
Logic and Refinement for Charts

Greg Reeve Steve Reeves

Department of Computer Science,
University of Waikato,

New Zealand,
Email: {gregr,stever}@cs.waikato.ac.nz

Abstract

We introduce a logic for reasoning about and con-
structing refinements for µ-Charts, a rational simplifi-
cation and reconstruction of Statecharts. The method
of derivation of the logic is that a semantics for the
language is constructed in Z and the existing logic
and refinement calculus of Z is then used to induce
the logic and refinement calculus of µ-Charts, pro-
ceeding by a series of definitions and conservative ex-
tensions and hence generating a sound logic for µ-
Charts, given that the soundness of the Z logic has
already been established.

Keywords: Statecharts, reactive systems, Z, ZC , logic,
refinement

1 Introduction

The specification language µ-Charts is a rational sim-
plification and reconstruction of Statecharts (Harel
1987). As such, it can be considered to define the
core of the many Statechart-like languages: a family
of visual languages that are used for designing reac-
tive systems. It is simpler than the original State-
charts, the simplification being achieved by omitting
some of the more complicated and reportedly less-
used constructs. It is designed to have a more com-
prehensible semantics, without losing expressiveness.
One important contribution of this work, then, is a
semantics and logic for the core of Statecharts, pre-
sented independently of any particular tool or other
“operational” embodiment of semantics and logic.

In the past a formal semantics has been given to
µ-Charts using both a process algebraic, traces ap-
proach and denotationally using automata by Scholz
(1998), along with a logical treatment (Reeve &
Reeves 2000) using the specification language Z
(Spivey 1989),(13568 2002). While different as-
pects, and versions, of µ-Charts have been published
(Philipps & Scholz 1997a, Philipps & Scholz 1997b,
Scholz 1998), the definitive account (prior to the de-
velopment of the Z-based logic) was published by
Scholz (1998). Characteristic features of µ-Charts
are that transitions are instantaneous (and hence in-
put and output signals appear simultaneously); com-
munication using selected signals (feedback) between
charts is local (pairwise) rather than global and is
defined explicitly; and that charts may nondetermin-
istically choose between transitions.

Copyright c©2006, Australian Computer Society, Inc. This pa-
per appeared at Twenty-Ninth Australasian Computer Science
Conference (ACSC2006), Hobart, Tasmania, Australia, Jan-
uary 2006. Conferences in Research and Practice in Informa-
tion Technology, Vol. 48. Vladimir Estivill-Castro and Gill
Dobbie, Ed. Reproduction for academic, not-for profit pur-
poses permitted provided this text is included.

The language semantics assumes a chaotic-
outside-of-defined-behaviour interpretation. The lan-
guage is also distinguished from process algebras
where the natural interpretation is often one where
transitions are triggered by the presence of required
signals. µ-Charts also allows transitions to be trig-
gered by the absence of designated signals. This is
facilitated by imagining there is a global clock whose
tick causes all transitions leaving the state of a chart
to evaluate their guards.

The aim of this paper is to present a partial
relations-based logic for µ-Charts and and then to
show how a refinement theory can be lifted from Z to
charts.

In this paper we view µ-Charts as a language for
specification, especially since we allow nondetermin-
ism. In a subsequent paper we will show how imple-
mentations can be built: the method will be to use
the language and notions of refinement presented here
to move our specification towards implementation by
gradually reducing nondeterminism and adjusting the
interfaces as required, and then using the program de-
velopment work by, e.g., Henson and Reeves (2003)
and the more recently by Henson et al. (2004) to
arrive at an implementation.

The derivation of the logic rules is somewhat sim-
plified due to space constraints: the interested reader
can consult work by Reeve (2005) for a more detailed
account. For similar reasons the formal semantics
given covers just one of the three language constructs.

We do not give examples of reasoning about any
particular chart: how to use a logic to reason is, we
assume, second nature to our audience and is straight-
forward. Rather, we use the logic for the far more am-
bitious and fundamental goal of deriving refinement
rules for charts.

Section 2 presents an introduction to the formal
treatment of µ-Chart’s semantics. This includes de-
scribing one of the language operators, giving the
general method of deriving a Z model for that op-
erator and the derivation of natural deduction-style
logic rules using the Z logic. We divide this section
into two: the first part shows how the semantics for
charts is given in Z; the second part shows how the Z
semantics is given a meaning and then how rules for
charts can be derived.

Section 3 shows how we use the existing and well-
investigated refinement notion of Z to derive a re-
finement notion for charts. This is concluded with a
discussion of what this refinement notion is in terms
of the more traditional process algebraic, trace de-
scription of chart behaviour. In Section 4 we consider
monotonicity of refinement in general, and in Sec-
tion 5 we show how the logic we have developed can
be used to investigate and prove monotonicity proper-
ties of µ-Charts. Finally, we present some conclusions
in Section 6.

2 The µ-Charts Logic

This section provides an introduction to µ-Charts via
the definition its of semantics in Z. The logic and
semantics of Z itself is then used to induce a logic
and set-theoretic semantics for µ-Charts.

This process is divided into two natural phases:
we first use definitions to express the semantics of µ-
Charts in Z. These definitions define what we call the
transition model, which is essentially a function which
maps expressions from µ-Charts to Z, and which we
denote by J.K

Zt
. We then use the standard mapping

from Z into the underlying, core language ZC (Henson
& Reeves 2000). This mapping is denoted by J.K

ZC
.

The composition of these two semantic mappings then
gives us the semantics of µ-Charts in ZC . We then
use the logic of ZC together with the definitions that
go to make up J.K

Zt
to induce a logic for µ-Charts.

Since this logic has been constructed from the sound
logic for ZC by a series of conservative extensions (via
definitions), we know that the logic for µ-Charts is
sound too.

A µ-chart is either atomic or a combination of
charts using language operators. An atomic chart
is essentially a finite-state automaton where a transi-
tion in the chart is labelled with a pair, guard/action.
That the transition is taken (or triggered) is condi-
tional on the guard being satisfied by the current in-
put signals and leads to the action happening, mean-
ing that signals are output as required by that ac-
tion. Each chart has an input interface designating
signals that can trigger a transition and an output
interface designating signals that the chart can out-
put. A fundamental assumption is that time passes
in the control states of a chart, but the transitions
between these states occur instantaneously. A chart
reaction is therefore characterised by the input of a
set of signals from the environment and the instanta-
neous output of a set of signals to the environment.
This reaction is called a step or a tick of the clock,
but note that this does not mean that the intervals
between reactions must be equal.

A chart C has an input interface inC that typically
includes all of the signals that appear in its transition
guards and an output interface outC that typically
includes all of the signals that appear in its transition
actions.

