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Abstract

Finding patterns such as increasing or decreasing
trends, abrupt changes and periodically repeating se-
quences is a necessary task in many real world situa-
tions. We have shown how genetic programming can
be used to detect increasingly complex patterns in
time series data. Most classification methods require
a hand-crafted feature extraction preprocessing step
to accurately perform such tasks. In contrast, the
evolved programs operate on the raw time series data.
On the more difficult problems the evolved classifiers
outperform the OneR, J48,Naive Bayes, IB1 and Ad-
aboost classifiers by a large margin. Furthermore this
method can handle noisy data. Our results suggest
that the genetic programming approach could be used
for detecting a wide range of patterns in time series
data without extra processing or feature extraction.

Keywords: Genetic Programming, Pattern Recogni-
tion, Time Series

1 Introduction

Time series patterns describe how one variable or a
group of variables change over a certain period of
time. They are a critical factor in many real world
problems where temporal information is essential. For
example, any single point on an electrocardiogram is
meaningless by itself, but a repeating sequence can
reveal whether the rhythm of a heart is normal or ab-
normal. Similarly tasks like understanding patterns
of climate change, recognizing words in audio wave-
forms and detecting target objects in videos all rely on
finding patterns in the time domain. It is clear that
a method which can capture regularities in temporal
data is of great importance.

Handling temporal data is not a new area. Many
methods have been proposed in the past. However
they are significantly different as they were intro-
duced for different tasks. For instance, temporal logic

Copyright c©2012, Australian Computer Society, Inc. This pa-
per appeared at the 35th Australasian Computer Science Con-
ference (ACSC 2012), Melbourne, Australia, January-February
2012. Conferences in Research and Practice in Information
Technology (CRPIT), Vol. 122, Mark Reynolds and Bruce
Thomas, Ed. Reproduction for academic, not-for-profit pur-
poses permitted provided this text is included.

uses symbols and rules to represent time flow whereas
a temporal database marks records with time stamps.
Temporal databases introduced the concepts of trans-
action time and valid period for preserving the time
information. Learning methods have been proposed
for learning temporal rules or patterns as well. Sut-
ton described the temporal difference(TD) learning
method for prediction and proved its convergence and
performance on a number of problems(1). Unlike
traditional supervised machine learning approaches,
the TD method learns from the differences between
successive predictions to improve the final outcome.
However this algorithm relies on the availability of
an optimal set of features for the learning process.
Boots and Gordon addressed this problem by adding
a feature selection component to retain features which
only contain predictive information(3). Neural net-
works have been used for handling temporal data as
well. Dorffner summarized different types of artifi-
cial neural networks(ANNs) for this purpose(8). Fur-
thermore ANNs has been combined with evolutionary
strategies and a greedy randomised adaptive search
procedure for time series forecasting(9).

These aforementioned existing methods do not
constitute a generalized approach for learning time
series patterns. Instead of operating on raw data,
they often rely on some kind of additional processes
to extract features from the time series data for learn-
ing, such as converting input signals from the time
domain into the frequency domain, calculating varia-
tions at different points or transforming numeric data
into symbolic data. The process for determining rele-
vant features requires experience and domain knowl-
edge from human experts. Manual interventions are
usually essential here. Additionally the parameters
and configurations are hand-crafted to suit only a cer-
tain problem. Therefore it is difficult to generalize a
method for various problems. A generalized method
for handling temporal data and learning underlying
patterns still remain a big challenge.

