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Abstract

Formal methods have an unprecedented ability to en-
dorse the correctness of a system. In spite of that, it
has been limited to safety-critical and mission-critical
systems owing to significant time and memory costs
involved. Lately, our ever increasing dependency on
software in all walks of our life has necessitated using
formal methods for a wider range of softwares. In this
paper, we propose an algorithm to make this possi-
ble by reducing the memory requirement for model
checking, a widely used formal method. A model-
checker stores all explored states in memory to ensure
termination. The proposed algorithm slash memory
costs by storing these states in compressed form. In
compressed form, a state is stored as how different
it is from its previous state. Our experiments report
a memory reduction of 95% with only doubling of
computation delay. Aforesaid reduction allows model
checking in a machine with only a fraction of mem-
ory needed otherwise. Consequently the advantage
is twofold, 1)enormous savings as only a small physi-
cal memory is required and 2)as more states can now
be stored in a memory of same size, the chances of
complete state-space analysis is exceedingly high.

Keywords: State-space compression, Model checking,
Formal methods, State-space explosion

1 Introduction

Traditionally, a software is considered “fail-safe” if
it has passed a rigorous testing phase(Beizer 1990).
However, the crash of Ariane 5 launcher(Clarke
et al. 2000) and the deaths due to malfunctioning of
Therac-25 radiation therapy machine(Rushby 1989)
in spite of rigorous software testing suggest other-
wise. The team investigating these accidents rec-
ommended(Clarke et al. 2000, Rushby 1989) using
formal methods(FM) to complement testing as the
former assures exhaustive verification of a system.
However, FM have a high price-tag attached due to
state space explosion(Christensen et al. 2001) prob-
lem, which compel developers to completely skip FM
in order to meet software budget. Considering our
dependence on software in everyday life(e.g. traffic
signals, elevators), skipping FM amounts to risking
millions of human lives. In this paper, we propose
methods of reducing the cost of FM so that they are
more widely used.
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Model Checking(MC)(Clarke et al. 2000) is a for-
mal method which verifies a concurrent system au-
tomatically. A model checker requires formal design
of the system and the properties to be verified. It
then explores the state-space of the system to find
a state1 which violates the given properties, where
state-space is the set of states reachable from initial
state. If a violating state is found, it is returned as
a counterexample. Otherwise, the model checker re-
turns ‘yes’, implying that the properties are satisfied
by all reachable states of the system.

During state-space exploration, there might be
states generated more than once. To prevent
analysing the same states repeatedly for desired prop-
erties, it is necessary to remember the states already
explored by storing them in memory. This also en-
sures termination, a condition where no new states
are generated. However, model checking is plagued
with state-space explosion problem, often resulting in
gigantic number of states. This causes manyfold in-
crease in memory costs, as each new state has to be
stored. Such bottlenecks in available memory hinders
model checking.

Some solutions based on ‘Partial storage’ address
the problem by storing only a subset of explored
states. Although this reduces memory requirement, it
is difficult to decide the set of states to be deleted. If
a deleted state is reached again in future, it is treated
as a new state and explored further. The proposed
solution has no such issues as it uses ‘Exhaustive stor-
age’ in which all explored states are compressed and
stored in a suitable data structure(e.g. hash-table).
The states need to be decompressed before compari-
son as it is possible for more than one state to have
similar compressed state.

In this paper, we devise a novel method to reduce
the memory costs otherwise involved in model check-
ing. We propose storing states in difference form,
instead of explicit form, resulting in reduced memory
requirements. In difference form, a state is stored as
how different it is from its previous states. We pro-
pose an algorithm, known as Sequential algorithm,
to explore the state-space by storing states in differ-
ence form.

Our contributions can be summarised as:

1. We propose an algorithm to reduce the memory
requirement for model checking by storing states
in compressed form. The results indicate upto
95% reduction in memory requirement.

2. It is possible for many different explicit states
to have the same difference state. Therefore, we
propose an algorithm to decompress the states
before comparison. Our decompression algo-
rithm only doubles the time needed to generate
the state-space. This is 33% lower than the time
taken by (Evangelista & Pradat-Peyre 2005).

1‘Marking’ is sometimes used synonymously to a state
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(a) A Coloured Petri-Net model. Variables x and y are of
type INT

(b) A part of reachability graph for CPN model in Figure 1(a)

Figure 1: A Coloured Petri-net model and its reachability graph.

The remainder of the paper is organised as fol-
lows. Section 2 introduces state-space analysis and
Coloured Petri-nets. In section 3 the sequential algo-
rithm is proposed . We tabulate and plot the exper-
imental results in section 4 and discuss the outcome
in section 5. We look at the related work in section 6
and conclude in section 7.

2 Background

Model checking involves three basic steps: 1)Mod-
eling the system, 2)Specifying the properties to be
verified and 3)Verifying the properties in all reach-
able states of the model. The first step requires cre-
ating a formal representation of the system. The
representation depends on model checking tool to be
used for verification in step 3. Some common lan-
guages for system representation are PROMELA for
SPIN(Basic Spin Manual 2007), C programming lan-
guage for BLAST(Blast Manual 2008) and Coloured
Petri-Nets(CPN) for CPN Tools(CPN Tools 2009).
Due to subtle differences between these representa-
tion languages, it is difficult to propose a generic al-
gorithm for memory reduction. In this paper, the
proposed algorithm specifically target CPN models.
However, we do not claim any advantage in using
CPN models. The proposed algorithm is based on
the assertion that “Change in a state is smaller than
the state itself” and our algorithm will work for all
representation languages, as long as this assertion
holds. The assertion is valid because systems usu-
ally change in many small steps rather than a single
large step. Experiments report a 95% reduction in
memory, which further endorse our assertion.

