Learnability of Term Rewrite Systems
from Positive Examples

M.R.K. Krishna Rao

Information and Computer Science Department
King Fahd University of Petroleum and Minerals,
Dhahran 31261, Saudi Arabia.

Email: krishna@ccse.kfupm.edu.sa

Abstract

Learning from examples is an important characteris-
tic feature of intelligence in both natural and artifi-
cial intelligent agents. In this paper, we study learn-
ability of term rewriting systems from positive exam-
ples alone. We define a class of linear-bounded term
rewriting systems that are inferable from positive ex-
amples. In linear-bounded term rewriting systems,
nesting of defined symbols is allowed in right-hand
sides, unlike the class of flat systems considered in
Krishna Rao [8]. The class of linear-bounded TRSs is
rich enough to include many divide-and-conquer pro-
grams like addition, logarithm, tree-count, list-count,
split, append, reverse etc.

1 Introduction

Starting from the influential works of Gold [5] and
Blum and Blum [3], a lot of effort has gone into de-
veloping a rich theory about inductive inference and
the classes of concepts which can be learned from
both positive (examples) and negative data (coun-
terexamples) and the classes of concepts which can
be learned from positive data alone. The study of
inferability from positive data alone is important be-
cause negative information is hard to obtain in prac-
tice —positive examples are much easier to generate
by conducting experiments than the negative exam-
ples in general. In his seminal paper [5] on induc-
tive inference, Gold proved that even simple classes
of concepts like the class of regular languages cannot
be infered from positive examples alone. This strong
negative result disappointed the scientists in the field
until Angluin [1] has given a characterization of the
classes of concepts that can be infered from positive
data alone and exhibited a few nontrivial classes of
concepts inferable from positive data. This influen-
tial paper inspired further research on the inductive
inference from positive data. Since then many pos-
itive results are published about inductive inference
of logic programs and pattern languages from posi-
tive data (see a.o., [9, 2, 10, 7, 8. To the best of
our knowledge, inductive inference of term rewriting
systems from positive data has not received much at-
tention — [8] is the only publication on this topic so
far.

In the last few decades, term rewriting systems
have played a fundamental role in the analysis and
implementation of abstract data type specifications,
decidability of word problems, computability theory,

Copyright copyright 2006, Australian Computer Society, Inc.
This paper appeared at Computing: The Australasian The-
ory Symposium (CATS2006), Hobart, Australia. Conferences
in Research and Practice in Information Technology (CRPIT),
Vol. 51. Barry Jay and Joachim Gudmundsson, Eds. Repro-
duction for academic, not-for profit purposes permitted pro-
vided this text is included.

design of functional programming languages (e.g. Mi-
randa), integration of functional and logic program-
ming paradigms, and artificial intelligence — theorem
proving and automated reasoning.

In this paper, we propose a class of linear-bounded
term rewriting systems that are inferable from pos-
itive examples. Linear-bounded TRSs have a nice
property that the size of redexes in an innermost
derivation starting from a flat term ¢ is bounded by
the size of the initial term ¢. This property ensures
that we only need to consider rewrite rules whose sides
are bounded by the size of the examples in learning
linear-bounded TRSs from positive data.

The class of linear-bounded TRSs is rich enough to
include many divide-and-conquer programs like addi-
tion, logarithm, tree-count, list-count, split, append,
reverse etc. The relation between the class of linear-
bounded TRSs and the class of simple flat TRSs re-
cently introduced in [8] is discussed in a later section.
In particular, flat TRSs can define functions (like dou-
bling), whose output is bigger in size than the input,
which is not possible with linear-bounded TRSs. On
the other hand, flat TRSs do not allow nesting of de-
fined symbols in the rewrite rules, which means that
we cannot define functions like reverse and quick-sort
that can be defined by a linear-bounded TRS. Due to
space restrictions, many proofs are omitted.

The rest of the paper is organized as follows. The
next section gives preliminary definitions and results
needed about inductive inference. In section 3, we
define the class of linear-bounded TRSs and establish
a few properties of them in section 4. The inferability
of linear-bounded TRSs from positive data is estab-
lished in section 5. The final section concludes with
a discussion on open problems.

