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Abstract

Sequence mining is often conducted over static and
temporal datasets as well as over collections of events
(episodes). More recently, there has also been a fo-
cus on the mining of streaming data. However, while
many sequences are associated with absolute time val-
ues, most sequence mining routines treat time in a
relative sense, only returning patterns that can be de-
scribed in terms of Allen-style relationships (or sim-
pler).

In this work we investigate the accommodation
of timing marks within the sequence mining process.
The paper discusses the opportunities presented and
the problems that may be encountered and presents a
novel algorithm, INTEMTM , that provides support
for timing marks. This enables sequences to be exam-
ined not only in respect of the order and occurrence
of tokens but also in terms of pace. Algorithmic con-
siderations are discussed and an example provided for
the case of polled sensor data.

1 Introduction

Frequent-pattern (sequence) mining from static
databases has been conducted for a number of years
and algorithms for this form of mining are relatively
mature (Pei et al. 2001, Srikant & Agrawal 1996,
Wang & Han 2004, Yan et al. 2003). Transaction
datasets commonly include a time-stamp for each
transaction and it is this that can be used, in con-
junction with a transaction id, to constrain the min-
ing activity with respect to time.

However, sequence mining is not limited to data
stored in transaction-structured datasets and there
are other domains where an implicit time-stamp may
or may not be included such as web logs, alarm data
in telecommunications networks, sensor data, and so
on. In such domains, the data can be viewed as a se-
ries of events occurring at specific times and therefore
the problem becomes a search for collections of events
(episodes) that occur frequently together. Solving
this problem requires a different approach, and sev-
eral types of algorithm have been proposed for dif-
ferent domains (Mannila & Toivonen 1996, Mannila
et al. 1997, Mooney & Roddick 2004, Spiliopoulou
1999).

Such datasets can also be very similar in nature
to, or are themselves, streaming datasets, an area of
research that is gaining significant interest at present
(Gaber et al. 2005, Giannella et al. 2003, Lin et al.
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2003). However, the datasets used in these domains
do not always include a time-stamp and this reduces
the problem to those that occur close to each other
in the sequence. This changes the semantics of fre-
quent and makes mining more problematic if time
constraints are required, or if information relative to
the pace of the activity is of interest. However, in
some datasets, the passage of time, while not being
available as a full time-stamp, may be marked by a
token representing a timing tick.

In this paper we address this problem by introduc-
ing the notion of a timing mark (or timing tick)
to accommodate the passage of time within the se-
quence mining process. This allows the process not
only to provide information relative to order and oc-
currence of sequences but also the pace at which they
occurred.

The remainder of the paper is organised as fol-
low. Section 2 briefly discusses background material
on sequence mining and related work. Section 3 intro-
duces the concept of the timing mark and discusses
the opportunities presented and potential problems
that may be encountered. Section 4 deals with algo-
rithmic considerations and presents a novel algorithm
INTEMTM that provides support for the concept of
timing marks. Section 5 provides experimental re-
sults resulting from the implementation while Section
6 offers some conclusions and suggestions for future
work.

2 Background and Related Work

The sequential pattern mining problem can be viewed
from both a static dataset and episodic point of view;
the latter being the area most closely related to the
mining discussed in this work. We outline below some
definitions of the related areas and previous research
in sequence, episodic and time series mining is briefly
discussed.

2.1 Sequential Pattern Mining

Given a dataset of sequences, where each sequence
consists of a list of transactions ordered by transac-
tion time and each transaction is a set of items, the
aim of sequential pattern mining is to discover all se-
quential patterns with a user-specified minimum sup-
port, where the support of a pattern is the number of
data-sequences that contain that pattern (Agrawal &
Srikant 1995).

