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Abstract

In this paper, we present a method for simplification of ar-
bitrary 3D meshes that is based on Isotropic Quantization of 
face-normal vectors. There are three stages. Firstly, a code-
book that contains the unique face-normal vectors of the 3D 
mesh is generated using our Ellipsoidal Schema. Secondly, 
the polygons of the mesh are grouped into patches: based 
on the codebook vectors and the locality information of the 
polygons. Polygons that have isotropic and geographical 
similarities are grouped together. And the resulting patch is 
approximately a flat plane with its corresponding codebook 
vector as its normal. In the last stage, our mesh simplifica-
tion technique re-triangulates the patch, in which the algo-
rithm only considers the vertices on the borders of the 
patch. We demonstrate that our technique yields better re-
sults when applied with multiple iterations than when using 
a single iteration. Thus using patch-wise quantization,  our 
technique is able to simplify 3D meshes.
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1 Introduction

The performance of graphics subsystems has improved 
enormously in the last few years.  However the complexity 
of 3D scenes and graphics applications has also increased 
greatly. A very critical aspect in interactive 3D graphics is 
the complexity, in terms of number of triangles, of the 
meshes to be processed and rendered. A large number of 
meshes can be easily produced in many applications: by 
fitting isosurfaces on large data-sets, that is by converting 
surfaces into triangulated meshes, by 3D scanning real-
world objects. All 3D scanners perform a regular sampling 
of the surface of an object, returning triangle meshes of 
complexity directly proportional to the scanner’s sampling 
resolution and the object surface area.  The resulting meshes 
typically have a few million triangles. These complex 
meshes introduce severe overheads in transmission, ren-
dering,  processing and storage.

Copyright (c) 2005, Australian Computer Society, Inc. This paper appeared 

at Asia Pacific Symposium on Information Visualization 2006, National 

Center of Sciences, Tokyo, Japan. Conferences in Research and Practice in 

Information Technology, Vol. 60. Editors, K. Misue, K. Sugiyama and J. 

Tanaka. Reproduction for academic, not-for profit purposes permitted 

provided this text is included 

Thus the visualization of such models cannot be realized in 
real-time without mesh simplification techniques to reduce 
the number of triangles that are rendered while maintaining 
the quality of the mesh. For digital geometry processing, 
most scanned models must undergo complete re-meshing 
before processing. Geometry-processing algorithms such as 
smoothing and compression can greatly benefit from 
parameterization-based re-meshing techniques, combined 
with uniform or curvature adapted sampling.

Our main contribution to the domain of mesh simplification 
is the formulation of a dynamic codebook schema for iso-
tropic surface sampling. We present in this paper, the Ellip-
soidal Schema (see Section 2.1.1 and 2.1.2) and its variants 
that is dependent on our geometric model called the GAEA
1. The GAEA is used in the creation of the Ellipsoidal 
Schema codebook that is based on the face-normal vectors 
of the GAEA face-normals.  It also ensures distinct separa-
tion of the regions formed by the codebook vectors (also 
known as code-vectors). Due to the inherent properties of a 
GAEA, it is possible to create both uniformly and non-
uniformly distributed set of code-vectors. These code-
vectors are later used by the Polygon Grouping stage as 
shown in Figure 1 (see next page).

The generated codebook is applied to the 3D mesh in the 
Polygon Grouping stage (see Section 2.2). Here the poly-
gons of the 3D mesh are grouped into non-overlapping 
regions based on orientation and locality of the polygons. In 
the final stage of our mesh simplification process, we re-
mesh the isosurfaces created in the Polygon Grouping 
stage.  Here we employed Edge Collapse algorithm (see 
Section 2.3) to flatten out the polygons. To test the effec-
tiveness of our mesh simplification technique, we applied 
our mesh simplification technique several models of vary-
ing sizes (see Section 3) and show our findings when the 
simplification technique is iterated on the same model.