We now define CPN and briefly explain state-space
analysis using an example.

2.1 Coloured Petri-Nets

Coloured Petri-Nets(Jensen 1997) are Petri-Nets ex-
tended with programming constructs. The concur-
rent constructs of Petri-Nets are supplemented with
data-definition and data manipulation constructs of
programming languages. CPN is used for design,
specification, simulation and verification of systems.

In contrast to PN, each token in CPN has an attached
data value. The datatype of this value determine the
colour of token. All tokens in a place must be of the
colour specified by the colour set of that place.

Figure 1(a) shows a CPN model with 3 places(the
circles) and 2 transitions(the rectangles). Place A has
2 tokens(indicated by 2 in the circle next to it) 1‘5
and 1‘7, where 1‘5 implies that there is 1 token with
integer value 5. The tokens in a place are listed next
to it and they are separated by ‘++’ symbol. The text
“1‘0++1‘1++1‘2” near place C implies that it has 1
token with value 0, 1 token with value 1 and 1 with
value 2. Each place also has its colour(or datatype)
inscribed next to it. In this model, all places have
colour INT and hence they can only have integer to-
kens.

A place and a transition are connected by an arc.
Transition T1 in Figure 1(a) has an input arc from
place A and two output arcs to places A and B. When
T1 executes, it removes tokens from input place A and
adds tokens to output places A and B. The tokens re-
moved/added is found by evaluating the arc inscrip-
tion. As all these arc inscriptions are defined in terms
of variable x, they can be evaluated by assigning an
appropriate value to x and this is called binding of
x. The binding of x is decided after considering the
tokens in input place and the inscription of input arc.
In case of T1, input place A has tokens 1‘5 and 1‘7
while the input arc inscription is x. Hence the only
possible values of x for which T1 is enabled are 5 and
7. When T1 fires with x bound to 5, token 1‘5 is
removed from A and added back to A. No token is
added to place B as the if condition is not satisfied.
When T1 fires with x bound to 7, token 1‘7 is removed
from A and added to place B. The bindings for which
T2 is enabled can be determined identically.

2.2 State-Space Analysis

In this section, we discuss the problem in detail and
outline the proposed solution. State-space analysis of
a model is done by generating a reachability graph.
Each model has a unique initial state and this is rep-
resented by the root node of a reachability graph. At
its initial state, the system might have a set of enabled
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events which can bring in a change in state. Each of
these events are represented by a separate edge from
the root node of the reachability graph and lead to
a new node representing the new state. These new
states are then analysed for the set of enabled events.
For each enabled event, an outgoing edge is added
to the corresponding node. This in turn generates
another set of new states to be analysed identically.
This analysis continues till the set of new states have
no enabled event.
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Figure 2: S′ reached using two different sequential of
events from S0

However, it might be possible to reach a state from
the initial state by executing different sequence of
events. Suppose S0 is the initial state of a model
M and let S′ be a state reached by the following two
sequence of events

S0[e1〉S1[e2〉S2[e3〉 · · · [em〉S
′

S0[e
′
1〉S

′
1[e

′
2〉S

′
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′
3〉 · · · [e

′
n〉S

′

where ∀i∈[1,m]: ei and ∀j∈[1,n]: e′j are events and
Si−1[ei〉Si denotes that event ei in state Si−1 leads to
state Si. This is shown in Figure 2. If ∃i∈[1,n]:(i<m)
∧ (ei 6≡e

′
i), the state S′ can be reached using two

different sequence of events and therefore it has a du-
plicate state. The reachability graph for M will have
two nodes representing the same state S′. However,
analysing both the nodes and their children (each of
which will also have a duplicate node) is a waste of
resources. Larger the number of duplicate nodes for
a state, greater the wastage in resources. Further-
more, if there exists a non-empty sequence of events
[e1e2 · · ·er〉:r>0 that cause no net change in state of a
model M, the model checker might never terminate.
This is shown in Figure 3. Let S be some state of
model M and ∀i∈[1,r]: ei be events such that

S[e1〉S1[e2〉S2[e3〉 · · · [er〉S
or S[e1e2e3 · · ·er〉S

Such state of affairs would lead to analysis of the set
of states {S, S1, S2, · · ·, Sr−1} forever and state-space
analysis might never finish. Consequently, it is nec-

S S S1

e1 e er2

Figure 3: The sequence of events [e1e2 · · ·er〉 causes
no net change in state

essary to remember the states already explored and

ignore any duplicate states encountered. A model-
checker remembers explored states by storing them
in memory. When a state is generated during state-
space exploration, it is compared with the stored
states to determine if it is new or duplicate of a pre-
viously generated state. If it is a duplicate state, the
corresponding node in reachability graph becomes a
terminal node and it is not analysed any further. Oth-
erwise, the new state is stored in memory and is anal-
ysed for enabled events. However, due to state-space
explosion, large amount of memory is needed to store
all unique states. In this paper, we propose an algo-
rithm to reduce the memory requirement by storing
a state as how different it is from its previous state.

At any time, there might be thousands of explored
states stored in memory. Comparing each state gen-
erated with all stored states might take long. Hence
the states are stored in a hash-table to ensure con-
stant time lookup.