The problem of mining sequential patterns can be
stated as follows: Let I = {i1, i2, . . . , im} be a set
of literals, termed items, which comprise the alpha-
bet. An event is a non-empty unordered collection of
items. It is assumed without loss of generality that
items of an event are sorted in lexicographic order.
A sequence is an ordered list of events. An event is
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denoted as (i1, i2, . . . , ik), where ij is an item. A se-
quence α is denoted as 〈α1 → α2 → · · ·→ αq〉, where
αi is an event. A sequence with k-items (k =

∑
j |αj |)

is called a k-sequence. For example, 〈B → AC〉 is a
3-sequence. A sequence 〈α1 → α2 . . . → αn〉 is a sub-
sequence of another sequence 〈β1 → β2 . . . → βm〉
if there exist integers i1 < i2 < . . . < in such
that α1 ⊆ βi1 ,α2 ⊆ βi2 , . . . ,αn ⊆ βin . For ex-
ample the sequence 〈B → AC〉 is a subsequence of
〈AB → E → ACD〉, since B ⊆ AB and AC ⊆ ACD,
and the order of events is preserved. However, the
sequence AB → E is not a subsequence of ABE and
vice versa.

The process is provided with a dataset D of input-
sequences where each input-sequence in the dataset
has the following fields: sequence-id, event-time and
the items present in the event. It is assumed that
no sequence has more than one event with the same
time-stamp, so that the time-stamp may be used as
the event identifier. In general, the support or fre-
quency of a sequence, denoted σ(α,D), is defined as
the total number of input-sequences in the dataset
D that contain α1. Given a user-specified minimum
support threshold (denoted min supp), a sequence is
said to be frequent if it occurs at least min supp times
and the set of frequent k-sequences is denoted as Fk.
A frequent sequence is deemed to be maximal if it
is not a subsequence of any other frequent sequence.
The task then becomes the discovery of all frequent
sequences from a dataset D of input-sequences and a
user supplied min supp.

2.2 Episodic Mining

The first algorithmic framework developed to mine
datasets that were episodic in nature was introduced
by Mannila et al. (1995). The task was to find all
episodes that occur frequently in an event sequence,
given a class of episodes and an input sequence of
events. In their framework an episode is defined to
be:

“... a collection of events that occur rela-
tively close to each other in a given partial
order, and ... frequent episodes as a recur-
rent combination of events” (Mannila et al.
1997)

The notation used is as follows.
E is a set of event types and an event is a pair

(A, t), where A ∈ E is an event type and t is the
time (occurrence) of the event. There are no re-
strictions on the number of attributes that an event
type may contain, but the paper only considers sin-
gle values with no loss of generality. An event se-
quence s on E is a triple (s, Ts, Te), where s =
〈(A1, t1), (A2, t2), . . . , (An, tn)〉 is an ordered sequence
of events such that Ai ∈ E for all i = 1, . . . , n, and
ti ≤ ti+1 for all i = 1, . . . , n − 1. Further Ts < Te
are integers, Ts is called the starting time and Te the
ending time, and Ts ≤ ti < Te for all i = 1, . . . , n.

2.3 Time Series Mining

Data mining of time series datasets includes not only
sequence mining but also clustering, classification,
and association mining (Lin et al. 2003, Das et al.
1998, Guralnik & Srivastava 1999, Höppner 2001,
Keogh et al. 1993). As would be expected, the con-
straints available each time are those appropriate for
the form of mining and the rules that emerge from

1This general definition has been modified as algorithmic devel-
opment has progressed and different methods for calculating sup-
port have been introduced, see the work of Joshi et al. (1999) for
a complete summary of counting techniques.

this type of analysis are similarly aligned with the
mining method chosen. For the case of sequences,
typical rules are based on (a priori supplied) calen-
dric, or cyclic patterns and have some similarity to
those addressed in this paper.