In order to define large reactive systems, the
language has three structuring mechanisms: par-
allel composition, hierarchic decomposition and in-
put/output interface definition. In a parallel compo-
sition, each component chart reacts synchronously on
a global clock. A feedback mechanism between pairs
of charts makes output signals instantaneously avail-
able as input signals, which allows component charts
to communicate asynchronously on signals. A com-
position chart C = C1 | Ψ | C2, which composes charts
C1 and C2 with feedback on signals in the set Ψ, has
an input interface inC = inC1

∪ inC2
and an output

interface outC = outC1
∪ outC2

.
A further structuring mechanism means some of

the states of a chart need not be atomic, but rather
one chart may be embedded in another (“inside” one
of its states) as a sub-chart, using hierarchic decompo-
sition. Finally, the definition of the assumed context
of a chart via the explicit definition of the input and
output interfaces of a chart (of arbitrary structure)
allows signal hiding.

The full definition of the language semantics, via
the logic, treats each of these language operators sep-
arately. In this paper we will concentrate on just the
definition of atomic charts and the parallel composi-
tion operator.

S

A B
a / b

c / d

Figure 1: A simple atomic µ-chart

2.1 The transition model

The transition model essentially relates the current
configuration of a chart and input to a new configura-
tion and the resulting output. This relation describes
every possible step that a chart can take. In contrast,
a typical way to give a semantics for such languages
is to use sets of observable input/output traces, for
example the trace semantics given by Scholz (1998).
This abstracts on the control states by defining just
its reactions in an assumed context. The link be-
tween the logical semantics described here and a trace
semantics can be constructed by considering a chart
making one step after another and recording just the
input and resulting output. The resulting trace se-
mantics is considered fully by Reeve (2005).

2.1.1 Atomic charts

An atomic chart has the general textual form (Name,
State set, Start state, Feedback signals, transition
function). Consider the chart (S , {A, B},A, {}, δ)
(where δ is the appropriate transition description)
pictured in Figure 1. 1

Informally the behaviour that this chart captures
can be described as: the chart starts in state A; if
it is in state A and the signal a is input then signal
b is output and the chart changes to state B; and
similarly if it is in state B and c is input then d is
output and the new state is A.

The essence of the transition model for an atomic
µ-chart is the description of each of its transitions
using a separate Z operation schema. These opera-
tion schemas (one for each transition in the chart)
are combined using Z schema disjunction to give one
schema that describes the transition behaviour of the
chart. The Z state of the model has an observation
that indicates the current configuration of the chart.
The operation schemas describe each transition, that
is, how and when that configuration changes.

For an atomic chart (C ,Σ, σ0,Ψ, δ) we introduce Z
axiomatic definitions (Figure 2) that model the set
of possible chart states, the input interface and the
output interface. The sets µState and µSignal contain
all allowable state and signal symbols.

The state schema ChartC records the current state
of the chart C using observation cC . The initial state
of the chart is modelled by the schema InitC .

A separate state schema called Cσ is given for
each state in the chart σ ∈ Σ.

Next we give an operation schema for each
chart transition. That is, for each transition
(Sf , St , guard/action) ∈ δ we define an operation schema
named δSf St .

We can see from this definition that each binding
in the set has five observations. The meanings of these
are:

• cS—the state of the chart before the transition
happens, in this case the state A

1We use the piece of text which is the name of the chart to
refer to both the chart itself and its name, allowing the context to
indicate which we mean. The fact that the name stands for itself
as a piece of text is used in the syntactic process of defining the Z
that a chart has as its semantics, as we shall see.

statesC : P µState

inC : P µSignal

outC : P µSignal

Ψ : P µSignal

ChartC == [cC : statesC]

InitC
ChartC

cC = σ0

Cσ == [ChartC | cC = σ]

δSf St

CSf

CS ′
t

iC : P inC

act : P µState

o′

C
: P outC

C ∈ act

ρ(guard)
o′

C = action

Figure 2: The Z semantics, the transition model, for
an atomic chart

• iS—the set of input signals which are offered by
the environment that are in the input interface
of the chart

• act—a set that denotes all currently active charts

• c′S—the state of the chart after the transition
happens, in this case B

• o′

S—the output generated by the chart, in this
case the set containing the signal b

Note that part of the definition of atomic charts—
the observation act—is part of the mechanism that
allows for the definition of the hierarchic decomposi-
tion operator. As we will not be looking at the details
of this operator in this paper, it is sufficient to un-
derstand that a chart can be active or inactive, and
transitions happen only when an atomic chart is ac-
tive, which is recorded by having its name contained
in act. Hence the predicate C ∈ act is part of the
precondition of the operation schema δSf St .

The predicate ρ(guard), introduced in schema
δSf St , stands for the Z predicate that models the syn-
tactic guard of a chart transition. If we consider a
transition’s guard in general as a (possibly empty)
list of signal expressions, separated by the conjunc-
tion symbol &, then each of the elements in the list
can be classified into two categories: either a posi-
tive signal expression—simply the name of a signal;
or a negative signal expression—the signal name is
prefixed with a minus sign. A positive signal expres-
sion, say sig where sig ∈ inC , is denoted by the Z
expression sig ∈ iC ∪ (o′

C ∩ Ψ). A negative signal ex-
pression, say −sig, is denoted by the Z expression
sig 6∈ iC ∪ (o′

C ∩Ψ). The syntactic construction process
denoted by ρ determines the appropriate predicate
for each signal expression and connects them together
using the Z logical conjunction operator ∧. If the list
is empty the predicate (produced by the process ρ)
would be true. So, for the transition labelled a/b
in chart S in Fig.1 the predicate produced would be

a ∈ ic ∪ (o′
c ∩ Ψ) since the guard of this transition is

just a.
This general scheme for giving the Z for a transi-

tion defines the semantic function J.K
Zt

. For an arbi-
trary transition (Sf , St , guard/action) we have,

q
(Sf ,St , guard/action)

y
Zt

=def δSf St

The schema δSf St provides the Z semantics for the
transition.

Along with the schemas for each transition we also
need a single schema that models the behaviour of the
chart when it is inactive (Figure 3). Again this Z is
part of the general transition necessary to model the
entire language, in particular, including the decom-
position operator. Here it is enough to realise that an
inactive chart plays no part in output. For the gen-
eral atomic chart (C , Σ, σ0,Ψ, δ), we name the inactive
schema InactiveC .

Now, the entire transition model for an atomic
chart is given by Definition 2.12

Definition 2.1

J(C ,Σ, σ0,Ψ, δ)K
Zt

=def (
W

{JtK
Zt

| t ∈ δ}) ∨ InactiveC

in a context containing the axiomatic definitions and ChartC ,
InitC and Cσ.

The complete transition model for chart S from
Figure 1 is defined as the disjunction of each of the
individual transition schemas, i.e. δS == δAB ∨ δBA ∨
InactiveS , and two of these schemas are given as ex-
amples in Figure 4.

2.1.2 The composition operator

The composition operator allows us to take two
µ-charts C1 and C2 and join them together to form
a new, more complex chart C1 | Ψ | C2 where Ψ
is a set of signals on which C1 and C2 can com-
municate. As mentioned, the charts run separately
but synchronously, i.e. in lock step with one another.
Their only medium of communication is asynchronous
via the multicast of those signals in the set Ψ. The
communication is asynchronous in that output is al-
ways enabled—a chart can always broadcast signals.
However, there is no guarantee that the other chart
in the composition is listening, that is, ready to react
on the signals broadcast. Signals persist only during
one step of the chart.