We illustrate the problem using an example. Fig-
ure 1 shows a Coloured Petri-Net model and a part
of its reachability graph. All duplicate nodes in Fig-
ure 1(b) are shaded. Initially, the CPN model has
2 tokens in place A and 3 in C. This is represented
by State 1 in Figure 1(b) and being the root node of
reachability graph, it is stored in memory. The en-
abled events at this state are (T1,x=5) and (T1,x=7),
where T1 is the enabled transition and x=5 or 7 is
the binding for which it is enabled. Corresponding
to these two enabled events, the root node in Fig-
ure 1(b) has two outgoing edges, one for each event.
When T1 fires with x=5, there is no change in state
as all tokens remain in their previous places and the
edge corresponding to this event leads to a shaded
node in Figure 1(b). As this node represents a dupli-
cate state, it is not analysed any further. The other
event (T1,x=7) results in moving a token from A to B,
leading to State 2. Being a new state, it is represented
using a bright node in Figure 1(b). Furthermore, it
is stored and further analysed for enabled transitions.
State 2 has three enabled events: (T2,y=0), (T2,y=1)
and (T2,y=2). The first event causes no change in
state and is represented by a shaded node in Fig-
ure 1(b). The other two events change the value of
token in B leading to State 3 and State 4 and these
are represented by bright nodes in Figure 1(b). Be-
ing new states, they are stored in memory and further
analysed for enabled events. Remaining states are ex-
plored analogously to generate the complete reacha-
bility graph.

The reachability graph in this example has in-
finite number of states. Other models might have
finite number of states. However, the number of
states is almost always gigantic leading to state-space
explosion(Clarke & Berezin 1998). Complete state-
space analysis is possible only when the available
memory(αA) in a machine is at least equal to mem-
ory needed to store all unique states in reachability
graph(αM) of model M. Otherwise, if αA < αM , only
a partial state-space analysis can be performed and
the analysis stops when memory is full. We pro-
pose an algorithm for compact representation and
storage of a state. Using sequential algorithm, the
memory needed to store all unique states in reacha-
bility graph of a model M reduces to α′

M . This allows
1)Complete reachability analysis in a machine with a
smaller memory α′

A if α′
A ≥ α′

M , where α′
A < αA and

α′
M < αM 2)Even when αA < α′

M , the partial state-
space analysis can have at least a few more steps.
With available memory remaining same, we are able
to create a reachability graph with more states due
to less memory needed to store a state.
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3 Proposed Algorithm for Memory Efficient
State-Space Analysis

In this section, sequential algorithm is proposed for
memory efficient state-space analysis. The algorithm
proposed in this section specifically target CPN mod-
els. However, we do not claim of any advantage in us-
ing CPN models. As stated previously, the proposed
algorithm is based on assertion that “Change in a
state is smaller than the state itself” and as long as
this assertion holds, the proposed algorithm is valid
for all modeling languages. For CPN, a change in
state occurs if one or more tokens either 1)move to
another place, 2)change their value, 3)are created in
the model, 4)are deleted from the model or a com-
bination of these such that the colour of each token
match the colour-set of containing place. In a CPN
model, these changes are brought in by a transition.
However, a transition usually modifies the place and
value information of only a small number of tokens.
Furthermore, a very small number of tokens are usu-
ally created or deleted by a transition. For example
transition T1 in Figure 1(a) fires with x=7, it only
changes the place of token 1‘7. Therefore it is sub-
stantially cheaper to store a state S as how differ-
ent it is from its previous state. Based on this, we
propose sequential algorithm to generate memory ef-
ficient reachability graph in next section.

3.1 Sequential Algorithm

In this section, we introduce sequential algorithm to
reduce the memory requirements of model checking.
Such a reduction will increase the affordability and
consequent use of model checking in software devel-
opment. The focus of sequential algorithm is storing
states in difference form which is defined as:

Definition 1 The difference form of a state Sst, with
previous state Spv, is defined as the changes necessary
in Spv to generate Sst and it is denoted as Dst. If Dst

is the difference form of a state and Spv is its previous
state, the state Sst can be regenerated in explicit form
as Sst=Spv+Dst.

An explicit state has information for all tokens and
is often referred as state in this paper, omitting the
adjective ‘explicit’. We illustrate how to find the dif-
ference form of a state using an example.

a
b           
c           
d           
e
a = 5
b = 7
c = 0
d = 1
e=2           

B

C

b         BA
(T1,x=7)

(T2,y=2)(T2,y=1)

b = 8    b = 9    

State 1    

State 2    

State 3    State 4    

Figure 4: A part of reachability graph in Figure 1(b)
using sequential algorithm

Figure 4 presents a portion of reachability graph
for the CPN model in Figure 1(a) using sequential
algorithm. Initially the model is in State 1 and since
it does not have a previous state, it is stored in explicit

(a) A CPN model where T3 fires
to delete token 1’5 and create token
1’”Seven”

a
b  
         
a = 5
b = 7

B

a           null
c           B
c="Seven"

A

(T3,a)

State 1    

State 2    

(b) Reachabil-
ity graph using
sequential algo-
rithm

Figure 5: State change when tokens are created
and/or deleted

form in Figure 4. Each token in the model is given a
name in Figure 4. Furthermore, its place is assigned
by an arrow(→) and value is assigned by an equal(=)
symbol. For example, the token 1’5 in place A of
Figure 1(a) is named a. Its place is assigned as a→A
while the value is assigned as a=5. Similarly, token
1’7 in A is named b and assigned place and value as
b→A and b=7. All other tokens are named arbitrarily
and assigned place and value accordingly.

When the event (T1,x=5) occurs, the model persist
in State 1. As a result, the difference form is empty(or
null) and not drawn in Figure 4. However, (T1,x=7)
takes it to State 2. In order to store the new state in
difference form, we need to find the changes in State 1
brought by this event. We find that the event moved
token 1‘7 to place B. This information is sufficient to
construct State 2 from State 1. We therefore store
State 2 in difference form as b→B.