3 Timing Marks

The concept of timing marks introduced here refers
to embedded tokens that indicate the passage of time.
They are not time-stamps in that they do not record
absolute time values but rather ticks which can be
referenced to determine the pace of events 2. For
example, the notion of polled data infers a (fixed)
time interval during which the polling occurs. During
this interval, it may be possible that not all sensors
are read and/or some do not return data. Moreover,
many sequences of events have a time-stamp, either
inherently in how they are reported, or overlaid by a
system that needs to interrogate the data. How this
fixed time element is encoded in the data is of inter-
est. In traditional sequence mining, time-series min-
ing and web-log mining each element to be mined has
a time-stamp associated with it and therefore encod-
ing an additional timing mark is not necessary. With
sensor data and other data streams there is usually
no time-stamp and therefore it is necessary to include
a time-stamp or timing mark into the data.

In our recent work on mining interacting episodes
we have implicitly assumed (in common with other re-
searchers) that each token (sensor reading) occurred
for a fixed period of time and that the time between
tokens was zero (or alternatively, that events are in-
stantaneous and the time between tokens was con-
stant). That is, we could view a sequence of n tokens
as occurring over n time periods of equal length, no
matter what the period/granularity was (Mooney &
Roddick 2004). This work relaxes this assumption.
That is, although the time between events may re-
main unchanged – equal length intervals – the num-
ber of tokens (events) that occur within that time
can vary. To accommodate this assumption we have
introduced timing marks into the data. These tim-
ing marks may have different properties depending on
the data they are associated with and more generally
timing marks can be viewed as having the following
possibilities3:

Timing marks as tokens. One of the polled sen-
sors is used as the timing mark which would
mean that all time-referenced sequences would
be reported with reference to this sensor. One
problem with this option is that the sensor used
as the timing mark may not fire regularly and
as such any rules that are reported may or may
not have value. If however the sensor is firing in
every cycle then its usefulness from a reporting
standpoint is valuable in the same way as if it
were a delimiter.

Timing marks added as delimiters. In this op-
tion, timing marks are added as additional to-
kens to the sequence. This is necessary where
all other tokens are sporadic as is the case with
many types of sequence. For our purposes, this
is our assumed format.

2The consensus glossary (Jensen et al. 1998) delineates between
two forms of time - absolute and relative. Timing marks are,
in many respects, both and neither of these possessing an abso-
lute time period relative to each other but little else. Certainly,
little of the current temporal data mining research (Roddick &
Spiliopoulou 2002) can handle timing marks.

3In the following examples the period ‘.’ is used as the notation
of the timing mark.
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Timing marks as absolute time. In some
cases, each token carries with it an absolute time
stamp. In this case there is more information
that is required for our purposes here and it
would be trivial to convert such a sequence to
one that contained timing marks as delimiters.

The value of timing marks becomes apparent when
queries can be issued and results reported with re-
spect to timing marks. A given sequence, for exam-
ple, could be deemed as “fast/bursty” or as “slow”.
For instance, the difference between the two sequences
ABC and A...B..C may be significant even if they oc-
cur within the normal lookahead.

More significantly, the semantics of rules using
temporal relationships such as A − during → B or
A−meets → B may change depending on the num-
ber of timing marks that have been encountered. For
instance, to allow for recording latency, two intervals
may be deemed to meet if they occur within n timing
marks.

4 Algorithmic Considerations

Timing marks can be either present or absent in a
data stream and as such users should have the oppor-
tunity to include or exclude the timing marks in their
search for frequent episodes. Consequently, the tim-
ing marks feature has necessarily been implemented
as a constraint, thus allowing the user to select the
token that is the timing mark and, in addition, choose
whether to report those episodes that contain exactly
the prescribed number of timing marks or all episodes
up to and including the prescribed number of timing
marks.

Since we provide the user with the choice, it makes
sense for the implementation of this constraint to be
post episode discovery. To further reinforce this deci-
sion, the token used for the timing mark may be one
of the data tokens, not one that is orthogonal to the
data, in which case the user may not wish to remove
the token from those episodes that are reported. In
order to facilitate the fact that the timing mark may
be one of the data tokens, the input file is scanned
upon selection to generate a list of those tokens avail-
able. This incurs no overhead since the file has to
be read before further processing can be undertaken.
Since this is an added constraint, the impact on the
existing algorithm is minimal.