The transition model JC K
Zt

for the composed chart
C = C1 | Ψ | C2 contains a similar set of Z definitions
and schemas (Figure 5) as that for an atomic chart.
Here it is assumed that any entity subscripted with
C1 comes from the transition model of the chart C1

and similarly for C2.

2.1.3 Partial relations semantics

The step semantics of a chart is no more than the
transition model of the entire µ-chart specification

2We use the notation
W

X to denote the schema disjunction of
all the schemas in the set X .

InactiveC

ΞChartC
iC : P inC

act : P µState

o′

C
: P outC

C 6∈ act

o′

C = {}

Figure 3: Z semantics for Inactive

δAB

SA

SB ′

iS : P inS

act : P µState

o′

S : P outS

S ∈ act

a ∈ iS ∪ (o′

S ∩ {})
o′

S = {b}

InactiveS

ΞChartS
iS : P inS

act : P µState

o′

S
: P outS

S 6∈ act

o′

S
= {}

Figure 4: Z for the chart in Figure 1

with the active state machinery hidden. Given an
arbitrary µ-chart called C , the step behaviour of C

is defined by another schema which, by convention,
we call CSys (Figure 6).

The schema CSys (right) hides the active state
observation and specifies that the top-most chart of
any hierarchical structure is active.

So, JK
Zt

for an arbitrary chart C generates various
pieces of Z, depending on the structure of C , defining
the transition model. We then have to give a meaning
to the Z in order to generate logical rules, which we
now do.

2.2 The ZC model

From the transition model of a chart as given above
we move on to give a logic for charts by modelling the
transition model in ZC hence deriving introduction
and elimination rules that allow us to prove properties
about a chart’s transition model and hence about a
chart.

2.2.1 Atomic charts

Given the general method for constructing the Z se-
mantics of a chart (i.e. the transition model), we can
describe the meaning of the chart by describing the
meaning of the Z. To do so we rely on a reasonable
level of familiarity with the meta-language used in
the presentation of the kernel logic ZC in Henson
and Reeves (2000). Briefly, we: use the binding con-
catenation operator ?; restricted membership

.

∈; re-
stricted equality .

=; type meta-variables for example
T; αT as shorthand for all observations of the schema
type T; superscript type meta-variables to denote the
types of bindings and schemas; and the type union op-
erator g. For brevity, we suppress mention of types
(indicated by superscripts on terms) in all cases where
this is possible and rely on the unique of types that
ZC enjoys to assure ourselves of the well-formedness
(which includes well-typedness) of our terms.

Returning to the example chart of Figure 1, again,
the Z meaning of the transition from configuration A

to B is given by the schema δAB , whose meaning in
turn is given in the theory ZC as a set of bindings as
follows:

JδAB K
ZC

=def

{〈| cSVA, iSVi , act Vactive, c′SVB , o′
SV{b} |〉 |

i ⊆ inS ∧ active ⊆ µState • S ∈ active ∧ a ∈ i}

statesC : P µState

inC : P µSignal

outC : P µSignal

Ψ : P µSignal

statesC =
statesC1

∪ statesC2

inC = inC1
∪ inC2

outC = outC1
∪ outC2

ChartC
ChartC1

ChartC2

InitC
InitC1

InitC2

δC
∆ChartC
iC : P inC

act : P µState

o′

C : P outC

C1 ∈ act ⇔ C ∈ act

C2 ∈ act ⇔ C ∈ act

∃ iC1
, iC2

, oC1

′, oC2

′ : P µSignal •
iC1

= (iC ∪ (o′

C ∩ Ψ)) ∩ inC1
∧

iC2
= (iC ∪ (o′

C ∩ Ψ)) ∩ inC2
∧

o′

C = oC1

′ ∪ oC2

′ ∧ δC1
∧ δC2

Figure 5: Semantics for composition

CSys

∆ChartC
iC : P inC

o′
C : P outC

∃ act : P µState • C ∈ act ∧ δC

Figure 6: Top-level semantics

The second schema InactiveS describes the be-
haviour of the chart when it is inactive, and its mean-
ing is given as:

JInactiveS K
ZC

=def

{〈| cSVs, iSVi , act Vactive, c′SVs, o′

S V{} |〉 |
s ∈ {A, B} ∧ active ⊆ µState ∧ i ⊆ inS • S 6∈ active}

By definition of schema disjunction the set JδS K
ZC

,
which gives in ZC the meaning of the transition model
for the chart, contains all of the bindings from the sets
JδAB K

ZC
, JδBAK

ZC
and JInactiveS K

ZC
.

In order to make the logical rules we are working
towards slightly more readable, we define the predi-
cate Trans which captures what it means for a binding
of the transition model to characterise a transition of
the chart. Given an arbitrary transition of the form
t = (Sf , St , guard/action), from the chart C , we have,

Trans t zT =def

z .cC = t .Sf ∧ ρ(t .guard)[αT/z .αT]
∧ z .c′C = t .St ∧ z .o′

C = t .action

The terms t .Sf etc. are assumed to be defined in
the obvious way such that t .Sf gives the “from state”
of a transition, t .guard gives the guard component of
a transition, t .St gives the “to state” and t .action

gives the action component. ρ is as defined above
and constructs a predicate from a guard.

Now we give the formal definition of the transition
model for charts directly in terms of the meaning of
the Z model.

Definition 2.2 For the arbitrary atomic chart
(C , Σ, σ0,Ψ, δ), we have:

JδC K
ZC

=def

{z | C 6∈ z .act ∧ z
.

∈ ΞChartC ∧ z .o′
C = {} ∨

C ∈ z .act ∧ ∃ t ∈ δ • Trans t z}

From this definition we finally derive introduction and
elimination rules.

Proposition 2.1 Given the atomic chart (C , Σ, σ0,Ψ, δ),
where for arbitrary binding z we have:

z
.

∈ δC actv C z t ∈ δ,Trans t z ` P

P
(Z −

t)

actv C z t ∈ δ Trans t z

z
.

∈ δC
(Z +

t)

assuming the usual conditions (due to the elimination of an
existential quantifier) for t and P , and where, for an atomic
chart C , the predicates actv C z and inactv C z are defined
as follows:

actv C z =def C ∈ z .act

inactv C z =def ¬ actv C z

2.2.2 Composition

We give the definition of the ZC model for composed
charts in terms of the meaning of the transition model
in:

Definition 2.3 Given an arbitrary composition C = C1 |
Ψ | C2 we have,

JδC K
ZC

=def

{z | C1 ∈ z .act ⇔ C ∈ z .act ∧
C2 ∈ z .act ⇔ C ∈ z .act ∧
∃ o1, o2 • z .o′

C = o1 ∪ o2 ∧

z ? 〈| iC1
V(z .iC ∪ z .o′

C ∩ Ψ) ∩ inC1
, oC1

′Vo1 |〉
.

∈ δC1
∧

z ? 〈| iC2
V(z .iC ∪ z .o′

C ∩ Ψ) ∩ inC2
, oC2

′Vo2 |〉
.