The event (T2,y=1) in State 2 lead to State 3. Like-
wise, the event (T2,y=2) lead to State 4. In order to
store these new states in difference form, the changes
in State 2 brought by these events need to be found.
On inspecting these events, both are found to change
the value of token in place B. While (T2,y=1) changes
the value to 8, (T2,y=9) changes it to 9. Given State 2
in explicit form, this information is sufficient to con-
struct State 3 and State 4. Accordingly, State 3 is
stored as b=8 while State 4 is stored as b=9. The
difference form for other states are calculated iden-
tically. Additionally, each state also store a pointer
to its previous state. This is necessary to regenerate
the states as explained later. As evident from this ex-
ample, it takes less space to store states in difference
form.

A state change also occurs when an event creates
or deletes one or more tokens. If an event deletes a
token a, the new state can be represented in difference
form by assigning the place for a as null(a→null).
Similarly when an event creates a new token, it is
given an arbitrary name and assigned the correspond-
ing place and value information. This is illustrated
by an example in Figure 5. The CPN model in Fig-
ure 5(a) has a transition T3 which removes token 1‘5
from place A and adds 1‘"Seven" to place B. Con-
sidering the value in latter token, place B is assigned
colour-set STRING. The reachability graph of the
model using sequential algorithm is presented in Fig-
ure 5(b). The tokens in place A are assigned names a
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and b. Initial state of the model is stored explicitly in
Figure 5(b) as there is no previous state to calculate
difference. When event (T3,1’5) occurs, it deletes the
token a and creates a new token which we name c.
The new state can be stored in difference form by as-
signing the place of a to null and assigning the place
and value information for newly created token. Given
State 1 in explicit form, aforesaid information is suffi-
cient to regenerate State 2. This example further en-
dorse a reduction in memory requirement when states
are stored in difference form.

In this section, we explained how to obtain the dif-
ference form of a state and demonstrated the memory
reduction when states are stored in difference form.
However, more than one explicit state can produce
the same difference state. This necessitates convert-
ing states into explicit form before comparison. This
is explained with an example in next section.

3.1.1 Expanding a State in Difference Form

In this section, we demonstrate backtracking in order
to revert a difference state. This is necessary for com-
parison as more than one explicit state can produce
the same difference state.

When a state is generated during state-space ex-
ploration, it has to be compared with stored states
to determine if it is new. However, compressing and
comparing it with states stored in difference form
might lead to an error owing to multiple states hav-
ing the same difference form. Supposing three states
Sa, Sb and Sc produce the same difference form Dabc.
When either of the three states is encountered for
the first time, Dabc is stored in memory. When the
other two states are encountered and compared with
stored states in compressed form, they are wrongly
interpreted as duplicate state. Therefore it is essen-
tial to revert a stored state before comparing. Such
a conversion is called expanding and is done by back-
tracking.

Definition 2 Backtracking is the process of regener-
ating a state by recursively adding the most recent
changes for each token to its previous state until a
state stored in explicit form is reached. If Sn and
Dn are the explicit and difference states at depth n
of a reachability graph, the former can be obtained
from latter using a backtracking function BK, where
Sn=BK(Dn)=Dn+Sn−1. Since S0 is always in ex-
plicit form, this equation can be solved for all n≤h,
where h is the height of the reachability graph.

b         B
b = 9        

b  =  9

State 4(1)

State 4

back

back

track

track

a
b           
c           
d           
e
a  =  5
b  =  9
c =  0
d  =  1
e =  2

B

C

A

State 4(2)

Figure 6: Backtracking to expand State 4 in Figure 4

We illustrate backtracking with an example. State
4 is stored in difference form in Figure 4 and in order

to expand it, we need to backtrack till an explicit state
is encountered, as shown in Figure 6. Initially, State 4
contains new value for token b and from Definition 1,
we should get State 4 in explicit form by updating
its previous state(which we hope is in explicit form)
with this value. However, on backtracking one step
in Figure 4, we reach State 2 which is also stored in
difference form. But it gives additional information
about the place of token b. We add the place informa-
tion from State 2 with value information from State
4 and get a meta-state 4(1) shown in Figure 6. We
call 4(1) a meta-state as it was obtained by combin-
ing two different states. Using Definition 2, State 4
can now be obtained by updating the previous state
of State 2 with information in metastate 4(1). On
further backtracking, State 1 is encountered which is
actually in expanded form. We update it with the
information in 4(1) and get another metastate 4(2).
By Definition 2, 4(2) is State 4 in expanded form.

As backtracking is an additional overhead when
states are stored in difference form, they increase the
time needed for state-space analysis. Definition 2 re-
quires backtracking to initial state S0 for expanding
each state. However, this leads to large delay with
increase in height of reachability graph. In the next
section, we discuss ways for reducing this problem.

3.1.2 Decreasing the Cost of Expanding

In this section, we discuss ways of reducing the ad-
ditional delay incurred while backtracking. Reducing
this delay will reduce the overall time for model check-
ing.

So far we have stored only the initial state in ex-
plicit form while all other states to be stored in dif-
ference form. Although this ensures maximum reduc-
tion in memory requirement, Definition 2 will require
backtracking to the initial state for expanding. As a
result, the states far from initial state take long to
expand.

In order to reduce the delay, the number of back-
tracking steps need to be minimised. If every state
at depth iδ:i∈N2 steps from initial state is stored in
expanded form, expanding a state will never need a
backtracking greater than δ-1 steps. Therefore start-
ing from initial state, δth, 2δth, 3δth · · · states are
stored in expanded form. The algorithm can be tuned
by accepting different values of δ. Finally, we propose
our algorithm next section.

3.1.3 Proposed Algorithm

In this section, the proposed algorithm is introduced
and explained. As specified previously, sequential al-
gorithm achieves memory reduction by storing states
in difference form. Starting from the initial state, it
explores remaining reachable states of the model us-
ing depth-first search(DFS) algorithm(Cormen et al.
2001). Each explored state is stored in a hash-table.