2 Mesh Simplification  Technique

Our mesh simplification technique focuses on the genera-
tion of a codebook for quantizing a 3D mesh into patches 
(groups of polygons).  There are three steps involved for the 
creation of the simplified mesh (see Figure 1). They are 
Codebook Generation (see Section 2.1),  Polygon Grouping 
(see section 2.2), and Patch Re-meshing (see section 2.3). 
Each of these processes is discussed in greater detail in the 
following subsections.

1 GAEA is the name that we have given for the new geometric model that we are introducing and it is not an acronym.



Figure 1: Shows the overall process of our mesh simpli-
fication technique.

2.1 Codebook Design

The Polygon Grouping process requires a codebook to 
quantize the face-normal vectors of a 3D mesh. However 
designing a codebook can sometimes requires an exhaustive 
search for the best possible code-vectors in space; and the 
search increases exponentially as the number of code-
vectors increases. Therefore we resort to a suboptimal co-
debook design schema.

We introduce the Ellipsoidal Schema that uses a pre-defined 
general model called GAEA-n (see Section 2.1.1 for the 
explanation of -n) whose code-vectors are uniformly dis-
tributed about the origin. This schema can be extended to 
create a non-uniformly distributed codebook, GAEA-xyz 
(see Section 2.1.2 for the explanation of -xyz) using the pre-
defined general model. 

2.1.1 Uniform Ellipsoidal Schema

To produce our Uniform Ellipsoidal Schema codebook, we 
introduce a new geometric model called GAEA-n. A 
GAEA-n is basically a sphere, which is symmetrical about 
n/2 different directions (much like a cube) and has n num-
ber of subdivisions along each axis. In fact,  we can create a 
GAEA-n by expanding all the vertices of a cube to fit a 
sphere’s profile (see Figure 2).  

A GAEA-n model provides a uniformly2 distributed set of  
code-vectors that shall be used in the quantization of the 
orientation angles of the face-normal vectors of a 3D mesh. 
The n  in GAEA-n refers to the number of subdivisions 
along the each axis where n > 0. For example, GAEA-3 
means that this object is created from a cube that has 3 sub-
divisions along each axis.

A GAEA-n object has two notable properties. One of which 
is that a GAEA-1 is actually a cube with 1 subdivision.  This 
means that a GAEA-n object shall have at least 6 unique 
face-normals and each one lies along one of the three axes 
(i.e. X,  Y, and Z axes). The second property of the GAEA-n 
is that all its face-normals are unique and are 

Figure 2: Shows that a cube with 3 subdivisions can be 
transformed into a GAEA-3 whose face-normals form 
the vectors for the codebook of the Ellipsoidal Schema.

uniformly distributed. This makes it a suitable candidate for 
creating a uniformly distributed set of code-vectors. We call 
this schema the Uniform Ellipsoidal Schema.

Since our goal is to quantize the face-normal vectors of a 
3D mesh, we would need to choose the right number of 
subdivisions for the GAEA-n to create a comprehensive 
codebook. To aid in this decision, it is important to note that 
the number of code-vectors obtained through this schema is 
directly related to the number of subdivisions based on the 
following equation:

The equation above shows that the codebook size has a 
quadratic relationship with the number of subdivisions.  In 
other words, a small increase in the number of subdivisions 
shall yield a large number of code-vectors.  For example, 
GAEA-3 will yield 54 code-vectors while GAEA-4 will 
yield 96 code-vectors. As the codebook size increases, the 
resolution (refers to the number of polygons) of the simpli-
fied mesh will also increase with the number of quadrilater-
als in the simplified mesh.

2.1.2 Non-Uniform Ellipsoidal Schema

GAEA-n provides a general solution to quantizing orienta-
tion angles of a mesh and thus, can be applied to all meshes. 
In some cases however,  a uniformly distributed codebook 
may not be adequate enough to describe the 3D mesh with 
the desired accuracy. This might become apparent in cases 
where only certain face-normal vectors are predominant in 
the mesh. A uniformly distributed set of code-vectors tends 
to over generalize this mesh, resulting in the loss of key 
details in the final simplified mesh. 