2 Preliminaries

We assume that the reader is familiar with the basic
terminology of term rewriting and inductive inference
and use the standard terminology from [6, 4] and [5,
9]. The alphabet of a first order language L is a tuple
(X, X) of mutually disjoint sets such that X is a finite
set of function symbols and X is a set of variables..
In the following, 7 (X, X) denotes the set of terms
constructed from the function symbols in ¥ and the
variables in X'. The size of a term ¢, denoted by [t],
is defined as the number of occurrences of symbols
(except the punctuation symbols) occurring in it.

Definition 1 A term rewriting system (TRS, for
short) R is a pair (X, R) consisting of a set 3 of func-
tion symbols and a set R of rewrite rules of the form
I — r satisfying:

a) | and r are first order terms in 7 (X, X),

b) left-hand-side [is not a variable and

(c) each variable occuring in r also occurs in .

Example 1 The following TRS defines multiplica-
tion over natural numbers.

a(0,y) =y
a(s(x),y) — s(a(x,y))

m(0,y) — 0
m(s(x),y) — a(y,m(x,y))
Here, a stands for addition and m stands for multipli-

cation. o
Definition 2 A context C[,...,] is a term in
T(E U {o},X). If C[,...,] is a context contain-

ing n occurrences of ¢ and tq,...,t, are terms then
Clt1,...,tyn] is the result of replacing the occurrences
of ¢ from left to right by ¢1,...,¢,. A context con-
taining precisely 1 occurrence of ¢ is denoted C |.

Definition 3 The rewrite relation = induced by
a TRS R is defined as follows: s = t if there is a
rewrite rule [— r in R, a substitution ¢ and a context
C[] such that s = C[lo] and t = C[ro]. We say that
s reduces to t in one rewrite (or reduction) step if
s =g tand say s reduces tot (or t is reachable from
s) if s =% t, where =% is the transitive-reflexive clo-
sure of =g). The subterm lo in s is called a redex.
A redex is an innermost redex if no proper subterm
of it is a redex. A derivation s =% t is an inner-
most derivation if each reduction step in it reduces
an innermost redex.

Example 2 The following innermost deriva-
tion shows a computation of the value of the term
m(s(s(0)),s(s(s(0)))) by the above TRS.

m(s(s(0)), s(s(s(0))))
= a(s(s(s(0))),m(s(0),s(s(s(0)))))
= a(s(s(s(0))),a(s(s(s(0))),m(0,s(s(s(0))))))
= a(s(s(s(0))),a(s(s(s(0))), 0))
= a(s(s(s(0))),s(a(s(s(0)), 0)))
= a(s(s(s(0))),s(s(a(s(0),0))))
= a(s(s(s(0))), s(s(s(a(0,0)))))
= a(s(s(s(0))),s(s(s(0))))
= s(a(s(s(0)),s(s(s(0)))))
= s(s(a(s(0),s(s(s(0))))))
= s(s(s(a(0,s(s(s(0)))))))
= s(s(s(s(s(s(0))))))

This is one of the many possible derivations from
m(s(s(0)),s(s(s(0)))). Since the system is both ter-
minating and confluent, every derivation (innermost
or not) from this term ends in the same final value

<

s(s(s(s(s(s(0))))))-

Remark 1 The conditions (b) left-hand-side [is not
a variable and (c) each variable occuring in r also
occurs in ! of Definition 1 avoid trivial nonterminating
computations. If a rewrite rule x — r with a varible
left-hand-side is present in a TRS, every term can
be rewritten by this rule and hence no normal form
exist resulting in nonterminating computations. If the
right-hand-side r contains a variable y not present in
the left-hand-side [of a rule [— r such that r = C[y],
then the term ! can be rewritten to C[l] (substitution
o replacing the extra-variable by [) resulting in ever
growing terms and obvious nontermination.

Definition 4 Let U and F be two recursively enu-
merable sets, whose elements are called objects and
expressions respectively.

e A concept is a subset I' C U.

e An example is a tuple (A, a) where A € U and
a = true or false. Example (A, a) is positive if
a = true and negative otherwise.

e A concept I' is consistent with a sequence of
examples (A1,a1), ..., (Am,am) when A; € T if
and only if a; = true, for each i € [1,m].