When a state is generated, a hash-function is used
to find its index in hash table. If this index is empty,
the state is new. Its difference form is calculated and
inserted at this index. Furthermore, the enabled tran-
sitions are identified and one of them is fired. Other-
wise, if there are states already stored at this index,
they are all expanded and compared with the gener-
ated state. If there is no match, the state is new and
it is inserted at the head of list at this index. Ad-
ditionally, one of its enabled transitions is executed.
In case of a match, the state is duplicate of a state
analysed previously. It is neither stored nor analysed
for enabled transitions.

2N is the set of natural numbers starting from 0

Proc. 33rd Australasian Computer Science Conference (ACSC 2010), Brisbane, Australia

27



The proposed algorithm calculates the difference
form of a state by comparing it with its previous state.
However to reduce delay in backtracking, all states at
depth iδ:i∈N from initial state are stored in explicit
form, where δ is the shortest distance between two
explicit states. In order to expand a state, the algo-
rithm implements backtracking until an explicit state
is encountered.

The proposed algorithm also implements two-level
hashing at an index if the number of states stored
at that index exceeds a threshold. In our algorithm,
we set threshold as M/10, where M is an estimation
of the total number of reachable states. When two
level hashing is used, the index of primary hash table
contains hash-function for secondary hash table.

The proposed sequential algorithm has three parts:

1. SEARCH: The steps are listed in Algorithm 1.
This algorithm accepts a state(Sst), it’s previ-
ous state(Spv) and the distance of Sst from last
expanded state(depth) as input. A hash function
H is used to find the index for state Sst as shown
in step 1. The algorithm then checks the content
of hash-table at this index. There can be three
possibilities.

Algorithm 1: SEARCH (State Sst, int depth,
State Spv)

Data: current state Sst,steps away from last
explicit state(depth), previous state Spv

Result: Decide if a state generated is new
i←H[Sst] ;1

if HASH[i]=NULL then2

INSERT(Sst,depth,Spv);3

foreach S′ such that Sst[(t,c)〉S
′ do4

SEARCH(S′,(depth+1)mod δ,Sst);
else if HASH[i] points to a linked list then5

foreach state D in linked list do6

if D is in difference form then7

D←RECONSTRUCT(D);
if D=Sst then return;8

end9

INSERT(Sst,depth,Spv);10

foreach S′ such that Sst[(t,c)〉S
′ do11

SEARCH(S′,(depth+1)mod δ,Sst);
else if HASH[i] contains a hash function then12

H′ ← HASH[i];13

j←H′[Sst] ;14

if HASHi [j] is empty then15

INSERT(Sst,depth,Spv);16

foreach S′ such that Sst[(t,c)〉S
′ do17

SEARCH(S′,(depth+1)mod δ,Sst);
else18

if HASHi[j] is in difference form then19

HASHi[j]←RECONSTRUCT(HASHi[j]);20

end21

if HASHi[j]=Sst then return;22

INSERT(Sst,depth,Spv);23

foreach S′ such that Sst[(t,c)〉S
′ do24

SEARCH(S′,(depth+1)mod δ,Sst);
end25

end26

(a) Hash table contain NULL at this index: In
this case, it is the first time this state is
generated. Hence Algorithm 2 is called to
store the state at this index. Any enabled
event at this state is fired. Steps 2-4 in Al-
gorithm 1 check and handle this case.

(b) Hash table contain a linked-list at this in-
dex: In this case, each state in the linked-list
has hashed to this index. Sst is compared
with each state in this list. If a state is
stored in difference form, it is expanded be-
fore comparison using Algorithm 3. In case
of a match, the state is neither stored nor
analysed for an enabled event. Otherwise,
the state is stored at the head of linked list
using Algorithm 2 and an enabled event is
fired. Steps 5-11 in Algorithm 1 check and
handle this case.

(c) Hash table contain a hash-function at this
index: If this case, all states which hashed
to this index are stored in a separate hash-
table HASHi indexed by the function H′

stored at this index. In step 14, the index
in second hash table is calculated using this
hash function. Step 15 checks if this index is
empty or has a state stored. In case this in-
dex is empty or does not contain this state,
it is inserted at this index using Algorithm 2
and its enabled events are fired. Otherwise
the algorithm returns. Steps 15-24 in Algo-
rithm 1 handle these cases.

Algorithm 2: INSERT(State Sst, int depth,
State Spv)

Data: current state Sst,steps away from last
explicit state(depth), previous state Spv

Result: Insert state Sst into hash table
if depth=0 then1

new.type←explicit;2

new.state←Sst;3

else4

new.type←difference;5

new.state←Sst-Spv;6

new.prev←Spv;7

end8

i← H[Sst] ;9

if HASH[i]=NULL then10

HASH[i]=new;11

else if HASH[i] points to a linked list then12

insert new at the head of linked list;13

if length(linked list)≥ |M |/10 then14

foreach state d in linked list do15

if d is in difference form then16

d←RECONSTRUCT(d);17

end18

add d to HASHi[H′[d]];19

end20

HASH[i]←H′
21

end22

else if HASH[i] points to a hash function then23

H′ ← HASH[i];24

j←H′[Sst] ;25

HASHi[j]←new;26

end27

2. INSERT: This algorithm is responsible for insert-
ing a state into hash table and is listed in Al-
gorithm 2. It accepts a state(Sst), it’s previous
state(Spv) and the distance of Sst from last ex-
panded state(depth) as input. The fields of a
pointer “new” are assigned the required values
before storing it in appropriate index. Based on
the value of delta, the state is either stored in
explicit or difference form and this is assigned to
‘type’ field of pointer ‘new’. In case of former,
the explicit state Sst is assigned to ‘state’ field of
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‘new’. Otherwise the difference, given by “Sst-
Spv” is assigned to ‘state’ field. Additionally, in
latter case, a pointer to previous state is stored
in ‘prev’ field of ‘new’. This is shown in steps 1-8
of Algorithm 2.