To address this problem, we extend GAEA-n such that cer-
tain ranges of face-normal vectors are sampled at a higher 
frequency than others. This property can be achieved by 
varying the number of subdivisions in each axis independ-
ently. To cater to this modification, we introduce a new 
model called GAEA-xyz.  

The xyz in GAEA-xyz denotes the number of subdivisions 
along the respective axes . Since each axis is now con-
trolled separately, the formula for finding the number of 
code-vectors of a GAEA-xyz object shall be given as fol-
lows:

2 Uniform distribution here means that the angles between the face-normals of the GAEA-n are equal.



Figure 3: Shows (A) original mesh (B) after applying 
GAEA-3 codebook (C) after applying GAEA-5-4-3.

By varying the subdivisions along each axis, GAEA-xyz 
creates a codebook for the 3D mesh as shown in Figure 3. 
Unlike GAEA-n’s codebook, this codebook is able to relax 
quantization on areas that have fewer features and empha-
sizes quantization on areas that have more features. The 
values for x,  y, and z can be found by determining the 
bounding box dimensions of the 3D mesh. Then, for a de-
sired codebook size, one can determine the values of the 
subdivisions for a GAEA-xyz based on a pre-determined 
filter.

Having determined the initial codebook for the 3D mesh, 
we can now proceed to the Polygon Grouping stage (see 
Section 2.2).  We refine the codebook to accommodate the 
locality criteria for our mesh simplification technique. We 
accomplish this by first grouping the polygons based on the 
orientation angles of the code-vectors. In other words, all 
polygons that face a certain (approximate) angle shall be 
grouped together.  This angle is provided by the vectors of 
the codebook. Then using the adjacent polygon information 
from the 3D mesh, we break down the groups into smaller 
sets of connected polygons. Finally the averages of the 
face-normal vectors of each set of connected polygons shall 
form the code-vectors for the new codebook.

2.2 Polygon Grouping

Polygon Grouping is a process that maps a 3D mesh’s face-
normal vectors (in the vector space Rk) into a codebook, Y 
= {yi: i = 1,  2… N} where yi is a finite set of code-vector. 
Associated with each code vector, yi, is a nearest neighbor 
region,  and is defined as:

! 

Vi = {x " R
k
: x # yi $ x # y j , for all j % i

The representative code-vector is determined to be the clos-
est in Euclidean distance from the input vector. Euclidean 
distance accounts for the locality of the polygons in a 3D 
mesh. However for the purposes of Polygon Grouping, we 
have decided that orientation is also important. In other 
words, the polygons that are close together in Euclidean 
space and are facing in the same direction shall be clustered 
together to form a group. To accommodate the latter crite-
rion, the orientation-based grouping, we redefine our 
neighbor region as follows:

Thus for Polygon Grouping, the representative code-vector 
is determined to be the closest in Euclidean distance from 

Figure 4: Illustration of the flattening process of a patch 
using a series of edge collapse transformation.

the input vector and closest in orientation to the input vec-
tor.  During the Polygon Grouping process, an input face-
normal vector is matched against the code-vectors gener-
ated from an Ellipsoidal Schema and the index to the code-
vector that offers the least distortion is output. In this case 
the lowest distortion is found by evaluating the Euclidean 
distance and the orientation angle between the input vector 
and the code-vector in the codebook. 

2.3 Patch Re-meshing

After grouping polygons into patches, we are now left with 
the task of flattening the patches.  Since the patches consist 
of polygons that are isotropic, each patch can be treated as a 
flat 2D plane. Thus removing the vertices in the interior of 
the patch should not affect the fidelity of the simplified 
mesh to the original mesh too greatly. The remaining 
boundary vertices shall be triangulated to form the new 
patch. Although any  polygon triangulation algorithms can 
be used, we have implemented edge-collapsing technique to 
flatten a patch.

As shown in Figure 4, an edge collapse transformation 
ecol({vs, vt})unifies 2 adjacent vertices vs and vt into a sin-
gle vertex. The vertex vt and the two adjacent faces { vs vt vl 
}and { vt vs vr } vanish in the process.  A position s is speci-
fied for the new unified vertex. 

