irrelevant lines removed). The
domain variable should be a Rectangle (or Brick for
3D) with the required number of elements.

setEscriptParamInt ("TO0_MANY_NODES",10000)
setEscriptParamInt ("TOO_MANY_LEVELS",70)

G=10.

K=12
alpha=0.2
beta=0.03
h=1.
deps_th=0.1

stress=Tensor (1. ,Function(domain))
tau_Y_safe=Scalar(13.,Function(domain))
tau_Y=Scalar(13.,Function(domain))
du=domain.getX()
plastic_stress=Scalar(0.,Function(domain))

d=domain.getDim()

abs_tol=1.e-15

SAFTY_FACTOR=1.e-8

k3=kronecker (Function(domain))

# elastic trial stress:

g=grad (du)

D=symmetric(g)

W=nonsymmetric(g)

s_e=stress+K+deps_th*k3+2*G*D+(K-2./3 \
*G) *trace (D) *k3+2*symmetric( \
matrix_mult(W,stress))

p_e=-1./d*xtrace(s_e)

s_e_dev=s_e+p_ex*xk3

tau_e=sqrt(l./2*inner(s_e_dev,s_e_dev))

F=tau_e-alpha*p_e-tau_Y

chi=whereNonNegative (F+SAFTY_FACTOR*tau_Y)

1=chi*F/(h+G+beta*K)

tau=tau_e-Gx*1

stress=tau/(tau_e+abs_tol* \
whereZero(tau_e,abs_tol)) \
*s_e_dev-(p_et+l*beta*xK)*k3

plastic_stress=plastic_stress+l

hardening=(tau_Y-tau_Y_safe)/(1l+abs_tol* \
whereZero (1))

sXk3=outer (stress,k3)

k3Xk3=outer (k3,k3)

s_dev=stress-trace(stress)*(k3/d)

tmp=G*s_dev/(taut+abs_tol* \
whereZero(tau,abs_tol))

S=G* (swap_axes (k3Xk3,0,3)+

swap_axes (k3Xk3,1,3)) + (K-2./3%G) \
*xk3Xk3 + (sXk3-swap_axes( \
swap_axes (sXk3,1,2),2,3)) \
+ 1./2*%(swap_axes(swap_axes(sXk3, \
0,2),2,3) \
-swap_axes (swap_axes(sXk3,0,3),2,3)\
-swap_axes (sXk3,1,2) \
+swap_axes (sXk3,1,3)) \

- outer(chi/(hardening+G+alpha*beta

*K) * (tmp+beta*K*k3) , tmp+alpha*K*k3)

S.resolve()
tau.resolve()
stress.resolve()
plastic_stress.resolve()
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