The index of hash-table at which this state is to
be stored is calculated in step 9. There could be
three possible cases:

(a) Hash table contain NULL at this index:
This is the case when Spv is generated for
the first time. The contents of pointer ‘new’
is simply copied to this index of hash-table.
This is shown in steps 10-11 of Algorithm 2.

(b) Hash table contain a linked-list at this index:
In this case, the contents of ‘new’ is copied
to head of linked list. Furthermore, it is
checked if the list contains more than 10%
of an estimated total number of states. In
that case, the states in this linked list is
stored in another hash table and the hash
function is stored at this index. This is done
in steps 12-22 of Algorithm 2.

(c) Hash table contain a hash-function at this
index: In this case, the hash-function stored
at this index is used to find the index in
secondary hash-table and the contents of
pointer ‘new’ is copied to that index. Steps
23-26 in Algorithm 2 handle this case.

3. RECONSTRUCT: This algorithm accepts a differ-
ence state and expands it by backtracking. The
steps are listed in Algorithm 3. In steps 1-4, the
algorithm backtracks and add each state encoun-
tered until an explicit state is reached. Finally,
the state Dst in explicit form can be calculated
by adding the sum to the explicit state encoun-
tered. This is shown in step 5.

Algorithm 3: RECONSTRUCT(State Dst)

Data: State Dst in difference form
Result: Expanded form of D is returned
while d.type=difference do1

sum=sum+d.state ;2

d=d.prev;3

end4

return d+sum;5

3.1.4 Complexity Analysis

The proposed sequential algorithm promises to reduce
the amount of space necessary to store the states by
using difference states. However, this reduction is ac-
companied by a delay due to backtracking. In this
section, we calculate the reduction provided and de-
rive the time needed for extra processing.

Let δ be the distance between two expanded states.
We pointed out earlier that the initial state is stored
in expanded form. Other states in expanded form
are those at depth δ, 2δ, and so on. If a reachability
graph has height n, the depth of last expanded node
is ⌊n

δ
⌋ ∗ δ.

Assuming that the average number of new states
generated by a transition is k(>1), the number of
states at depth d is given by kd and this is illustrated
in Figure 7. All dark circled represent explicit states
while shaded circles represent difference states. The
number of expanded states in a reachability of height
n is the sum of the number of expanded states at
depth 0, δ, 2δ, · · ·, ⌊n

δ
⌋ ∗ δ. This is given by

βexpanded = k0 + kδ + k2δ + · · · + k⌊
n
δ
⌋∗δ

This is a geometric progression (Bronshtein et al.
1997) with initial term a=1 and ratio r=kδ. Hence,
the sum is given by

βexpanded = a(rn+1−1)
r−1 = k

(⌊ n
δ

⌋+1)∗δ−1
kδ−1

(1)
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Figure 7: At depth d, the number of states is kd. All
states at depth δ are explicit

Similarly, the total number of states is another ge-
ometric progression with initial term a=1 and ratio
r=k.

βtotal = k0 + k1 + k2 + · · · + kn

or βtotal =
a(rn+1−1)

r−1 =kn+1−1
k−1 (2)

Therefore the number of states in difference form is
given by

βdifference = βtotal - βexpanded

Assigning βexpanded from equation 1 and βtotal from
equation 2 we get

βdifference = kn+1−1
k−1 - k

(⌊n
δ

⌋+1)∗δ
−1

kδ−1

Percentage Reduction in Memory: The number
of states in difference and explicit forms is given by
equations 1 and 2. Suppose the memory occupied by
an explicit state is λ, while a state stored in difference
form occupies x∗λ memory, where 0<x<1. Therefore
the memory needed to generate a reachability graph
of depth n without using our algorithm is

Λwithoutalgo = βtotal ∗ λ (3)

When using our algorithm, the memory needed to
generate the same reachability graph is

Λwithalgo = βdifference ∗ λ∗x + βexpanded ∗ λ (4)

The percentage reduction in memory denoted by ∆ is

∆ =
Λwithoutalgo−Λwithalgo

Λwithoutalgo
(5)

Using equations 3 and 4 in 5, we get

or ∆ =
βtotal∗λ−βdifference∗λ∗x−βexpanded∗λ

βtotal∗λ

Substituting βdifference as βtotal − βexpanded

∆ = (1-x)∗
(

1−
βexpanded

βtotal

)

or ∆ = (1-x)∗

(

1− (k(⌊ n
δ

⌋+1)∗δ−1)∗(k−1)
(kδ−1)∗(kn+1−1)

)
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Time needed for Extra Processing:The extra
time required when states are stored in difference
form is now calculated. We only consider the delays
due to backtracking as any other delay is common for
both explicit and difference states.