A formal system 1is a finite subset R C E.

A semantic mapping is a mapping ® from formal
systems to concepts.

We say that a formal system R defines a concept
rif ®(R) =T.

Definition 5 A concept defining framework is a
triple (U, E,®) of a universe U of objects, a set E
of expressions and a semantic mapping ®.

Definition 6 A class of concepts C' = {I'1,T's, ...} is
an indexed family of recursive concepts if there exists
an algorithm that decides whether w € T'; for any
object w and natural number 7.

Here onwards, we fix a concept defining framework
(U, E, ®) arbitrarily and only consider indexed fami-
lies of recursive concepts.

Definition 7 A positive presentation of a nonempty
concept I' C U is an infinite sequence wy,ws,... of
objects (positive examples) such that {w; | i > 1} =

An inference machine is an effective procedure
that requests an object as an example from time to
time and produces a concept (or a formal system
defining a concept) as a conjecture from time to time.
Given a positive presentation o = wy,ws, ..., an in-
ference machine IM generates a sequence of conjec-
tures g1, 92,---. We say that IM converges to g on
input o if the sequence of conjectures g1, gs, ... is fi-
nite and ends in g or there exists a positive integer kg
such that gp = g for all & > k.

Definition 8 A class C of concepts is inferable from
positive data if there exists an inference machine IM
such that for any I' € C' and any positive presentation
o of ', IM converges to a formal system g such that
P(g) =T.

We need the following result of Shinohara [9] in
proving our result.

Definition 9 A semantic mapping ® is monotonic if
R C R’ implies ®(R) C ®(R’). A formal system R
is reduced w.r.t. S C U if S C ®(R) and S Z ®(R)
for any proper subset R’ C R.

Definition 10 A concept defining framework C =
(U, E, ®) has bounded finite thickness if

1. @ is monotonic and

2. for any finite set S C U and any m > 0, the set
{®(R) | R is reduced w.r.t. S and |R| < m} is
finite.

Theorem 1 (Shinohara [9])
If a concept defining framework C = (U, E, ®) has
bounded finite thickness, then the class

™ — {®(R) | RC E,|R| < m}

of concepts is inferable from positive data for every
m>1.

3 Linear-bounded Term Rewriting Systems

In the following, we partition Y into set D of defined
symbols that may occur as the outermost symbol of
left-hand-side of rules and set C' of constructor sym-
bols that do not occur as the outermost symbol of
left-hand-side of rules.

Definition 11 The set Dg of defined symbols of
a term rewriting system R(F,R) is defined as
{root(l) | I — r € R} and the set Cr of construc-
tor symbols of R(F, R) is defined as F — Dg.

To show the defined and constructor symbols ex-
plicitly, we may write the above rewrite system as
R(Dgr,Cr,R) and omit the subscript when such
omission does not cause any confusion. The terms
containing no defined symbols are called construc-
tor terms, and we refer to the terms of the form
f(t1, -, t,) such that f is a defined symbol and
t1,...,t, are constructor terms as level 1 terms. In
this paper, we only consider constructor systems —
left-hand sides are level 1 terms.

We need the following definition in the sequel.

Definition 12 An argument filter is a mapping =
that assigns to every defined symbol of arity n, a list
of argument positions [iy, ..., %] such that 1 < iy <
fg < -+, <k <n.

Unlike the usual practice in termination (and con-
text sensitive rewriting) literature, we use argument
filters only for defined symbols and do not distinguish
the case of 7(f) being a single argument.

The following notion of parametric size over con-
structor terms and level 1 terms is central to our re-
sults.

Definition 13 For a constructor term t, the para-
metric size [t] of t is defined recursively as follows:

e if ¢ is a variable x then [t] is a linear expression

x,

e if ¢ is a constant then [t] is zero,
o if t = f(t1,...,t,) then [¢] is a linear expression
L+ [ta] 4+ + [ta]
For a level 1 term t = f(¢q,-
size [t] of t is defined as [t;,]+ -+ [t;
[i1,. .., k).