The two parameters used are:

• The lookahead (or window) parameter used in
previous work (Mooney & Roddick 2004) (sim-
ilar to Mannila et al.’s window concept (Man-
nila et al. 1997)), defines the maximum length
episode to be mined) is included, together with

• a timing mark count (tmc), which defines either
the maximum number of timing marks that can
be included or the exact number of timing marks
that should occur in the sequence.

Since both of these measures can be used, for
the purpose of “frequent”, a sequence up to looka-
head must also occur within the prescribed number
of marks – ie. the cut-off is either the lookahead or
timing mark count whichever is the smaller.

4.1 Timing Mark Pruning

If the user has chosen to include the timing marks
in their search then the following will occur after the
frequent episodes have been discovered. First, prun-
ing will be conducted on the frequent sequences so
that only those that contain the prescribed number

Algorithm 4.1 Algorithm for imposing timing
marks on sequence discovery
Input: A set of frequent sequences that are to be pruned for timing

marks.
Output: the collection of frequent sequences according to the tim-

ing mark constraints.
1: procedure pruneForTimingMarks(ArrayList aList)
2: for (i := 0; i < aList.size(); i++) do
3: TreeMap tm := aList.get(i);
4: TreeMap clTm := tm.clone();
5: for all (String cand : clTm.keySet()) do
6: int numMarks = countTimingMarks(cand);
7: if (exactly selected) then
8: if (numMarks != maxMarks) then
9: tm.remove(cand);
10: end if
11: else
12: if (numMarks > maxMarks) then
13: tm.remove(cand);
14: end if
15: end if
16: end for
17: end for
18: end procedure

Algorithm 4.2 Removes the timing marks from the
frequent sequences and reassigns them to the correct
output containers.
Input: a list of frequent episodes that have been pruned for the

required number of timing marks.
Output: the required frequent episodes without timing marks.
1: procedure removeAllTimingMarks(ArrayList aList)
2: ArrayList modList := new ArrayList();
3: for all (TreeMap tmap : aList) do
4: TreeMap modTree := new TreeMap();
5: for all (String cand : tmap.keySet()) do
6: String newCand := removeTimingMarks(cand);
7: if (!newCand.equals(“”)) then
8: modTree.put(newCand, tmap.get(cand));
9: end if
10: end for
11: modList.add(modTree);
12: end for
13: frequentList := reassignEpisodes(modList);
14: end procedure

of timing marks, see Algorithm 4.1, will remain. If the
timing mark is not determined to be one of the tokens
in the data, then removal of the timing marks from
those remaining sequences will ensue, and finally re-
assignment of them to the correct output containers,
see Algorithm 4.2.

For timing marks to remain unambiguous to the
user and therefore be consistent throughout the ap-
plication then the following convention is adopted:

1) Within one mark means that there are no timing
marks allowed in the sequence. Algorithmically
this can be described by – assuming the timing
mark is “.” –

if (tmc = 1 ∧ cand.indexOf(“.”) )= −1) then
set output to null

end if
return

This also leads to an added pruning technique –
i.e. in the case of one timing mark, if we are look-
ing for an x length sequence and the last item in
the sequence is a timing mark, then the next x se-
quences are not viable candidates so can be elim-
inated from the search.

2) Within one or more timing marks. During one
timing mark is as described above while n marks
indicates that there are n distinct sections in the
sequence which would have embedded n−1 timing
marks.
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4.2 Rule semantics

Typically rules from sequence discovery are of the
type that can described in terms of Allen-style (Allen
1983) relationships (or simpler). This is the case not
only for market-basket mining (Agrawal & Srikant
1995, Ayres et al. 2002, Garofalakis et al. 1999, Han
et al. 2000), but also episodic mining (Mannila et al.
1997, Mooney & Roddick 2004). In the case of
episodic mining both parallel and serial episodes yield
these types of rules. When using timing marks as de-
limiters the following possibilities, similar to those of
episodic mining, must be considered:

1) if the sequences occur within the interval de-
limited by a pair of timing marks, for exam-
ple, .ABCDEF., then this is analogous to parallel
episodes4, or

2) if the sequences must occur within a certain num-
ber of timing marks. For example, .AB.CDE.F.,
then it is analogous to serial episodes.

