
Mesh Simplification using Ellipsoidal Schema for Isotropic Quantization

of Face-Normal Vectors

Ganesan Subramaniam and Kenneth Ong

Department of Electronics and Computer Engineering
National University of Singapore

Block E4, Level 5, Room 48, 4 Engineering Drive 3, Singapore 117576

engp1661@nus.edu.sg, eleongk@nus.edu.sg

Abstract

In this paper, we present a method for simplification of ar-
bitrary 3D meshes that is based on Isotropic Quantization of
face-normal vectors. There are three stages. Firstly, a code-
book that contains the unique face-normal vectors of the 3D
mesh is generated using our Ellipsoidal Schema. Secondly,
the polygons of the mesh are grouped into patches: based
on the codebook vectors and the locality information of the
polygons. Polygons that have isotropic and geographical
similarities are grouped together. And the resulting patch is
approximately a flat plane with its corresponding codebook
vector as its normal. In the last stage, our mesh simplifica-
tion technique re-triangulates the patch, in which the algo-
rithm only considers the vertices on the borders of the
patch. We demonstrate that our technique yields better re-
sults when applied with multiple iterations than when using
a single iteration. Thus using patch-wise quantization, our
technique is able to simplify 3D meshes.

Keywords: Mesh Simplification, Ellipsoidal Schema, Iso-
tropic Quantization, Codebook

1 Introduction

The performance of graphics subsystems has improved
enormously in the last few years. However the complexity
of 3D scenes and graphics applications has also increased
greatly. A very critical aspect in interactive 3D graphics is
the complexity, in terms of number of triangles, of the
meshes to be processed and rendered. A large number of
meshes can be easily produced in many applications: by
fitting isosurfaces on large data-sets, that is by converting
surfaces into triangulated meshes, by 3D scanning real-
world objects. All 3D scanners perform a regular sampling
of the surface of an object, returning triangle meshes of
complexity directly proportional to the scanner’s sampling
resolution and the object surface area. The resulting meshes
typically have a few million triangles. These complex
meshes introduce severe overheads in transmission, ren-
dering, processing and storage.

Copyright (c) 2005, Australian Computer Society, Inc. This paper appeared

at Asia Pacific Symposium on Information Visualization 2006, National

Center of Sciences, Tokyo, Japan. Conferences in Research and Practice in

Information Technology, Vol. 60. Editors, K. Misue, K. Sugiyama and J.

Tanaka. Reproduction for academic, not-for profit purposes permitted

provided this text is included

Thus the visualization of such models cannot be realized in
real-time without mesh simplification techniques to reduce
the number of triangles that are rendered while maintaining
the quality of the mesh. For digital geometry processing,
most scanned models must undergo complete re-meshing
before processing. Geometry-processing algorithms such as
smoothing and compression can greatly benefit from
parameterization-based re-meshing techniques, combined
with uniform or curvature adapted sampling.

Our main contribution to the domain of mesh simplification
is the formulation of a dynamic codebook schema for iso-
tropic surface sampling. We present in this paper, the Ellip-
soidal Schema (see Section 2.1.1 and 2.1.2) and its variants
that is dependent on our geometric model called the GAEA
1. The GAEA is used in the creation of the Ellipsoidal
Schema codebook that is based on the face-normal vectors
of the GAEA face-normals. It also ensures distinct separa-
tion of the regions formed by the codebook vectors (also
known as code-vectors). Due to the inherent properties of a
GAEA, it is possible to create both uniformly and non-
uniformly distributed set of code-vectors. These code-
vectors are later used by the Polygon Grouping stage as
shown in Figure 1 (see next page).

The generated codebook is applied to the 3D mesh in the
Polygon Grouping stage (see Section 2.2). Here the poly-
gons of the 3D mesh are grouped into non-overlapping
regions based on orientation and locality of the polygons. In
the final stage of our mesh simplification process, we re-
mesh the isosurfaces created in the Polygon Grouping
stage. Here we employed Edge Collapse algorithm (see
Section 2.3) to flatten out the polygons. To test the effec-
tiveness of our mesh simplification technique, we applied
our mesh simplification technique several models of vary-
ing sizes (see Section 3) and show our findings when the
simplification technique is iterated on the same model.

2 Mesh Simplification Technique

Our mesh simplification technique focuses on the genera-
tion of a codebook for quantizing a 3D mesh into patches
(groups of polygons). There are three steps involved for the
creation of the simplified mesh (see Figure 1). They are
Codebook Generation (see Section 2.1), Polygon Grouping
(see section 2.2), and Patch Re-meshing (see section 2.3).
Each of these processes is discussed in greater detail in the
following subsections.