~7t), the parametric
] when 7(f) =

Example 3 The parametric sizes of constructor
terms a, h(a,x,b), h(g(a), glg(x)), g(y)) are
0, x + 1, 5+ = + y respectively. The parametric size
of level 1 term f(g(a), g(g(x)), g(y)) with argu-
ment filter w(f) = [1, 3] is [g(a)] +[9(y)] = 1+ 14y =
2+y. <o

The following function LIgen generates a set of
equations and two sets of linear inequalities from a
given rewrite rule [— r in a constructor system and
an argument filter 7 (note that 7 is used by this
function implicitly through Def. 13). It uses fresh
variables Vary, Varsy,--- which do not occur in the
rewrite system under consideration.

function LIgen(l — r, 7);
begin
EQ - ¢7 LIl = ¢a LIQ - ¢7

i:=0; * counter for fresh variables. */
while r contains defined symbols do
begin

Let r = Cluq, . .., Un), showing all the level 1

subterms of r;

r:=CVarig1,...,Variim;

EQ = EQU{Va/TiJrl = Ulye--y
for j:=1 tom do

Variim = um};

begin
ineqliy; == [u;] > Variy;;
ineq2iyy = [[u;]
end
LI := LI; U {ineqlit1,...,ineqlitm};
LIQ = L[Q U {ineq?i_,_l, ey Zﬂ€q21+m},
1 =14i+m
end;
LIy := LI U{ineq2g : [I] > [r]};
end;

The above function LIgen introduces one fresh
variable (and one equation in E(Q and one inequality
each in LI; and LI) corresponding to each defined
symbol in the right-hand side term r of the rule [— r.
If a defined symbol f occurs above another defined
symbol g in r and variables Var; and Var; correspond
to f and g respectively, then ¢ > j. The set EQ of
equations and the numbering of inequalities are only
needed in the proofs in the sequel.

Now, we are in a position to define the class of
linear-bounded TRSs.

Definition 14 Let R be a constructor system and 7
be an argument filter. Then, R is a linear-bounded
system w.r.t. 7 if each rule in it is linear-bounded
w.r.t. m. A rewrite [— r is linear-bounded w.r.t.
7 if the inequalities in LI; imply each inequality in
LI, where LI; and LI, are the sets of inequalities
generated by the function LIgen(l — r,).

A constructor system is linear-bounded if it is linear-
bounded w.r.t. some argument filter 7.

Remark 2 The validity of (linear) inequalities is
traditionally defined as the follows: the inequality
expressionl > expression?2 is valid if and only if it
1s valid for all possible assignments of values to vari-
ables in it. In the sequel, we only talk of sizes which
are obviously non-negative and hence the inequality
expressionl > expression2 is valid if and only if
it s valid for all possible assignments of non-negative
values to variables in it. According to this, X+1 > X
is valid but X +Y > X is not valid because Y can
take a zero value and X + 0 is not greater than X.
Similarly, 2X > X is not valid because X can take a
zero value. However, both X +Y > X and 2X > X
are valid.

The following examples illustrate the concept of
linear-bounded systems. We use short notations
LI(l — r) and LIs(I — r) to denote the inequali-
ties generated by LIgen(l — r, 7), when 7 is clear
from the context (and write LI; and LI when the
rule is also clear).

Example 4 Consider the following constructor sys-
tem reversing a list.

app(nil,y) —y

app(cons(x,z),y) — cons(x, app(z,y))
rev(nil) — nil

rev(cons(x,z)) — app(rev(z), cons(x,nil))

We show this system to be linear-bounded w.r.t. argu-
ment filter 7 such that w(app) = [1,2] and 7 (rev) =
[1]. For the first rule, LI} = ¢ and LIy = {y > y}.
Since y >y is a valid inequality, LI; obviously im-
plies LI, and hence this rule is linear-bounded. Sim-
ilarly, the third rule can be easily shown to be linear-
bounded (with LI; = ¢ and LIy = {0 > 0}).

For the second rule, LI} = {z+4y>Var;}
and LIy = {x+y+z+1>z+y, x+y+z+1>
x + Var; + 1}. The first inequality x+y+z+1 > z+y

in LI, is a valid inequality and the second inequality
x+y+z+1>x+Vary; +1in Ll is implied by the
inequality z+y > Var; in LI;. Therefore, this rule is
linear-bounded.