In this study we propose genetic programming
(GP) as a method for learning time series pat-
terns without any extra processes such as data pre-
processing or feature extraction. The aim of our in-
vestigation is to establish such a generalized method
which can deal with different kind of scenarios such
as detecting abrupt changes and recognizing various
periodical patterns under one framework. Note the
focus of this study is on recognizing patterns, not on
time series prediction.
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Figure 1: A Typical GP Program Tree (y + 0.5)− x

The main reason for using genetic programming is
that GP has proved itself as a powerful and creative
problem solving method. Even on some difficult prob-
lems such as image processing and computer vision,
GP can work with unprocessed raw data to learn use-
ful models. Essentially GP is performing two tasks
here, extracting useful features and building a classi-
fication model accordingly. Typically these two tasks
are treated as separate components in the conven-
tional methods, but considered as one by GP-based
method. This characteristic makes GP particularly
suitable for problems of which the optimal features
are unclear. Learning patterns in the time domain
can be considered as such a problem. Because it is
difficult to foresee what kind of features would be the
most suitable if the nature of the underlying temporal
patterns is not clear.

The rest of this paper is organized as such: Section
2 gives a brief background of Genetic Programming
and its applications. Section 3 presents a collection
of problems used in this study. Their difficulties in-
creases gradually. The GP methodology and experi-
ments are discussed in Section 4, while the discussions
of our experiments are in Section 5. Section 6 con-
cludes this study and discusses future investigations.

2 Background

Genetic Programming is a kind of evolutionary com-
putation methods inspired by the survival-of-the-
fittest principal. It was pioneered by Koza(2) who
has successfully applied GP in many areas and even
patented several solutions found by GP. A solution
in GP is typically represented as a program tree on
which the internal nodes are functions (operators)
and the leaf nodes are terminals (operands). Ini-
tially a population of program trees are generated
randomly as the first generation. These programs
are evaluated on the problem to be solved. Based
on the performance, each one of them is assigned
with a fitness value. Solutions with higher fitness are
more likely to be selected as the parents to gener-
ate a new population of solutions, namely the next
generation. Programs in the new generation may be
created by mutation (applying random change on a
parent), crossover (exchanging tree branches between
parents), or elitism (directly copying the best solu-
tions from the previous generation). Figures 1 shows
a simple GP tree.

There are existing studies using GP techniques
to handle problems involving time series information.
Kaboudan applied both neural networks and GP to
the problem of forecasting housing prices based on
both spatial and temporal information and suggested
GP could produce more reliable and logically more ac-

t5 t4 t3 t2 t1 t0 CLASS

1 0 0 0 0 0 Positive
1 1 0 0 0 0 Positive
0 0 0 1 1 1 Positive
0 0 0 0 0 1 Positive
0 0 0 0 0 0 Negative
1 1 1 1 1 1 Negative

Figure 2: Examples of Binary Pattern

ceptable forecasts(4). Song and Pinto(5) evolved pro-
grams to detect motion on live videos. GP was used
to evolve programs to recognize interesting motions
from background and uninteresting motions based on
pixel values over a sequence of video frames.

Some researchers have investigated hybrid meth-
ods. Hetland and Sætrom presented a new algorithm
combining GP and a pattern matching chip to dis-
cover temporal rules(6). The outcome of this experi-
ment was comparable to some existing work. Another
hybrid method is liquid state genetic programming
proposed by Oltean(7). The core idea is dividing the
whole system into two parts, the dynamic memory
component and GP component. The former is kept
by the liquid state machine while GP acts as a prob-
lem solver. These hybrid methods are computation-
ally expensive because they require large memory and
have long run times. It should be noted that the GP
component here does not handle temporal rules di-
rectly.

As the aim of our work is to provide a GP-based
method which does not require any extra components,
we will take raw time series data as input and learn
to recognize different patterns.

3 Time Series Patterns

This section presents a collection of tasks investigated
in this study. They are a group of artificial problems
which are to represent tasks increasing level of diffi-
culties: sequence of binary numbers, integers, float-
ing point numbers, linear functions and periodic func-
tions. Real-world applications will be studied in our
future work.

3.1 Binary Patterns

This is the simplest problem where all the data points
are either 0 or 1. One input sequence consists of six
time-units worth of data, from t0 the current value,
to t5 the value recorded 5 time-units ago. There are
two types of patterns to be separated here. Negative
means no change occurred during a period of six time-
units. Positive means there is a change either from 0
to 1, or from 1 to 0 at any time within that period.