∈ δC2
}

The introduction and elimination rules for com-
posed charts shown in Figure 7 are derived from this
definition.

2.2.3 The step semantics

Now Definition 2.4 defines the step semantics for a
chart.

Definition 2.4 For arbitrary chart C with the associated
Z description CSys,

JCSysK
ZC

=def

{z | ∃ z1 • z1
.
= z ∧ actv C z1 ∧ z1 ∈ δC }

From this definition we derive introduction and
elimination rules given in Figure 8.

We often refer to the step semantics as the par-
tial relations semantics. This is because the meaning
of the schema CSys can be considered as a relation
that maps the “before” configuration of a chart and
input to its “after” configuration and output. This
relation is often partial because a µ-Chart specifica-
tion describes the reaction to some input events and
not others.

3 The µ-Charts Refinement Calculus

In Derrick and Boiten (2001) and Woodcock and
Davies (1996), a framework for considering Z spec-
ifications and Z refinement in terms of abstract data
types (ADTs) is introduced. The idea is to map a
“standard” Z specification, i.e. state schema, initial-
isation schema and operation schemas, into a rela-
tional ADT setting. Broadly a relational ADT is a
tuple of the form (X , xi , xf ,Ops) such that: X is a state
space; xi is an initialisation relation; xf is a corre-
sponding finalisation relation; and Ops is an indexed
set of relational operations. The initialisation and fi-
nalisation relations map a global observable state into
the ADT’s private state and vice versa. A program
of an ADT is defined as a particular sequence of the
indexed operations upon a data type, preceded by ini-
tialisation and ended by finalisation. This mapping is
used to derive a data refinement theory for Z specifi-
cations from the existing refinement notion for partial
relations ADTs.

Given that the partial relation semantics for µ-
Charts is defined via Z we can fit charts into the
same framework. Recall from Section 2 that the Z
model of a chart constitutes a state space, an initial-
isation schema and one operation schema, this oper-
ation schema being the description of every step that
the chart can take. If we view the Z model of a chart
in the ADT framework we can say that any program
allowed by the chart is an example of composing the
step operation together with itself again and again.
Of course, what we are really interested in is the se-
quences of inputs and outputs that result from such
programs. If we imagine running this program over
all possible input sequences and recording the result-
ing output sequences then we have exactly the trace
semantics of the chart. Because we are modelling re-
active systems we choose to consider the traces over
infinite sequences of input and output. Therefore, we
need to imagine composing the step operation with
itself indefinitely.

In the following we show how we can generalise the
Z/ADT results to charts. In particular we show that
the ADT view of a chart can be considered as giving
the trace semantics of that chart. Then we derive a
notion of partial relations refinement for charts based
on an existing notion of partial relation refinement for
Z.

We diverge from what may be considered the usual
way to give a refinement notion in a reactive systems
setting, that is, using the behavioural approach (as
Derrick and Boiten (2001) calls it) for completing par-
tial relations, and assume chaotic behaviour outside
of the preconditions of partial relations (which is the
more common-to-Z notion too, as it happens). The
resulting notion of refinement is particularly interest-
ing because it allows us to refine both the behaviour
of a reactive system and the context, via the system’s
interface, in which we assume that reactive system
will reside. This notion of refining both behaviour
and context is not new to this work. The notion of
“chaotic refinement” for specifications of reactive sys-
tems was suggested in the original definition of the
language µ-Charts (Scholz 1998). Of course, since a
behavioural interpretation is available in the Z frame-
work, we could also derive more traditional rules for a
reactive system if we wished to, as we typically would
when we move from a specification to an implemen-
tation.

3.1 Charts and ADTs

The usual account of ADT refinement makes the sim-
plifying assumption that the types of inputs and out-
puts associated with the abstract and concrete pro-

Proposition 2.2 Given C = C1 | Ψ | C2, for the binding z and arbitrary sets o3 and o4, we have:

z
.

∈ δC

z .o′

C
= o1 ∪ o2,

z ? 〈| iC1
V(z .iC ∪ z .o′

C
∩ Ψ) ∩ inC1

, oC1
′Vo1 |〉

.

∈ δC1
,

z ? 〈| iC2
V(z .iC ∪ z .o′

C
∩ Ψ) ∩ inC2

, oC2
′Vo2 |〉

.

∈ δC2
,

actv C z ∨ inactv C z ` Q

Q
(| |−)

where the usual conditions, due to the elimination of existential quantifiers, hold between o1, o2 and Q .
The predicates actv C z and inactv C z are defined for the composed chart C = C1 | Ψ | C2 as:

actv C z =def actv C1 z ∧ actv C2 z ∧ C ∈ z .act

inactv C z =def inactv C1 z ∧ inactv C2 z ∧ C 6∈ z .act

Figure 7: Rules for composition

Proposition 2.3 For arbitrary chart C and binding z we have,

z
.

∈ CSys z ? za
.

∈ δC , actv C za ` Q

Q
(Z−

s)

∃ y • z ? y
.

∈ δC ∧ actv C y

z
.

∈ CSys
(Z+

s)

where the usual conditions (due to the elimination of an existential quantifier) hold between za and Q .

Figure 8: Rules for a step of the system

grams (the two n-operation programs Pn
a and Pn

c)
are the same. For our purposes this simplifying as-
sumption is too strict. We allow, under what turn
out to be rather strong provisos, the input and out-
put interface of a chart to be changed via refinement.
Weakening the assumption of equivalent typed input
and output for both abstract and concrete programs
is achieved using the respective initialisation and fi-
nalisation relations in conjunction with the notion of
an observable context for charts. We assume that
refinement is a judgement made in the broadest in-
put/output context.

We use the respective initialisation and finalisa-
tion relations to make the ADT’s global state model
the appropriate input/output context. The observ-
able behaviour of the ADT (i.e. the global state) is
given by the input and output sequences that range
over the signals of both charts. The initialisation rela-
tion maps the global input sequences into appropriate
input sequences for the respective charts. Similarly,
the finalisation relation maps the outputs from the
respective charts into the global output sequences.

From this we make a link between the semantics
for a chart C given by embedding the chart in an
ADT framework, denoted by JC Krω

d
, and an infinite

trace semantic definition of charts, i.e. JC K
ω

x
, as fol-

lows:3

Definition 3.1 For arbitrary chart C and sequences i ∈ Iω

and o ∈ Oω ,4

(i , o) ∈ JC Krω

d
=def (iB(inC), oB(outC)) ∈ JC Kω

x

Now we follow the well-known relational ADT ap-
proach (for example see Woodcock and Davies (1996)
and Derrick and Boiten (2001)) to derive refinement
rules for charts in terms of their partial relations se-
mantics. Note that Definition 3.1 allows us to relate
the resulting refinement notion back into the infinite
trace style semantics for charts as given in Scholz
(1998).

3We assume that I∗
c denotes the set of finite sequences ranging

over the type P Input . Similarly, O∗
c denotes all finite sequences

over the type P Output . The infinite sequences Iω

c and Oω

c are
similarly defined.