1 GAEA is the name that we have given for the new geometric model that we are introducing and it is not an acronym.

Figure 1: Shows the overall process of our mesh simpli-
fication technique.

2.1 Codebook Design

The Polygon Grouping process requires a codebook to
quantize the face-normal vectors of a 3D mesh. However
designing a codebook can sometimes requires an exhaustive
search for the best possible code-vectors in space; and the
search increases exponentially as the number of code-
vectors increases. Therefore we resort to a suboptimal co-
debook design schema.

We introduce the Ellipsoidal Schema that uses a pre-defined
general model called GAEA-n (see Section 2.1.1 for the
explanation of -n) whose code-vectors are uniformly dis-
tributed about the origin. This schema can be extended to
create a non-uniformly distributed codebook, GAEA-xyz
(see Section 2.1.2 for the explanation of -xyz) using the pre-
defined general model.

2.1.1 Uniform Ellipsoidal Schema

To produce our Uniform Ellipsoidal Schema codebook, we
introduce a new geometric model called GAEA-n. A
GAEA-n is basically a sphere, which is symmetrical about
n/2 different directions (much like a cube) and has n num-
ber of subdivisions along each axis. In fact, we can create a
GAEA-n by expanding all the vertices of a cube to fit a
sphere’s profile (see Figure 2).

A GAEA-n model provides a uniformly2 distributed set of
code-vectors that shall be used in the quantization of the
orientation angles of the face-normal vectors of a 3D mesh.
The n in GAEA-n refers to the number of subdivisions
along the each axis where n > 0. For example, GAEA-3
means that this object is created from a cube that has 3 sub-
divisions along each axis.

A GAEA-n object has two notable properties. One of which
is that a GAEA-1 is actually a cube with 1 subdivision. This
means that a GAEA-n object shall have at least 6 unique
face-normals and each one lies along one of the three axes
(i.e. X, Y, and Z axes). The second property of the GAEA-n
is that all its face-normals are unique and are

Figure 2: Shows that a cube with 3 subdivisions can be
transformed into a GAEA-3 whose face-normals form
the vectors for the codebook of the Ellipsoidal Schema.

uniformly distributed. This makes it a suitable candidate for
creating a uniformly distributed set of code-vectors. We call
this schema the Uniform Ellipsoidal Schema.

Since our goal is to quantize the face-normal vectors of a
3D mesh, we would need to choose the right number of
subdivisions for the GAEA-n to create a comprehensive
codebook. To aid in this decision, it is important to note that
the number of code-vectors obtained through this schema is
directly related to the number of subdivisions based on the
following equation:

The equation above shows that the codebook size has a
quadratic relationship with the number of subdivisions. In
other words, a small increase in the number of subdivisions
shall yield a large number of code-vectors. For example,
GAEA-3 will yield 54 code-vectors while GAEA-4 will
yield 96 code-vectors. As the codebook size increases, the
resolution (refers to the number of polygons) of the simpli-
fied mesh will also increase with the number of quadrilater-
als in the simplified mesh.

2.1.2 Non-Uniform Ellipsoidal Schema

GAEA-n provides a general solution to quantizing orienta-
tion angles of a mesh and thus, can be applied to all meshes.
In some cases however, a uniformly distributed codebook
may not be adequate enough to describe the 3D mesh with
the desired accuracy. This might become apparent in cases
where only certain face-normal vectors are predominant in
the mesh. A uniformly distributed set of code-vectors tends
to over generalize this mesh, resulting in the loss of key
details in the final simplified mesh.

To address this problem, we extend GAEA-n such that cer-
tain ranges of face-normal vectors are sampled at a higher
frequency than others. This property can be achieved by
varying the number of subdivisions in each axis independ-
ently. To cater to this modification, we introduce a new
model called GAEA-xyz.

The xyz in GAEA-xyz denotes the number of subdivisions
along the respective axes . Since each axis is now con-
trolled separately, the formula for finding the number of
code-vectors of a GAEA-xyz object shall be given as fol-
lows:

2 Uniform distribution here means that the angles between the face-normals of the GAEA-n are equal.

Figure 3: Shows (A) original mesh (B) after applying
GAEA-3 codebook (C) after applying GAEA-5-4-3.