Note, in a positive sample, the point of change is
not important, because detecting a change should not
rely on a particular sampling position. For example,
using one second as the time unit, a change occurring
at 100th second should be captured by a 6-unit sam-
pling window at multiple positions, from the 101st
second to the 105th second. The direction of such
change (either increase or decrease) is also not im-
portant. Multiple changes within one period such as
001100 are not considered here. Some examples are
illustrated in Figure 2.
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t5 t4 t3 t2 t1 t0 CLASS

5 5 6 6 6 6 Positive
7 100 100 100 100 100 Positive
1000 1000 1000 1000 100 100 Positive
6 6 6 6 6 6 Negative
100 100 100 100 100 100 Negative

Figure 3: Examples of Binary Pattern

t1 t0 CLASS

-12 -11.49 Positive
5.4 8.6 Positive
-5.63 -5.947 Negative
2233.2 2233 Negative

Figure 4: Examples of Floating Point Pattern
(Threshold = 0.5)

3.2 Integer Patterns

The task here is very similar to the binary pattern,
but the data points are integers with no restriction
on the value. The length of a window is again 6 time-
units. Any single change in values is considered as
Positive while Negative means no changes. The total
numbers of possible negatives and positives are enor-
mous. Therefore a generalized rule to differentiate
these two patterns is highly desirable. Examples are
shown in Figures 3.

3.3 Floating-point Numbers with Threshold

The data points here are floating point numbers. Ad-
ditionally a threshold is introduced. In real world
applications, values which are close enough are of-
ten considered identical. Ignoring minor differences
would be an advantage under this kind of circum-
stances. A hyper-sensitive detector would be equally
bad as an insensitive one if not worse. Therefore data
points with variations below a threshold are consid-
ered negatives. Otherwise they are positives.

Two types of tasks are studied. The simple ver-
sion uses a window of length 2. Variations below 0.5
are considered no change. The other version uses a
window of length 6, which is the same as the the one
for binary and integer patterns. The threshold here
is bigger as well, which is 5. Examples are shown in
Figures 4 and 5.

3.4 Sine Waves and Random Numbers

In many real world scenarios no changes does not nec-
essarily mean a constant value. Regular variations
can be considered normal as well, for example the
electric charge of alternating current. Under such cir-
cumstances, simply finding the existence of variation
is not enough. Here a sine wave with an amplitude of
100 is used to generate negative samples, while posi-

t5 t4 t3 t2 t1 t0 CLASS

7 1000 239 1000 43.9372 1000 Positive
4 9.21 4.3 6.23 5.4 7.32 Positive
1 -0.3 0.94 2.953 0.32 2.04 Negative
2232.2 2233 2231 2232 2231.3 2333 Negative

Figure 5: Examples of Floating Point Pattern
(Threshold = 5)

Figure 6: A Sine Wave: y = 100 × sin(x) and A
Random Sequence

Figure 7: A Sine Wave: y = 100× sin(x) and A Step
Function

tive samples are randomly generated numbers in the
range of [−100, 100].

These data points can be visualized in Figure 6.
For sine waves, values are taken at intervals of 15
degrees. To enable the learning process to capture
the characteristics of a sine wave, 3π e.g. one and a
half periods of data are included. This means that
each sample contains 37 consecutive points sampled
along the time line. This is much bigger than that in
the previous tasks.

Note that only one sine wave is shown in Figure 6.
Sine waves could start from different phases. There-
fore negative samples consist of a collection of sine
waves with 15 degree shift. So all the negative sam-
ples are different. A good model should consider them
as the same class, but report random sequences as
anomalies.