4The notation iB(inC) denotes the pointwise restriction of the

elements in the sequence i to the elements in the set inC and
similarly for outC .

3.2 Simulation and Corresponding States

Before we derive the refinement rules we briefly in-
troduce and discuss the concept of simulation. When
comparing two charts based on input and output
traces, that is, checking for or calculating trace re-
finements, the state information of the charts is al-
ready abstracted away. This is not the case, however,
when working with the partial relations semantics.
We need a way of relating the states of one chart
with those of another. This is exactly the task of sim-
ulations, sometimes also known as retrieve relations,
abstraction relations, or coupling invariants (Derrick
& Boiten 2001). Something as simple as changing the
names of the states from the abstract chart to the con-
crete requires that we have a simulation relation that
maps the abstract state names into the new concrete
state names.

In the standard ADT treatment, a simulation re-
lation encodes the relationship between the states of
the abstract specification and the states of the con-
crete specification. We usually think of the simulation
R as completing a series of commuting squares. This
allows us to prove the necessary refinement proper-
ties for each of the associated operations (in our case
there is only one) and use an inductive argument to
show that the refinement holds when we compose (in
an appropriate order) several operations together into
programs. We refer the reader to Derrick and Boiten
(2001) for a detailed description of the concepts of
data type refinement.

As discussed in Section 3.1, the initialisation and
finalisation relations are used to modify the observ-
able input and output sequences to allow refinement
to change the context (i.e. input/output interfaces)
of a chart. Reflecting this, we split the definition of
the simulation relation into two separate parts. The
first part is the simulation between configurations of
the respective abstract and concrete charts. We will
refer to this part of the simulation as the correspond-
ing relation or CorrA

C for a simulation between charts
A and C .

The Z schema CorrA
C (Figure 9) gives the gen-

eral scheme for the corresponding relation. The pred-
icate P defines the simulation relationship between
the states of the respective charts A and C , and will,
of course, depend on precisely what charts A and C
are.

The second part of the simulation relation allows
refinements that change the input/output interfaces

CorrA
C

ChartA
Chart ′C

P

IOA
C

iA : inA

i ′C : inC

oA : outA
o′

C : outC

iA ∩ inC = i ′C ∩ inA

oA ∩ outC = o′
C ∩ outA

Figure 9: Semantics for simulation relation

of a chart. For arbitrary input interfaces inA and
inC , and output interfaces outA and outC , the schema
IOA

C is constructed so that
q
IOA

C

y
ZC

represents a rela-

tion between the inputs and outputs from the abstract
chart to the inputs and outputs of the concrete chart.
Importantly, when this relation is combined with the
corresponding relation we get a schema representing
the simulation relation between charts A and C that
has type P(T io

A gT io
C

′
) as follows:

Definition 3.2 For charts A and C we have,

RA
C

=def CorrA
C

∧ IOA
C

where
q
RA

C

y
ZC

has type P(T io
A gT io

C

′
).

Significantly, when using the refinement theory
presented the developer need only define the relation-
ship between states of the “refining” and “refined”
charts. The input/output relationship or interface
refinement is always constrained by the general rela-
tionship identified by the schema IO.

3.3 Partial Relation Refinement

Now we can derive partial relations refinement rules
for charts. The derivation of the different sets of
rules closely follows a similar treatment by Derrick
and Boiten (2001).

We embed the Z-based chart ADT presented so far
into a relational data type as follows.

Definition 3.3 For an arbitrary chart C and all sequences
si and so, the Z ADT semantics (ChartC , InitC , {CSys}) is
embedded in the relational data type
(CState, CInit , {CStep}, CFin), such that,

CState =def Iω

C ×O∗
C × UC

CInit =def {(si 7→ (siB(inC), 〈〉, z)) | z ∈ InitC }

CFin =def {(siB(inC), soB(outC), z) 7→ so | z ∈ ChartC }

CStep =def {(i asi , so, z1) 7→ (si , so ao, z2) |
z1 ? 〈| iC Vi , o′

C
Vo |〉 ? z ′2 ∈ CSys}

The embedding of the simulation R gives the simulation
relation S between the ADTs representing charts A and C .

For arbitrary sequences si and so, and bindings z1 and
z2 we have,

S =def {(siB(inA), soB(outA), z1) 7→

(siB(inC), soB(outC), z2) | z1 ? z ′2 ∈ CorrA
C
}

Notice that the relational simulation S is defined
just in terms of the corresponding relation CorrA

C .
This is because the pointwise restriction of the se-
quences si and so already model the same relation-
ship between input and output as the schema IOA

C .

3.4 Total Chaos Refinement

3.4.1 Forward Simulation

Here we derive rules for a total chaotic interpretation
of charts. Derrick and Boiten (2001) give five refine-
ment conditions that are necessary to show that a re-
lational data type C refines a relational data type A

using a forwards simulation S . They begin by lifting
(by introducing the special value ⊥) and totalising
the relations of the respective data types. Derrick
and Boiten refer to the total chaotic interpretation
as the contract approach. After giving the necessary
lifted totalised relations they show how the five re-
finement conditions, referred to as initialisation, fi-
nalisation, finalisation applicability, applicability and
correctness, can be simplified (“relaxed”) to remove
any reference to the introduced value ⊥. We give the
five relaxed conditions and refer to Woodcock and
Davies (1996) for their derivations.

Definition 3.4 Assuming data types

A = (AState, AInit , {AStep}, AFin)

and
C = (CState, CInit , {CStep}, CFin)

a forwards simulation S is a relation from AState to CState
satisfying the following conditions:

CInit ⊆ AInit o
9 S (init)

S o
9 CFin ⊆ AFin (fin)

ran((dom AFin) CS) ⊆ dom CFin (fin app)

ran((dom AStep) CS) ⊆ dom CStep (app)

((dom AStep) CS) o
9 CStep ⊆ AStep o

9 S (corr)

Now we use each of these conditions along with
the relational embedding defined in Definition 3.3 to
derive corresponding conditions expressed in Z.

For initialisation we have,

CInit ⊆ AInit o
9
S

⇔

∀ yc • yc

.

∈ InitC ⇒ ∃ t1 • t1
.

∈ InitA ∧ t1 ? y
′

c ∈ R

Unlike in the derivation provided by Derrick and
Boiten (2001), the finalisation condition does not hold
trivially for charts. This difference arises because
the derivation for Z refinement makes the assumption
that both the abstract and concrete ADTs have equiv-
alently typed input and output, whereas the deriva-
tions required here do not.

S o
9
CFin ⊆ AFin

⇔

outA ⊆ outC

Because the given finalisation relation is total over
all output sequences and states of the respective
charts, the finalisation applicability condition holds
trivially.
Now for the applicability condition we have:

ran((domAStep) C S) ⊆ domCStep

⇔

∀ ya , yc • Pre ASys ya ∧ ya ? y
′

c ∈ R ⇒ Pre CSys yc

And finally, for correctness we have:

((domAStep) C S) o
9
CStep ⊆ AStep o

9
S

⇔

∀ ya , yc , zc • (Pre ASys ya ∧ ya ?y
′

c ∈ R ∧ yc ?z
′

c

.