For the fourth rule, L =
{z > Vary, Var; + x4+ 1 > Var,
and LI, = xX+z+1>2z x+2z

+1>Var; +x+1, x+z+1>Vary}. The first
inequality x +z + 1 > z in LI5 is a valid inequality,
the second inequality x +z+ 1 > Var; + x+ 1 in Lis
is implied by the inequality z > Var; in LIy, and the
third inequality x +z + 1 > Var, in LI5 is implied by
the two inequalities z > Var; and Var; +x+1 > Var,
in LI;. Therefore, this rule is linear-bounded too. ¢

4 Some Properties of Linear-bounded Sys-
tems

In this section, we prove some properties of linear-
bounded systems. A nice property of the class of
linear-bounded systems is that it is decidable whether
a given TRS is linear-bounded or not, as this problem
can be reduced to the satisfiability problem of linear
inequalities.

Theorem 2 It is decidable whether a
linear-bounded or not.

TRS R 1is

The following theorem captures the basic idea
of linear-bounded systems — the size of output is
bounded by the size of input.

Theorem 3 Let R be a linear-bounded TRS and ¢
be a level 1 term with root in D. If ¢t =* v is an
innermost derivation and v is a constructor term (i.e.,
a normal form), then the parametric sizes of ¢ and v
satisfy the property [t] > [v].

Further, the size of any innermost redex in the
above derivation is bounded by the size of the initial
term.

Theorem 4 Let R be a linear-bounded TRS and ¢
be a level 1 term with root in D. If ¢t =* v is an in-
nermost derivation such that w is an innermost redex
in u, then the parametric sizes of ¢ and w satisfy the
property [t] > [w].

The above characteristic properties of linear-
bounded TRSs ensure that it is decidable whether
a flat term ¢ reduces to a constructor term u by a
linear-bounded system or not.

Theorem 5 Ift is a level 1 term with root in D, u is
a constructor term and R is a linear-bounded T RS,
it is decidable whether t =% u or not.

5 Inferability of linear-bounded TRSs from
Positive Data

In this section, we establish inductive inferability of
linear-bounded TRSs from positive data.

Definition 15 Let LBj be the set of all linear-
bounded rules of the form ! — r such that |I|+|r| < k,
FC be the cartesian product of (a) the set of all level
1 terms with root in D and (b) the set of all con-
structor terms, and ¢ be a semantic mapping such
that ®(R) is the relation {(s,t) | s =5 ¢, sisalevel 1
term with root in D and ¢ is a constructor term}. The
concept defining framework (LBy, F'C, ®) is denoted
by LBF.

The following Lemma follows from Theorems 5
and 2.

Lemma 1 The class of rewrite relations defined by
linear-bounded TRSs is an indexed family of recursive
concepts.

The following theorem plays the predominant role
in proving our main result.

Theorem 6 The concept defining framework LBF)
= (LBy, FC,®) has bounded finite thickness.

Proof: Since ® is the rewrite relation, it is obviously
monotonic, i.e., ®(Ry) C ®(Ry) whenever Ry C Rs.

Consider a finite relation S C FC and a TRS
R C LBy containing at most m > 1 rules such that
R is reduced w.r.t. S. Let n be an integer such that
n > [t] for every (t,u) € S}. Let S’ be the set of
innermost redexes in innermost derivations ¢t =* u
such that (¢,u) € S}. By Theorem 4, n > [w] for
every term w € S’. Since R is reduced w.r.t. S, every
rule in R is used in derivations of S. Hence, n > [I]
for every rule [— r € R.

Since X is finite, there are only finitely many
linear-bounded TRSs containing at most m rules of
the form | — r such that n > [I] and |I| + |r| < k (ex-
cept for the renaming of variables)!. Therefore, the
set {®(R) | R is reduced w.r.t. S and contains at most
m rules} is finite. Hence, the concept defining frame-
work (LBy, FC, ®) has bounded finite thickness. ¢

From this Theorem, Lemma 1 and Theorem 1, we
obtain our main result.

Theorem 7 For every m,k > 1, the class of linear-
bounded TRSs with at most m rules of size at most k
is inferable from positive data.