3.5 Sine Waves and Other Periodical Func-
tions

The previous task might be not challenging enough as
the random sequence has no regularities at all while
the sine waves do. This could provide hints for a
learning process. So other periodic functions are in-
troduced as positives here. They are shown in Fig-
ures 7 and 8. The first is a step function which has
oscillating values from 100 to -100. The second is a
triangle wave of which the value varies from 100 to
-100 as well. Furthermore all these functions have an
identical frequency. Samples of both negatives and
positives are taken with 15 degree shifts. Hence all
samples for the step function and the triangle func-
tion are different.
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Figure 8: A Sine Wave: y = 100 × sin(x) and A
Triangle Function

Figure 9: Target Sine Wave: y = 100 × sin(x) (in
dotted curve) and Other Sine Waves

3.6 Different Sine Waves

To make the task even more challenging, different sine
waves are mixed in this dataset. As shown in Figure
9, one particular sine wave is set as the target while
other Sine waves with different frequencies and am-
plitudes are marked as negatives.

3.7 Patterns with Noise

Often signals in application would contain noise. To
investigate how noisy data are handled by different
learning methods, we add random noise to the pat-
terns described in Section 3.5 and Section 3.6. The
range of noise is in between [−1, 1].

4 Methodology and Experiments

The GP method is briefly described in this section.
Table 1 shows the function set we used. In addition to
basic arithmetic operators, conditional operators are
included to perform value comparison. The terminal
set simply contains the input variables and random
constants.

Table 3 shows the runtime parameters of our ex-
periments. One objective of this study is to obtain so-
lutions which are human comprehensible, so we could
understand the learned models. Therefore a relatively
small tree depth is used. Furthermore the population
size is rather small because we aim to use as few eval-
uation as possible.

For comparison purposes a number of classical
classifiers were used for all the tasks described above.
OneR is the simplest classifier which builds rules
based on one attribute(10). IBk is an instance based

Table 1: GP Function Set
Function Return Type Arguments

+ Double Double,Double
- Double Double,Double
× Double Double,Double
/ Double Double,Double
if Double Boolean,Double,Double
> Boolean Double,Double
< Boolean Double,Double

Table 3: GP Runtime Parameters
Maximum Depth of Program 10
Minimum Depth of Program 2
Number of Generations 100
Population Size 10
Mutation Rate 5%
Crossover Rate 85%
Elitism Rate 10%

algorithm which classifies the target according to its
closest neighbour in feature space(13). The k value
is 1 in all experiments. NaiveBayes is a probability
based classification method(12). J48 generates de-
cision trees based on the information gain of each
attribute(11). Instead of using one classifier, multiple
classifiers could be combined as an ensemble to im-
prove the performance. Therefore AdaBoost was also
used (14). For each task, the best performer, either
OneR, or J48, or NaiveBayes or IB1, is selected as the
base classifier in AdaBoost.

For each task the same set of examples are sup-
plied to GP and to other methods for training and
test. All data sets include both positive and nega-
tive cases. The number of both cases for each task is
listed in Table 2. Two thirds of data were for training
and one third for test. Table 4 lists the test accura-
cies achieved by all these methods on various tasks,
numbered from No.1 to No.11. Each row in the table
represents the results obtained by different methods
for one particular task . GP solutions were evolved
at least ten times. The test accuracies under GP are
results from the best individuals.

As shown in Table 4, GP consistently outper-
formed the classical methods. There were only two
cases that these methods could match GP: AdaBoost
for binary patterns and instance-based learning (IB1)
for differentiating sine wave and sequences of ran-
dom numbers. All these methods performed poorly
on handling floating-point numbers especially when
there are 6 consecutive values (No. 4), while GP still
achieved reasonably high accuracy. These methods
also performed poorly on another rather difficult task,
distinguishing different sine waves (No. 8) while GP
achieved 100% accuracy. Even after adding noise to
patterns, GP was still able to achieve better results
compared to these classical classifiers.

5 Discussion

Most of the GP runs terminated around the 30th
to 50th generations because a perfect solution was
found. This suggests that the representation de-
scribed earlier is appropriate for recognizing these
patterns, so solutions could be found quickly.