∈ CSys) ⇒

∃ t • ya ? t
′
.

∈ ASys ∧ t ? z
′

c ∈ R

The completion of these derivations gives us the
necessary conditions to show that a relation R is a
forwards simulation between two charts A and C un-
der the total chaotic interpretation of the partial re-
lations semantics. As we have shown, it follows that
chart C refines A in the total chaotic trace interpre-
tation for charts. In line with the natural deduction
style presentation that we have adopted, Figure 10
gives introduction and elimination rules for forwards
simulation total chaotic refinement.

Notice the rules for forward simulation refinement
presented here are, with the exception of the initiali-
sation and finalisation conditions, very similar to the
rules presented by Deutsch and Henson in Deutsch
and Henson (2003) for SF-refinement. A similar
method of derivation gives the corresponding rules
for the backwards simulation case.

4 Monotonicity results

As with any language that provides operators allow-
ing modular specifications and a refinement calculus
for step-wise development, the monotonicity proper-
ties of the µ-Charts operators needs to be considered.
These monotonicity properties are important for µ-
Charts because they show to what extent the lan-
guage supports modular development. Refinement is
considered monotonic with respect to a language op-
erator if a refinement of one part of a composite spec-
ification implies a refinement of the specification as
a whole, and having this result is clearly important
when we turn to using the logic on large specifica-
tions.

It turns out that we need quite strong, but very
easy to motivate, side-conditions to guarantee that re-
finement is monotonic with respect to the chart com-
position operator.

Even though the monotonicity side-conditions de-
scribed in Proposition 5.1 are presented before the
monotonicity result itself, the conditions were formu-
lated and refined from the proof of the monotonic-
ity property (which we omit here due to space con-
straints). That the process of proving the monotonic-
ity property allows us to state (and prove) these nec-
essary side-conditions is evidence that the method of
this paper has met some important goals. That is,
the formal framework presented allows us to formu-
late precise descriptions of general, and typically non-
obvious, language properties. In the case of the mono-
tonicity result presented here, the first of the three re-
quired side-conditions is particularly non-obvious and
at first reading may appear incorrect. However, the
proof of monotonicity and careful evaluation of what
this condition actually entails, makes clear the signif-
icance of the restriction.

5 Monotonicity of the µ-Charts composition
operator

We begin by showing that the composition operator of
µ-Charts is monotonic with respect to forward simula-
tion refinement only when appropriate side-conditions
hold. Like the investigation of Deutsch et al. (2003),
the monotonicity proof itself is used to establish the
necessary side-conditions. After ascertaining the re-
quired side-conditions an intuitive (in chart terms)
justification for their necessity is given.

Recall that, by definition 3.4, to show that a for-
ward simulation refinement holds between two charts
requires that we show that an appropriate simulation
exists between the charts. The proof of monotonicity

relies heavily on splitting the definition of the simu-
lation into two parts—the simulation between the re-
spective charts’ configurations using the correspond-
ing relation and the simulation between the allow-
able input and output signals using the relation IO .
This notion of splitting the simulation relation was
introduced in Section 3.2 where we define the corre-
sponding relation between two charts A and C as
CorrA

C and the input/output relation as IOA
C . Where

previously we have denoted (total chaotic) forward
simulation refinement between two charts C and A

as C w
τ f A, here we supplement the relation with an

explicit label that names the simulation required for
refinement. So, assuming that chart C refines chart
A using the simulation S , we will write C wS

τ f A.
Proposition 5.1 states the monotonicity result for

forward simulation refinement.

Proposition 5.1 If, for arbitrary charts A1, C2, and sig-
nal set Ψ, we have that,

[A1]Ψ wT
τ f [C2]Ψ

SC1

outA1
∩ Ψ = outC2

∩ Ψ
SC2

outA1
∩ outB = outC2

∩ outB
SC3

where T =def Corr
C2

A1
∧ IO

CΨ

AΨ
for CΨ = [C2]Ψ and AΨ =

[A1]Ψ, then for arbitrary chart B , we have the monotonicity
result,

C2 wR
τ f A1 SC1 SC2 SC3

(C2 | Ψ | B) wS
τ f (A1 | Ψ | B)

where S =def Corr
A1

C2
∧ CorrB

B ∧ IOA
C , and R =def

Corr
A1

C2
∧ IO

A1

C2
.

Despite the intricate appearance of the three side-
conditions required for monotonic refinement of com-
posed charts, these conditions are not unexpected
when described in terms of charts themselves.

First consider the following property that holds in
general for arbitrary charts A1 and C2, and feedback
set Ψ.

Lemma 5.2

C2 wR
τ f A1 outA1

∩ Ψ = outC2
∩ Ψ

[C2]Ψ wT ′

τ f [A1]
Ψ

where T ′ =def Corr
A1

C2
∧ IO

AΨ

CΨ

Given this property holds it follows that, in the
context of the monotonicity proof of Proposition 5.1,
i.e. where SC1 holds, the charts A1 and C2 are out-
put equivalent with respect to the signals in the set
Ψ, i.e. [C2]Ψ ≈O [A1]Ψ. In words, an environment that
reacts to just those signals in the set Ψ could not
tell the difference between the charts A1 and C2.
Therefore, we see that one of the properties required
to guarantee monotonic refinement (with respect to
composition) is that refining one part of the compo-
sition, say refining chart A1 into C2, cannot change
the behaviour of A1 with respect to the signals in Ψ
that are used to communicate with the other part of
the composition, e.g. chart B.

To explain the rôle of the side-condition SC1 more
specifically, with regard to the monotonicity proof,
we describe two distinct parts that SC1 plays in the
proof.

Firstly, SC1 enforces that the precondition of
the chart, i.e. the set of state/input pairs for which
the chart has explicitly defined behaviour, cannot be

Proposition 3.1 For arbitrary charts A and C , and bindings ya , yc , and zc , we have,

` outA ⊆ outC

yc

.

∈ InitC ` t1
.

∈ InitA

yc

.

∈ InitC ` t1 ∗ y ′
c ∈ R

Pre ASys ya , ya ? y ′
c ∈ R ` Pre CSys yc

Pre ASys ya , ya ? y ′
c ∈ R, yc ? z ′c

.

∈ CSys ` ya ? t ′2
.

∈ ASys

Pre ASys ya , ya ? y ′
c ∈ R, yc ? z ′c

.

∈ CSys ` t2 ? z ′c ∈ R

C w
τ f A

(w+

τ f
)

C w
τ f A

outA ⊆ outC
(w−

τ f I
)

C w
τ f A yc

.

∈ InitC t1
.

∈ InitA, t1 ? y ′
c ∈ R ` P

P
(w−

τ f II
)

C w
τ f A Pre ASys ya ya ? y ′

c ∈ R

Pre CSys yc

(w−

τ f III
)

C w
τ f A Pre ASys ya ya ? y ′

c ∈ R yc ? z ′c
.

∈ CSys
ya ? t ′2

.