Let i be an integer between 1 and n. If the height of
reachability graph is i, the number of states in explicit
and difference forms are given by

β′
total =

ki+1−1
k−1 , β′

expanded = k
(⌊ i

δ
⌋+1)∗δ−1
k−1

and β′
difference = ki+1−1

k−1 - k
(⌊ i

δ
⌋+1)∗δ

−1
kδ−1

When a state Sst is generated, it is compared with the
state stored at an index given by the hash-function.
The probability that this state is stored in expanded
or difference form can be calculated as

Pexpanded =
β′
expanded

β′
total

and Pdifference =
β′
difference

β′
total

If the state is stored in difference form, it has to be
first expanded by backtracking and then compared
with Sst. Hence, time taken for comparing Sst with
the stored states is given by

Tcomparison = Texpanded + Tdifference

Suppose the time for comparing two expanded states
is ǫ, while it takes y∗ǫ time for backtracking a single
step. In the worst case, a backtracking of (δ−1) steps
is necessary to expand the state. Therefore the time
can be calculated as

Tcomparison = Pexpanded ∗ ǫ + Pdifference ∗ ǫ(δ − 1)y

=
ǫ(1−y(δ−1))β′

expand

β′
total

+ǫ(δ − 1)y

= ǫ(k
(⌊ i

δ
⌋+1)∗δ

−1)(k−1)(1−y(δ−1))
(kδ−1)(ki+1−1)

+ ǫ(δ − 1)y

This is the time taken for comparing a state generated
with a stored state in difference form. All comparison
at a particular depth takes place concurrently. Hence
the total time taken to generate reachability graph of
height n is the sum of time taken for one comparison
at each level. This is denoted by π, where

π =
∑n

i=0
ǫ(k

(⌊ i
δ
⌋+1)∗δ

−1)(k−1)(1−y(δ−1))
(kδ−1)(ki+1−1)

+ ǫ(δ − 1)y

Since ⌊n
δ
⌋=0 for 0≤i< δ, ⌊n

δ
⌋=1 for δ ≤i< 2δ etc.,

π =
∑δ

i=0
ǫ(kδ−1)(k−1)(1−y(δ−1))

(kδ−1)(ki+1−1) +
∑2δ

i=δ
ǫ(k2δ−1)(k−1)(1−y(δ−1))

(kδ−1)(ki+1−1)
+· · ·+

∑n
i=zδ

ǫ(k(z+1)δ−1)(k−1)(1−y(δ−1))
(kδ−1)(ki+1−1)

+ ǫ(δ − 1)y

where z=⌊n
δ
⌋. This is the time taken to generate a

reachability graph of height n when the proposed al-
gorithm is used.

4 Experimental Result

The proposed algorithm was tested on a desktop with
2.8GHz Intel Pentium D processor and 1GB RAM.
The desktop had Ubuntu 8.04 desktop version OS
installed and our C source code was compiled using
GNU C compiler(gcc).

We used six different Coloured Petri-net models to
run our experiment. The number of places and tokens
in each CPN model is listed in Table 1 and Table 2.
If a model had m tokens and n places, each token was
assigned an integer name i:i∈[0,m-1] and each place
was assigned an integer name j:j∈[0,n-1]. Initially,
all tokens were in place 0. At each state, the set of
enabled transitions were selected randomly and one of

these transitions was fired. This allow having a large
number of transitions in a model without specifying
the bindings for which they are enabled.

For each CPN model, we have calculated the time
and space needed to generate first 500 unique states
using sequential algorithm and without using it. Fur-
thermore, sequential algorithm require a non-negative
integer value of δ and we have assigned it the set of
values {1,2,3,7,20}. When proposed algorithm is not
used, we assign 0 to δ. The results are listed in Ta-
ble 1 and Table 2. δ is the shortest distance between
two explicit states.

Table 1 shows the memory needed(given by Λ) to
store first 500 states of CPN models used and the
percentage reduction in memory requirement(given
by ∆) for different values of δ. For each model, the
memory requirement is highest either when not using
our algorithm(δ=0), or when using it with δ=1. In
Figure 8, memory required is plotted against value
of δ. On increasing the value of δ, the memory re-
quirement decrease for all models. Furthermore, the
decrease is significantly higher for large models, with
a significantly greater number of places and tokens,
as compared to small models. For instance, the CPN
model with 1500 places and 2000 tokens used 95%
less space when our algorithm was used with δ=20.
Compared to this, the reduction was 76% for a CPN
model with 4 places and 5 tokens. Nevertheless, the
reduction is massive for models of all size and for all
values of δ, as evident from Table 1 and Figure 8.

Table 2 shows the time needed(given by π) to gen-
erate first 500 states of CPN models used and the
percentage increase in delay(given by η) for different
values of δ. For each model, the delay is minimum
when our algorithm is not used(δ=0). In Figure 9,
delay is plotted against value of δ. When our algo-
rithm is used, delay increase with increase in value
of δ. This increase is massive for small models. A
model with 4 states and 5 tokens generates 500 states
almost instantly(π=0) without using our algorithm.
The same model needs 1.5 second when our algorithm
is used with δ=20. The percentage increase in delay
(η) decrease with an increase in size of model. The
model with 1500 places and 2000 tokens has twice the
delay when our algorithm is used with δ=20 as com-
pared to when δ=0(algorithm not used). A compari-
son of results in Table 1 and Table 2 clearly shows that
the reduction in memory requirement comes at the
cost of extra delay in processing. This is further evi-
dent in Figure 10 where the required memory decrease
and delay increase with increase in value of δ. How-
ever, the memory reduction is massive as compared to
the increase in delay, especially for moderate to large
size models. A model with 1500 places and 2000 to-
kens had 95% reduction in memory with double the
delay. Due to inherent complexity of most modern
systems, their models are almost always large. Our
algorithm is addressing a niche for such systems.