To understand the behavior of evolved programs
we examined some of the best individuals. Although
most of these programs are not quite comprehensible,
such analysis does provide some insights. For the sim-
ple version of floating-point numbers (No.3, 2 units,
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Table 2: Number of Positive and Negative Instances for Each Task
Positive Instances Negative Instances

1. Binary Pattern 10 2
2. Integer Pattern 52 10
3. Floating-Point (2 Units) 37 25
4. Floating-Point (6 Units) 37 25
5. Sine Wave vs. Random Numbers 101 24
6. Sine Wave vs. Step Function 127 24
7. Sine Wave vs. Triangle Wave 144 24
8. Different Sine Waves 134 24
9. Sine Wave vs. Step Function(With Noise) 127 24
10. Sine Wave vs. Triangle Wave(With Noise) 144 24
11. Different Sine Waves(With Noise) 134 24

Table 4: Test Accuracies in Percentages(%)
OneR J48 NBayes IB1 AdaBoost GP

1. Binary Pattern 83.3 83.3 83.3 83.3 100 100
2. Integer Pattern 85.71 85.71 85.71 90.48 90.48 100
3. Floating-Point (2 Units) 76.19 61.9 57.14 66.67 76.19 100
4. Floating-Point (6 Units) 69.23 61.54 60.97 53.85 53.85 92.68
5. Sine Wave vs. Random Numbers 86.05 79.07 81.4 100 95.35 100
6. Sine Wave vs. Step Function 88.68 88.68 50.94 92.45 92.45 100
7. Sine Wave vs. Triangle Wave 86.2 81.03 56.9 89.66 89.66 100
8. Different Sine Waves 11.76 41.18 43.53 78.82 82.35 100
9. Sine Wave vs. Step Function(With Noise) 52.83 88.68 50.94 92.45 92.45 98.11
10. Sine Wave vs. Triangle Wave(With Noise) 79.31 87.93 56.9 89.66 89.66 94.34
11. Different Sine Waves(With Noise) 17.65 40 43.53 78.82 82.35 92.94

threshold 0.5), one program behaves like this:

(t1 − t0 < 1)?Negative : Positive (1)

The decision is simply based on the difference between
the two values. For separating sine waves and random
numbers (No. 5), one best program is effectively

(t4 + t16 == 0)?Negative : Positive (2)

The distance between t4 and t16 is exactly π, half of
the period. Therefore the sum of these two values
on a sine wave should be always zero regardless the
phase of the wave. This suggests that the evolved GP
program did capture a defining characteristic of the
periodic function.

One might argue that given appropriate features
such as calculating difference between consecutive
points, finding the frequency by Fourier transform
and so on, the other methods could perform equally
well. Certainly such processes would be helpful for
learning. However as discussed before, such a process
requires domain knowledge from human experts who
understand the problem itself. Automatically gener-
ating optimal features for the task in hand is often dif-
ficult. Additionally it can not be generalized for other
problems. There is no universal feature set which is
suitable for all kinds of patterns. GP combines the
feature finding and classification process together.

6 Conclusion and Future Work

A Genetic Programming based method is presented
in this study for learning time series patterns. Eleven
groups of patterns with increasing difficulties were
used to evaluate this GP method. In comparison
with five well known machine learning methods: a
rule based classifier, a decision tree classifier, a Naive
Bayes classifier, an instance based classifier and Ada
Boosting, the evolved programs achieved perfect ac-
curacies on most of the tasks and consistently out-
performed the other classifiers. We conclude that the

presented GP method is suitable for learning time se-
ries patterns. This method has clear advantages, as
it is capable of finding characteristics directly on raw
input to differentiate various patterns rather than on
manually defined features. No extra process is re-
quired by this method. Additionally it is capable of
handling noisy data input.

Our future work will go beyond a single variable
because in many scenarios such as climate change and
video analysis, one must be able to handle multiple
variables which may or may not be independent to
each other. Another extension is treating monotonic-
ity as a pattern, so a “normal” variable should always
be stable or change in one direction and never oscil-
late. Mixtures of multiple patterns is another area to
explore, such as a step function on top of a sine wave.
This method will be applied on real world applica-
tions in the near future.
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