∈ ASys,
t2 ? zc ∈ R ` P

P
(w−

τ f IV
)

where the usual conditions hold, due to elimination of existential quantifiers, between t1, t2 and P .

Figure 10: Rules for chaotic refinement

weakened. Note that here we use the term weaken-
ing of the precondition in a very strict sense—side-
condition SC1 restricts any weakening of the precon-
dition within the domain defined by the input inter-
face of the abstract specification. Extending the do-
main of definition for a chart specification, i.e. in-
creasing the input interface and weakening the pre-
condition outside of the original domain, is still per-
mitted in general.

This first aspect of the side-condition SC1 is re-
quired for the part of the monotonicity proof re-
lated to the correctness property introduced in Sec-
tion 3.4.1.

Figure 11 presents a counter-example that illus-
trates why this part of side-condition SC1 is neces-
sary in terms of charts. Given the charts A and C

we clearly have that C2 w
τ f A1, yet it is not the case

that C w
τ f A. That is, even though C2 refines A1,

the composed chart C is not a valid refinement of
A. The defined reaction of chart A given input {a}
is to output {w , t}, i.e. the two left hand transitions
of chart A combine with respect to feedback to cre-
ate an overall chart transition triggered by just the
input {a}. However, chart C can nondeterministi-
cally choose to output {w , t} or {w , s} given input
{a}, i.e. both the respective left hand and right hand
transitions combine to give this nondeterministic be-
haviour. Therefore, C has additional nondeterminis-
tic behaviour to A and no valid refinement holds.

A1

Xa & t / w

B

Yw / t w / s

{w,t}

C2

X a & −t / wa & t / w

B

Yw / t w / s

{w,t}

Figure 11: SC1, partI : Charts A = (A1 | {w , t} | B) and
C = (C2 | {w , t} | B)

The second aspect of SC1 is that it insists that
the output behaviour, with respect to feedback, of
an abstract specification is not changed via refine-
ment. The property is required to prove the part
of the monotonicity result related to the applicability
condition.

In terms of charts, Figure 12 illustrates another
counter-example that demonstrates why this second
aspect of SC1 is a necessary requirement for mono-
tonic refinement. Note that the output interface of
the chart C2 is assumed to contain the signal w, i.e.
we assume C2 is a behavioural refinement of A1 rather
than an interface refinement. Again we have that the
composed chart C does not refine the chart A. This
is because A is defined for input {a} due to feedback
on w where chart C is not. Therefore chart C acts
chaotically for input {a} and the resulting additional
nondeterminism invalidates the refinement relation.

A1

Xa / w a /

B

Yw / t

{w}

C2

X a /

B

Yw / t

{w}

Figure 12: SC1 and SC2: Charts A = (A1 | {w} | B)
and C = (C2 | {w} | B)

The same charts from Figure 12 can be used to
demonstrate why the side-condition SC2 is required
for monotonicity. In this case, however, we assume
that the output interface of chart C2 is reduced to the
empty set of signals, that is, in this case C2 is an in-
terface refinement of A1 rather than a behavioural re-
finement as above. Given this assumption SC1 holds,
that is, [A1]Ψ is a valid refinement of [C2]

Ψ
. However,

from inspection it is obvious that SC2 does not hold
in this case, that is, outA1

∩ Ψ 6= outC2
∩ Ψ, specifi-

cally, {w}∩{w , t} 6= {}∩{w , t}. The side condition SC2

is required to prove monotonicity in relation to the
correctness condition.

Finally, the side-condition SC3 is required because
µ-Charts refinement allows the designer to change the
output context of a chart using interface refinement.
If an interface refinement of one chart in a composi-
tion extends the control that the chart has over the
environment using signals that were originally used

just by the other part of the composition, then there
is the possibility that this new behaviour, from both
charts, will be inconsistent when the charts are re-
combined in composition. For example, consider the
counter example illustrated by the charts of Figure 13.

A1

X a /

B

Yw / t −w / s

C2

X a / t

B

Yw / t −w / s

Figure 13: SC2(ii): Charts A = (A1 || B) and C =
(C2 || B)

Here the valid interface refinement C2 w
τ f A1

allows C2 to control its environment over signals pre-
viously dealt with by the chart B, i.e. the signal t.
The result is that the composed chart C can output
{s, t} for input {a} where chart A could only output
{s} for input {a}. Hence, chart C has new behaviour
that was not specified by chart A and therefore C is
not a valid refinement of A.

Similar arguments can be used to show that the
same side-conditions, SC1, SC2 and SC3, are sufficient
to guarantee monotonic refinement with respect to
the composition operator for charts in the backwards
simulation case.

5.1 The firing conditions interpretation of µ-
Charts

A requirement for monotonic refinement is that the
preconditions remain unchanged over the domain of
definition of a chart. This requirement may cause
an observant reader to question whether the total
chaotic and firing conditions notions of refinement
coincide in the case where refinements adhere to the
monotonicity conditions. In particular, the work of
Deutsch, Henson and Reeves (2002) shows that re-
finement based on a firing conditions approach can
be considered as a notion that insists on the stability
of the precondition. That is, refinement that allows
the reduction of nondeterminism but insists that the
precondition is neither strengthened nor weakened.

In fact, we can show that total chaotic refinement
is both sound and complete with respect to firing con-
ditions refinement when we insist that just the first
condition SC1, for monotonic refinement, is met. Any
(guaranteed) monotonic refinement that we can prove
using the total chaotic rules can also be proved using
the rules for firing conditions refinement.

This is expressed by Proposition 5.3 .

Proposition 5.3 For arbitrary charts A, C and signal
set Ψ we have,

C wS
τ f A [A]

Ψ
wT

τ f [C]
Ψ

C wS
fcf A

C wS
fcf A

C wS
τ f A

where S =def CorrA
C ∧ IOA

C and T =def CorrC
A ∧ IO

CΨ

AΨ
for

CΨ = [C]
Ψ

and AΨ = [A]
Ψ

.

Notice that the second aspect of the side-condition
SC1 and the conditions SC2 and SC3 are still a neces-
sary requirement to guarantee that firing conditions-
based refinements are monotonic with respect to com-
position.

Therefore, while it is the case that using wfcf for
chart refinement implies a “more monotonic” refine-
ment calculus, the difference in reality is slight.

The exact difference between the two notions of
refinement is that the total chaotic model allows a re-
finement to weaken the precondition over the abstract
domain of definition where the firing conditions model
does not. The choice of the appropriate model can
only be determined by the context of the refinement
application. We do point out, though, that the total
chaotic model provides the most general refinement
framework.

6 Conclusions

A logic for composition and refinement of µ-Charts
has been presented. The presented work has two sig-
nificant contributions. The first is the presentation
of a method for developing a logic for a StateCharts-
like specification language—another example of the
increasingly popular visual specification languages for
reactive systems. The second is an investigation of a
chaotic-based notion of refinement for the language
µ-Charts.

The logic is developed by modelling the µ-Charts
language in the more well-known and investigated
language of Z. Given the extensive body of work that
gives a logic to Z, we can specialise this logic and
thereby induce a logic for charts. (Also, we are able to
utilise existing tools for Z to reason about the model
of a reactive system, if we wish.)