5 Discussion

The proposed algorithm reduce the memory require-
ment for model checking by storing states in difference
form and thereby allow model checking in a machine
with a fraction of memory needed otherwise. This
might lead to wider use of model checking in soft-
ware verification and subsequent production of reli-
able software systems. Although there is an increase
in delay due to backtracking, the results illustrate
that the delay is small when compared to the mas-
sive reduction in memory obtained.
Reduction in memory requirement Λ: State-
space analysis without using our algorithm will store
all states in explicit form, leading to maximum mem-
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Table 1: Space occupied(in bytes) by first 500 states of CPN models(Λ) and percentage decrease in space(∆)

n m δ=0 δ=1 δ=2 δ=3 δ=7 δ=20
Λ Λ ∆ Λ ∆ Λ ∆ Λ ∆ Λ ∆

4 5 9980 9980 0% 5996 40% 4668 53% 3148 68% 2396 76%
60 90 179640 179640 0% 90996 49% 61448 66% 27628 85% 10896 94%
200 400 798400 798400 0% 400996 50% 268528 66% 116908 85% 41896 95%
400 700 1397200 1397200 0% 700996 50% 468928 66% 203308 85% 71896 95%
800 1000 1996000 1996000 0% 1000996 50% 669328 66% 289708 85% 101896 95%
1500 2000 3992000 3992000 0% 2000996 50% 1337328 67% 577708 86% 201896 95%

Table 2: Time(in msec) to generate first 500 states of CPN models(π) and percentage increase in time(η)

n m δ=0 δ=1 δ=2 δ=3 δ=7 δ=20
π π η π η π η π η π η

4 5 ≈0 20 ∞ 90 ∞ 160 ∞ 430 ∞ 1490 ∞
60 90 20 40 100% 80 300% 100 400% 210 950% 570 2750%
200 400 80 130 62% 170 112% 200 150% 320 300% 680 750%
400 700 140 220 57% 260 85% 290 107% 410 193% 770 450%
800 1000 200 310 55% 350 75% 380 90% 500 150% 850 325%
1500 2000 400 620 55% 660 65% 680 70% 820 105% 1200 200%
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ory requirement. This holds for our results in Fig-
ure 8. Furthermore, using our algorithm with δ=1
also stores all states in explicit form, keeping Λ un-
changed. However when δ=2, every alternate state
is stored in explicit form. This leads to almost 50%
reduction in Λ as only half the total number of states
are in explicit form. Similarly, when δ=3, one in ev-
ery three states are stored in explicit form leading to
66% reduction in Λ. When δ=7, one in seven states
is stored in explicit form leading to 85% reduction in
Λ. Finally, when δ=20, one in 20 states is stored in
explicit form resulting in 95% reduction in value of Λ.

The reduction for CPN model with 4 places and 5
tokens is low as compared to other models. The rea-
son being that the size of an explicit state is almost
same as a difference state for a small model. There-
fore, replacing explicit state with difference state do
not make a big difference.
Increase in delay π: Two factors contribute to
overall delay: 1)backtracking to expand a differ-
ence state 2)when state-space is being explored us-
ing DFS algorithm and a duplicate state is encoun-
tered, the stack is popped till a state with an enabled
event(transition) is encountered. Popping a stack is
time intensive operation.

A small model has less number of possible states
and therefore the chances of encountering a duplicate
state is high. The CPN model with 4 places and 5
tokens encountered 469 duplicate states before gen-
erating 500th unique state. As compared to this, the
model with 60 places and 90 tokens encountered only
1 duplicate state before generating 500th state. The
delay in popping stack, combined with backtracking
delay lead to large π for small models.

When model-checking, we need not backtrack if
all states are in explicit form. This leads to low π
when δ=0 or δ=1. However, due to extra processing
delay of our algorithm, the delay for δ=1 is higher
than δ=0. On further increasing δ, delay increases
due to backtracking. Higher the value of δ, more is
the backtracking needed to expand a state and greater
the delay.

6 Related Work

All solutions proposed to store state-space can be
classified as either of 1)Exhaustive storage 2)Partial
storage or 3)Lossy storage. The proposed algorithm
is based on exhaustive storage, wherein all explored
states of a model are compressed and stored in a suit-
able data structure(e.g. hash-table) to ensure con-
stant time lookup. Table 3 compares proposed algo-

Table 3: A comparison of solutions based on exhaus-
tive storage
Method Run-Time Memory-Use

No Algorithm 100% 100%
(Schmidt 2003) 130% 60%
(Evangelista &
Pradat-Peyre 2005)

300% 05%

(Holzmann 1997) 280% 18.3%
Sequential Algo-
rithm proposed

200% 05%

rithm with other solutions based on this approach and
the state-space compression they provide. The table
also gives the additional delay incurred when using a
solution. The proposed algorithm provides reduction
equivalent to (Evangelista & Pradat-Peyre 2005) with
only 2/3 of its delay.

In Partial storage, only a subset of the explored
states are stored. Sweep-line method, proposed in

(Christensen et al. 2001), is a solution based on par-
tial storage where a state is deleted if it cannot be
reached again in future. However, it is difficult to de-
cide the states to be deleted. Furthermore, it is not
a generic solution as for different systems, we might
need to delete a different set of states.

Lossy storage is similar to exhaustive storage
wherein explored states are stored in compressed form
in suitable data structure. However, it is not possi-
ble to decompress the states. In order to determine
if a state is new, it is also compressed and compared
with stored states. As pointed out previously, multi-
ple states can have same compressed form. This often
results in falsely implicating a state as duplicate. An
interesting solution based on lossy storage is proposed
in (Wolper et al. 1993)

7 Conclusion

In this paper, we have reduced the memory require-
ment for model checking by storing states in difference
form. Consequently, model checking would acquire
a bigger role in verification of a wide range of soft-
wares. This will ensure safety and reliability of soft-
ware systems used in all walks of life. Experimental
results indicate that our algorithm performs remark-
ably better for large models. Contemporary systems
have high level of complexity, often leading to large
models. The proposed algorithm is addressing a niche
for such systems.

In future, we aim propose a distributed model
checking algorithm by extending the sequential algo-
rithm. This will reduce the accompanying delay as a
result of parallel processing.
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