In the first case above, the discovered sequences
could be treated as transactions (if order is irrelevant)
and therefore further processing may be conducted
using other data mining methods, such as association
rule mining (Ceglar & Roddick 2006). In the second
case details about the ‘speed’ of discovered sequences
can be obtained with respect to the number of tim-
ing marks that are contained, allowing for a better
understanding of the data.

If the timing mark is viewed as a fixed length pe-
riod with no absolute time-stamp associated with it
then we can search for sequences that occur under
both of the above conditions. For example, given the
sequence .ABCDEFG.HIJ.. with a maximum look
ahead of 5:

1) For sequences that occur within one cycle –
ABCDE, BCDEF, and CDEFG are all valid while
FGHIJ is not. This may be useful to determine
if certain sensors did not fire during a particular
cycle.

2) For sequences that occur over a period of x time
cycles – sequence FGHIJ occurs over two time cy-
cles.

Given this information, the knowledge of the po-
sition of the timing mark allows for added semantics
to be attached to the sequence – not only can we say
that FGHIJ occurs over two time cycles but also that
first cycle is ended with FG and the second is begun
with HIJ. This may have added interest, depending
on the application, to any resulting output that may
be derived.

5 Experimental Results

The algorithm was implemented in the JavaTM

programming language and all experiments were
conducted on a 2.6GHz AMD machine running
Windows R©XP with 1Gb of RAM (see Figure 1).
The INTEMTM implementation represents an ex-
tension to the INTEM (INTeracting Episode
Miner), which also includes graphical output, as well
as text, of the discovered sequences. Furthermore, in-
teractions may also be discovered and reported using
Allen-style relationships (Allen 1983), Freksa’s con-
ceptual neighbourhoods (Freksa 1992) or more fine
grained Midpoint relationships (Roddick & Mooney
2005). Since the user has control over the number and
method of timing mark inclusion the “speed” of the

4This would be data dependent and would rely on whether the
order within the marks is relevant.

Figure 2: Execution times with and without timing
marks for the test files.

Figure 3: Number of frequent sequences and max-
imum length sequences with and without timing
marks.

discovered sequences is known and can be reported
easily.

All tests were conducted using a low support level
(0.005), a lookahead value of 20 and, when including
timing marks, a timing mark count (tmc) of 2 with
the reporting option set to exclude the marks from
the output. The results show that there is no over-
head incurred when using the timing mark option, see
Figure 2. Indeed, since the constraint is implemented
deeper in the process there is a slight speed increase
when looking for sequences containing timing marks.
The reason for the speed up can also be seen, (see Fig-
ure 3), by e fact there are less sequences discovered
with the timing mark option selected and in the ma-
jority of cases the maximum length of the discovered
sequences is smaller.

6 Conclusions and Future Work

In this paper we have discussed the inclusion of tim-
ing marks for dealing with data that have no abso-
lute time attached to the events to be mined. We
have shown that the implementation of the algorithm
incurs negligible added overhead and that the bene-
fits associated with the rules that may be reported
are important in terms of being able to determine the
pace of a sequence.

Future research is necessary in this area to accom-
modate this feature into algorithms that can deal
with streaming data – an already complex domain
(see (Gaber et al. 2005)) Further research is also
needed in the area of rule generation, together with
some consideration of the resultant semantics of the
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Figure 1: Screenshot of the experimental system.

rules. This latter issue is highly dependent on the
data being mined and therefore careful consideration
is needed.
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