6 Discussion

In this paper, we study inductive inference of term
rewriting systems from positive data. A class of
linear-bounded TRSs inferable from positive data is
defined. This class of TRSs is rich enough to in-
clude divide-and-conquer programs like addition, log-
arithm, tree-count, list-count, split, append, reverse
etc. To the best of our knowledge, only known re-
sults about inductive inference of term rewriting sys-
tems from positive data are from [8], where the class
of simple flat> TRSs is shown to be inferable from
positive data. The classes of simple flat TRSs and
linear-bounded TRSs are incomparable for the fol-
lowing reasons.

1. Linear-bounded TRSs only capture functions
whose output is bounded by the size of the in-
puts. Functions like addition, list-count, split,
append, reverse have such a property. But func-
tions like multiplication and doubling are beyond
linear-bounded TRSs as the size of their output
is bigger than that of the input. The following
simple flat TRS computes the double of a given
list (output contains each element of the input
twice as often).

double(nil) — nil
double(cons(H,T)) — cons(H, cons(H, double(T)))

ISince argument filters —and hince the parametric linear— ignore
some arguments, the additonal condition |I| 4 |r| < k is needed. In
[8], no argument filters are used and hence this additional condition
is not needed.

2A TRS is simple flat if defined symbols are not nested in any
rule and the sum of the sizes of arguments of defined symbols in
the right-hand side of a rule is bounded by the sum of the sizes of
arguments of defined symbols in the left-hand side [8].

This shows that there are functions that can
be computed by simple flat TRSs but not by
linear-bounded TRSs.

2. The rewrite system for computing reverse of a list
given in Example 4 is linear-bounded, but it is
beyond simple flat TRSs as it involves nesting of
defined symbols. This shows that there are func-
tions that can be computed by linear-bounded
but not by simple flat TRSs.

Open problem: In view of this incomparability
of the simple flat TRSs and linear-bounded TRSs,
it will be very useful to work towards extending
the frontiers of inferable classes of rewrite systems
and characterize some classes of TRSs having the
expressive power of both simple flat TRSs and
linear-bounded TRSs, and yet inferable from positive
data.

Acknowledgements: The author would like to
thank the King Fahd University of Petroleum and
Minerals for the generous support provided by it in
conducting this research.

References

[1] D. Angluin (1980), Inductive inference of formal
languages from positive data, Information and
Control 45, pp. 117-135.

[2] H. Arimura and T. Shinohara (1994), Inductive
inference of Prolog programs with linear data de-
pendency from positive data, Proc. Information
Modelling and Knowledge Bases V, pp. 365-375,
IOS press.

[3] L. Blum and M. Blum (1975), Towards a math-
ematical theory of inductive inference, Informa-
tion and Control 28, pp. 125-155.

[4] N. Dershowitz and J.-P. Jouannaud (1990),
Rewrite Systems, In J. van Leeuwen (ed.), Hand-

book of Theoretical Computer Science, Vol. B,
pp. 243-320, North-Holland.

[5] E.M. Gold (1967), Language identification in the
limit, Information and Control 10, pp. 447-474.

[6] J.W. Klop (1992), Term Rewriting Systems, in
S. Abramsky, D. Gabby and T. Maibaum (ed.),
Handbook of Logic in Computer Science, Vol. 1,
Oxford Press, 1992.

[7] M. R. K. Krishna Rao (2000), Some classes
of prolog programs inferable from positive data,
Theor. Comput. Sci. 241, pp. 211-234.

[8] M. R. K. Krishna Rao (2004), Inductive Infer-
ence of Term Rewriting Systems from Positive
Data, in Proc. of Algorithmic Learning Theory,
ALT’04, Lecture Notes in Artificial Intelligence
3244, pp. 69-82, Springer-Verlag.

[9] T. Shinohara (1991), Inductive inference of
monotonic formal systems from positive data,
New Generation Computing 8, pp. 371-384.

[10] Takeshi Shinohara, Hiroki Arimura (2000), In-
ductive inference of unbounded unions of pattern
languages from positive data, Theor. Comput.
Sci. 241, pp. 191-209.

[11] Y. Toyama (1987), Counterexamples to termina-
tion for the direct sum of term rewriting systems,
Inf. Process. Lett. 25, pp. 141-143.