The notion of refinement that we induce
for µ-Charts follows the chaotic-outside-of-defined-
behaviour approach that is typically associated with
Z-based ADT refinement or data refinement. As
with Z-based refinement, the chart refinement defined
maintains the principle of substitutivity (Derrick &
Boiten 2001). That is, the substitution of an imple-
mentation of the specification for an implementation
of a refinement of the specification will be indistin-
guishable in the context of the specification.

The notion of a chaotic semantics for µ-Charts was
first introduced by Scholz (1998). The implicit non-
determinism outside of defined behaviour can be con-
sidered an abstraction mechanism just as in Z specifi-
cations. As the design is refined the nondeterminism
is reduced, i.e. more decisions are made about unde-
fined behaviour.

The chaotic semantics also facilitates refinements
of both a reactive system’s specified behaviour, and
the specified context of the reactive system. These
two types of refinement are both defined in the one
notion of refinement presented. Refinement that
changes the context of a chart preserves substitutivity
because it is assumed that the context for a specified
chart is fully defined, i.e. the context both controls
and is controllable by just the signals in the respec-
tive input and output interfaces of the specification.
Note that hiding signals from one or other of the in-
terfaces is not in general a refinement.

The refinement rules presented give half (i.e. the
forward simulation case) of a simulation based refine-
ment calculus for µ-Charts. Unlike other theories of
refinement for reactive systems the calculus presented
allows the simulations to model a change in possible
states from abstract to concrete specification as well
as a change in the signals used to interact with the
environment, i.e. the context, of the specified reactive
system.

Of course, using the methods of this paper, as
much as required of the whole of StateCharts can
have a logic induced for it—once a semantics for a
given construct has been defined in Z it is an intri-
cate but conceptually straightforward task to induce

logical rules for the construct from the ZC rules and
the definition. The same goes, also, for refinement
rules.

6.1 Future Work

Given the origins of µ-Charts (it is based on a sim-
plification of the more well-known StateCharts), we
typically take for granted that µ-Charts is a useful
engineering tool for specifying reactive systems. Not
surprisingly, to date most of the uses of the presented
logic for µ-Charts have been concerned with investi-
gating and proving properties of the language itself.
It remains to be shown whether or not such a logic
can be used practically to reason about and develop
reactive systems. It is clear however, that using the
formal logic for the practical development of reactive
systems will require significant tool support. Ideally,
this would be proof assistance, based specifically on
the logic rules for charts, perhaps using a more gen-
eral tool developed for the logic ZC . Other Z-based
validation tools such as animation may also provide
useful tools for investigating µ-Chart specifications.
Limited tool support for µ-Charts already exists in-
cluding a µ-Charts editor called AMuZed and a model
builder (i.e. a program that translates a chart into its
Z model) called ZooM (Z-lambda project 2005).

Another application of the logic that has not been
fully investigated is to use the form of the simulations
involved in refinement to suggest useful refinements
of reactive system specifications. That is, can the
form of proofs of refinements be used to indicate use-
ful development strategies for reactive systems? This
application of the logic closely follows Dijkstra’s no-
tion that “we develop program and correctness proof
hand-in-hand” (Dijkstra 1976).

References

13568, I. (2002), Information Technology—Z For-
mal Specification Notation—Syntax, Type Sys-
tem and Semantics, Prentice-Hall International
series in computer science, first edn, ISO/IEC.

Derrick, J. & Boiten, E. (2001), Refinement in
Z and Object-Z: Foundations and Advanced
Applications, Formal Approaches to Computing
and Information Technology, Springer.
URL: http://www.cs.ukc.ac.uk/pubs/2001/1200

Deutsch, M. & Henson, M. C. (2003), An analysis of
forward simulation data refinement, in D. Bert,
J. Bowen, S. King & M. Waldén, eds, ‘ZB 2003:
Formal Specification and Development in Z and
B / Third International Conference of B and Z
Users’, Vol. 2651 of Lecture Notes in Computer
Science, Springer-Verlag Heidelberg, pp. 148–
167.

Deutsch, M., Henson, M. C. & Reeves, S. (2002),
Six theories of operation refinement for partial
relation semantics, Technical Report CSM-363,
Department of Computer Science Department,
University of Essex.

Deutsch, M., Henson, M. C. & Reeves, S. (2003),
Operation refinement and monotonicity in the
schema calculus, in D. Bert, J. P. Bowen, S. King
& M. Walden, eds, ‘ZB 2003: Formal Specifica-
tion and Development in Z and B’, Vol. 2651
of Lecture Notes in Computer Science, Springer-
Verlag, pp. 103–126.

Dijkstra, E. W. (1976), A Discipline of Programming,
Prentice Hall.

Harel, D. (1987), ‘Statecharts: A visual formal-
ism for complex systems’, Science of Computing
pp. 231–274.

Henson, M. C., Deutsch, M. & Kajtazi, B. (2004),
The specification logic νZ, Technical Report
CSM-421, Department of Computer Science,
University of Essex.

Henson, M. C. & Reeves, S. (2000), ‘Investigating Z’,
Journal of Logic and Computation 10(1), 1–30.

Henson, M. C. & Reeves, S. (2003), ‘A logic for
schema-based program development’, Formal
Aspects of Computing Journal 15(1), 48–83.

Philipps, J. & Scholz, P. (1997a), Compositional spec-
ification of embedded systems with statecharts,
in M. Bidoit & M. Dauchet, eds, ‘TAPSOFT
’97: Theory and Practice of Software Develop-
ment’, number 1214 in ‘LNCS’, Springer-Verlag,
pp. 637–651.

Philipps, J. & Scholz, P. (1997b), Formal verifica-
tion of statecharts with instantaneous chain reac-
tion, in E. Brinksma, ed., ‘Tools and Algorithms
for the Construction and Analysis of Systems’,
Vol. 1217 of Lecture Notes in Computer Science,
Springer-Verlag, pp. 224–238.

Reeve, G. (2005), µCharts-Investigating Refinement
(To appear), PhD thesis, Department of Com-
puter Science, University of Waikato.

Reeve, G. & Reeves, S. (2000), µ-Charts and Z:
Hows, whys and wherefores, in W. Grieskamp,
T. Santen & B. Stoddart, eds, ‘Integrated For-
mal Methods 2000: Proceedings of the 2nd.
International Workshop on Integrated Formal
Methods’, LNCS 1945, Springer-Verlag, pp. 255–
276.

Scholz, P. (1998), A refinement calculus for state-
charts, in E. Estesiano, ed., ‘Fundamental ap-
proaches to software engineering: First Inter-
national Conference, FASE’98’, Vol. 1382 of
Lecture Notes in Computer Science, Springer-
Verlag, Berlin, pp. 285–301.

Spivey, J. M. (1989), The Z notation: A reference
manual, Prentice Hall.

Woodcock, J. & Davies, J. (1996), Using Z: Specifi-
cation, Refinement and Proof, Prentice Hall.

Z-lambda project (2005).
URL: www.cs.waikato.ac.nz/Research/fm