By varying the subdivisions along each axis, GAEA-xyz
creates a codebook for the 3D mesh as shown in Figure 3.
Unlike GAEA-n’s codebook, this codebook is able to relax
quantization on areas that have fewer features and empha-
sizes quantization on areas that have more features. The
values for x, y, and z can be found by determining the
bounding box dimensions of the 3D mesh. Then, for a de-
sired codebook size, one can determine the values of the
subdivisions for a GAEA-xyz based on a pre-determined
filter.

Having determined the initial codebook for the 3D mesh,
we can now proceed to the Polygon Grouping stage (see
Section 2.2). We refine the codebook to accommodate the
locality criteria for our mesh simplification technique. We
accomplish this by first grouping the polygons based on the
orientation angles of the code-vectors. In other words, all
polygons that face a certain (approximate) angle shall be
grouped together. This angle is provided by the vectors of
the codebook. Then using the adjacent polygon information
from the 3D mesh, we break down the groups into smaller
sets of connected polygons. Finally the averages of the
face-normal vectors of each set of connected polygons shall
form the code-vectors for the new codebook.

2.2 Polygon Grouping

Polygon Grouping is a process that maps a 3D mesh’s face-
normal vectors (in the vector space Rk) into a codebook, Y
= {yi: i = 1, 2… N} where yi is a finite set of code-vector.
Associated with each code vector, yi, is a nearest neighbor
region, and is defined as:

!

Vi = {x " R
k
: x # yi $ x # y j , for all j % i

The representative code-vector is determined to be the clos-
est in Euclidean distance from the input vector. Euclidean
distance accounts for the locality of the polygons in a 3D
mesh. However for the purposes of Polygon Grouping, we
have decided that orientation is also important. In other
words, the polygons that are close together in Euclidean
space and are facing in the same direction shall be clustered
together to form a group. To accommodate the latter crite-
rion, the orientation-based grouping, we redefine our
neighbor region as follows:

Thus for Polygon Grouping, the representative code-vector
is determined to be the closest in Euclidean distance from

Figure 4: Illustration of the flattening process of a patch
using a series of edge collapse transformation.

the input vector and closest in orientation to the input vec-
tor. During the Polygon Grouping process, an input face-
normal vector is matched against the code-vectors gener-
ated from an Ellipsoidal Schema and the index to the code-
vector that offers the least distortion is output. In this case
the lowest distortion is found by evaluating the Euclidean
distance and the orientation angle between the input vector
and the code-vector in the codebook.

2.3 Patch Re-meshing

After grouping polygons into patches, we are now left with
the task of flattening the patches. Since the patches consist
of polygons that are isotropic, each patch can be treated as a
flat 2D plane. Thus removing the vertices in the interior of
the patch should not affect the fidelity of the simplified
mesh to the original mesh too greatly. The remaining
boundary vertices shall be triangulated to form the new
patch. Although any polygon triangulation algorithms can
be used, we have implemented edge-collapsing technique to
flatten a patch.

As shown in Figure 4, an edge collapse transformation
ecol({vs, vt})unifies 2 adjacent vertices vs and vt into a sin-
gle vertex. The vertex vt and the two adjacent faces { vs vt vl
}and { vt vs vr } vanish in the process. A position s is speci-
fied for the new unified vertex.

To begin an edge-collapse operation, we first have to select
an edge based on a cost-function. Our cost function shall be
the shortest edge with an interior vertex. An interior vertex
is one that does not lie on the boundary of a patch. Since
our goal is to flatten a patch, the interior vertex shall col-
lapse into a boundary vertex. Thus for a set of ß boundary
vertices of a patch, the cost function for the selection of an
edge can be given as follows:

Using this equation, we can then proceed to flatten a patch
and thus complete our simplification process. Note however
that other polygon triangulation techniques can be used to
achieve our goal. However we have chosen this technique
due to its simplicity and ease of implementation.

3 Results and Discussion

The mesh simplification technique described in this paper
has been implemented as an interactive software. The user
shall be able to control the simplification via the selection
of parameters for our codebook generation schema. Models
in PLY formatted files can be loaded into the program di-
rectly and the Ellipsoidal schema can be applied onto them.
Figure 5 shows the result of the applying our mesh simplifi-
cation schema using our software.

Figure 5: Shows (A) original mesh (B) after applying
GAEA-3 codebook (C) after applying GAEA-5.

Figure 6: Shows (A) original mesh (B) after applying
GAEA-3 codebook (C) after applying GAEA-5 to

GAEA-1 iteratively.