To begin an edge-collapse operation, we first have to select 
an edge based on a cost-function. Our cost function shall be 
the shortest edge with an interior vertex. An interior vertex 
is one that does not lie on the boundary of a patch. Since 
our goal is to flatten a patch, the interior vertex shall col-
lapse into a boundary vertex. Thus for a set of ß boundary 
vertices of a patch, the cost function for the selection of an 
edge can be given as follows:

Using this equation, we can then proceed to flatten a patch 
and thus complete our simplification process. Note however 
that other polygon triangulation techniques can be used to 
achieve our goal. However we have chosen this technique 
due to its simplicity and ease of implementation.

3 Results and Discussion

The mesh simplification technique described in this paper 
has been implemented as an interactive software. The user 
shall be able to control the simplification via the selection 
of parameters for our codebook generation schema. Models 
in PLY formatted files can be loaded into the program di-
rectly and the Ellipsoidal schema can be applied onto them. 
Figure 5 shows the result of the applying our mesh simplifi-
cation schema using our software.



Figure 5: Shows (A) original mesh (B) after applying 
GAEA-3 codebook (C) after applying GAEA-5.

Figure 6: Shows (A) original mesh (B) after applying 
GAEA-3 codebook (C) after applying GAEA-5 to 

GAEA-1 iteratively.

We have run our technique on a variety of models of arbi-
trary complexity.  Figure 5 illustrates simplification of a 
polygonal model with 1704 polygons. After applying our 
simplification technique, the new model has 1548 polygons 
by using GAEA-3 codebook and 1672 polygons by using 
GAEA-5 codebook. The following table shows all the re-
sults for the polygonal models on which we have used our 
technique.

From the Table 1 above, we can deduce that while a smaller 
order GAEA produces a simpler resulting mesh,  it also 
suffers in terms of quality. However in another observation 
of the results in the table above, it seems that the algorithm 
is only able to produce minimal reduction in the number of 
polygons. To achieve higher rates of polygon reduction, we 
have realized that a model needs to be passed through our 
algorithm for several iterations. In each iteration, if the 
number of polygon does not reduce, we would reduce the 
GAEA order till GAEA-1 is reached. The results of this 
experiment is shown Figure 6 where the cow model was put 
through this test. We started with GAEA-5 and ended the 
algorithm after GAEA-1.

We have also discovered that instead of using uniform co-
debooks during the iterations,  using non-uniform code-
books yielded more polygon reductions. This is due to the 
properties of the non-uniform codebooks to “better” fit the 
model. Based on the shape of the model we have selected 
appropriate values for the dimensions of GAEA-xyz. During 
the iterations,  we reduce the every dimension of GAEA till 
they are all 1s (i.e. till GAEA-1-1-1 is reached).  The results 
are as follows:

4 Conclusion

Our Mesh Simplification technique involves three steps as 
illustrated in Figure 1.  The first step creates a codebook 
based on either of one of our polygon quantization sche-
mas: Uniform Ellipsoidal Schema and Non-Uniform Ellip-
soidal Schema. In the second step of our mesh simplifica-
tion process, we group polygons based on the resulting co-
debook from step 1.  The grouped polygons shall be iso-
tropic and have  similarities in locality. This thus allows us 
to flatten each group of polygons without too much loss 

apple.ply cow.ply bunny.ply dragon.ply

Original 1704 5804 69451 871414

Using GAEA-1 1216 3074 17993 265776

Using GAEA-3 1548 5274 37660 435814

Using GAEA-5 1672 5614 48229 550340

Table 1: Shows the polygon counts after applying the 
mesh simplification technique on several models.

cow.ply bunny.ply dragon.ply

Original 5804 69451 871414

Initial GAEA 5-3-1 5-5-3 5-5-1

Simplified Mesh 2755 10857 130611

Timing 27 secs 65 secs 935 secs

Table 2: Shows the results when iterative simplification 
and non-uniform codebooks were used.

of fidelity. As observed in step 3, different codebooks pro-
vide different results. Thus the choice of the quantization 
schemas can affect the size of the final simplified mesh.
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