We have run our technique on a variety of models of arbi-
trary complexity. Figure 5 illustrates simplification of a
polygonal model with 1704 polygons. After applying our
simplification technique, the new model has 1548 polygons
by using GAEA-3 codebook and 1672 polygons by using
GAEA-5 codebook. The following table shows all the re-
sults for the polygonal models on which we have used our
technique.

From the Table 1 above, we can deduce that while a smaller
order GAEA produces a simpler resulting mesh, it also
suffers in terms of quality. However in another observation
of the results in the table above, it seems that the algorithm
is only able to produce minimal reduction in the number of
polygons. To achieve higher rates of polygon reduction, we
have realized that a model needs to be passed through our
algorithm for several iterations. In each iteration, if the
number of polygon does not reduce, we would reduce the
GAEA order till GAEA-1 is reached. The results of this
experiment is shown Figure 6 where the cow model was put
through this test. We started with GAEA-5 and ended the
algorithm after GAEA-1.

We have also discovered that instead of using uniform co-
debooks during the iterations, using non-uniform code-
books yielded more polygon reductions. This is due to the
properties of the non-uniform codebooks to “better” fit the
model. Based on the shape of the model we have selected
appropriate values for the dimensions of GAEA-xyz. During
the iterations, we reduce the every dimension of GAEA till
they are all 1s (i.e. till GAEA-1-1-1 is reached). The results
are as follows:

4 Conclusion

Our Mesh Simplification technique involves three steps as
illustrated in Figure 1. The first step creates a codebook
based on either of one of our polygon quantization sche-
mas: Uniform Ellipsoidal Schema and Non-Uniform Ellip-
soidal Schema. In the second step of our mesh simplifica-
tion process, we group polygons based on the resulting co-
debook from step 1. The grouped polygons shall be iso-
tropic and have similarities in locality. This thus allows us
to flatten each group of polygons without too much loss

apple.ply cow.ply bunny.ply dragon.ply

Original 1704 5804 69451 871414

Using GAEA-1 1216 3074 17993 265776

Using GAEA-3 1548 5274 37660 435814

Using GAEA-5 1672 5614 48229 550340

Table 1: Shows the polygon counts after applying the
mesh simplification technique on several models.

cow.ply bunny.ply dragon.ply

Original 5804 69451 871414

Initial GAEA 5-3-1 5-5-3 5-5-1

Simplified Mesh 2755 10857 130611

Timing 27 secs 65 secs 935 secs

Table 2: Shows the results when iterative simplification
and non-uniform codebooks were used.

of fidelity. As observed in step 3, different codebooks pro-
vide different results. Thus the choice of the quantization
schemas can affect the size of the final simplified mesh.

5 References

MichaelGarland and Paul S. Heckbert (1997): Surface sim-
plification using quadric error metrics, SIGGRAPH,
pages 209–216.
http://www.cs.cmu.edu/~garland/quadrics.

Cohen, J., M. Olano, and D. Manocha (1998): Appearance-
Preserving Simplification, SIGGRAPH.

Hugues Hoppe (1996): Progressive meshes, SIGGRAPH,
pages 99–108, http://research.microsoft.com/hoppe/

W. Sweldens and P. Schr¨oder (2001): Digital Geometry
Processing, Course Notes. ACM SIGGRAPH.

X. Gu, S. Gortler, and H. Hoppe (2002): Geometry images,
SIGGRAPH, pages 355–361.

P. Alliez, ´ E. Colin de Verdi`ere, O. Devillers, and M. Isen-
burg (2003): Isotropic surface remeshing, Shape Model-
ing International.

P. Alliez, M. Meyer, and M. Desbrun (2002): Interactive
geometry remeshing. ACM Transactions on Graphics,
21(3):347–354. SIGGRAPH conference proceedings.

M. Desbrun, M. Meyer, and P. Alliez (2002): Intrinsic pa-
rameterizations of surface meshes, Eurographics, pages
209–218.

B. L´evy, S. Petitjean, N. Ray, and J. Maillot (2002): Least
squares conformal maps for automatic texture atlas gen-
eration, SIGGRAPH, pages 362–371.

Pragyana Mishra, Omead Amidi and Takeo Kanade (2004):
EigenFairing: 3D Model Fairing using Image Coher-
ence, British Machine Vision Conference, Vol. 1, pp. 17-
26

Markus Hadwiger (1998): Mesh Simplification and Multi-
resolution Data Structures,

http://www.cg.tuwien.ac.at/studentwork/VisFoSe98/msh/

