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Abstract
1
 

Ahadi and Lister (2013) found that many of their 

introductory programming students had fallen behind as 

early as week 3 of semester, and those students often then 

stayed behind. Our later work (Ahadi, Lister and Teague 

2014) supported that finding, for students at another 

institution. In this paper, we go one step further than those 
earlier studies by observing a number of students as they 

complete programming tasks while thinking aloud. We 

describe the types of inconsistencies students manifest, 

which are often not evident on analysis of conventional 

written tests. We again interpret our findings using neo-

Piagetian theory. We conclude with some thoughts on the 

pedagogical implications of our research results. 

Keywords:  Programming, neo-Piagetian theory, novices, 
assessment, think aloud. 

1 Introduction 

Many computing educators have noted a large variation 
in the ability of introductory programming students. 

Ahadi and Lister (2013) found significant differences in 

performance among their students, as early as week 3, on 

trivial coding problems. Furthermore, those students with 

lower scores on the week 3 test also tended to perform 

lower on test questions in subsequent weeks — that is, 

some students fall behind very early and then stay behind. 

Ahadi et al. (2014) conducted a second study, 

comparing students at two different institutions. They 

found that tests held early in semester were good 
indicators of success in the final exam. In this paper, we 

report on a similar quantitative study, but we go further, 

by triangulating with qualitative think aloud data from 

students completing the same test questions. 

2 Neo-Piagetian Theory 

Lister (2011) proposed that we can describe students' 
development in programming in terms of neo-Piagetian 

theory. Other studies (Falkner, Vivian, and Falkner 2013; 

Teague et al. 2013; Teague and Lister 2014c) provide 

empirical evidence of novices manifesting neo-Piagetian 

stage-related characteristics as they reason about 

programming tasks. According to the evidence 

accumulated from these and related studies, the first three 

stages of development are characterised as follows. 
At the sensorimotor stage, novices tend to 

inconsistently apply mis/conceptions about programming. 

Because of their fragile knowledge, these students 
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struggle to successfully trace code, let alone reason about 

its purpose or write their own code. 

At the next more mature level are preoperational 

students who have begun mastering the semantics, and 
any misconceptions that remain at this stage are at least 

applied consistently. Although preoperational students 

can accurately trace code, they are often not able to 

reason about its purpose other than by induction from 

input/output pairs (see Teague and Lister (2014b)). 

It is at the concrete operational stage, the next more 

mature stage, where students have developed an ability to 

reason deductively about abstractions and write more 

complex code. This is the stage at which computing 

educators typically expect students to be working by the 

end of their first semester of learning programming, and 
the level at which students are traditionally assessed. 

However, the findings of this study, and previous studies, 

suggest that many students are not manifesting concrete 

operational skills even by their second semester of study 

(Teague et al. 2013). 

Rather than making quantum leaps between these 

three stages, our view of development is described by the 

Overlapping Waves Model (Boom 2004; Feldman 2004; 

Siegler 1996). In that model, characteristics of an earlier 

stage dominate initially, but there is a gradual increase in 

the use of the next more mature level of reasoning and a 

decrease in the less mature stage. This model accounts for 
students manifesting characteristics of more than one 

stage simultaneously. 

3 Method 

The undergraduate introductory programming course we 
studied ran at the first author’s institution over a 13 week 

semester comprised of a two hour lecture and a two hour 

workshop each week. 

To collect the data for this study, students completed a 

short "in-class" test at the start of the lectures in weeks 2, 

4, 7 and 9. These tests did not contribute to a student’s 

final grade. However, most students present at the lecture 

did the test, as the lecture did not proceed until the test 

was over. The time students took to complete a test was 

not formally recorded, but each test took around 15 
minutes. Students were under little time pressure. 

Immediately after each test, the lecturer would review the 

test and explain the correct answers. 

Much of the work of the first author in recent years 

has involved observing approximately 40 individual 

student programmers, as they developed over the course 

of a semester. Those students completed programming 

tasks while thinking out loud (Ericsson and Simon 1993). 

In this paper we describe some of those students' attempts 

at the tasks that in-class test data identified as being 
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problematic for many students. The qualitative data from 

the think aloud sessions help to answer some of the 

questions that arise from the in-class results: 

What strategies do students use? (In other words, how 

did they get that answer?); 

What behaviour is evident with students who have 
difficulty completing programming tasks?; and 

What programming misconceptions (if any) are 

evident? (Are incorrect answers a result of careless 

mistakes, misinterpretation of the question or lack of 

understanding the concept?) 

Once we have that information, we can answer the "why" 

questions by interpreting the qualitative data using the 

neo-Piagetian framework:  

Why do students get particular questions wrong?  

Can a student have disparate levels of ability with two 

tasks which test similar programming concepts? (For 

example tracing, explaining and writing the same 
code.) 

Why are some students unable to work with 

abstractions? (For example, why do they rely on 

tracing code with specific values?) 

It is not possible to include all our think aloud data in this 

paper. We have simply selected three sessions that are 

representative of the broadly different types of reasoning 

manifested by our think aloud students.  

We use aliases to obfuscate students' identity. Excerpts 

from the sessions with Charlotte ("C"), Lance ("L) and 

Jim ("J") are detailed in the following sections. Lance 
was in the same cohort as those completing the in-class 

tests. Unlike the others, Charlotte was a postgraduate 

student, but as she was in her first programming unit at 

the time of her think aloud session, she was at a similar 

level to those students in the in-class tests. Jim was in 

week 2 of his second programming unit.  

In these excerpts, a pause in speech is marked "...", as 

a placeholder for dialog we have removed as it added 

nothing to the context of the think aloud session.  

4 Test 1 (Week 2) 

When the students completed Test 1 at the beginning of 
their week 2 lecture, they had completed two hours of 

lectures and a two hour workshop. The test questions are 

provided in the appendix. (We will hereafter refer to test 

questions in an abbreviated form. For example, Question 

1 will now simply be Q1.) Our Test 1 is very similar to 

the Test 1 of Ahadi and Lister (2013), differing in only 

four respects: (a) our test is a translation from their Java 

to our Python, which is a trivial change given that all the 

questions in Test 1 are about assignment statements; (b) 

we renumbered their questions, (c) we omitted Q2a from 
the Ahadi and Lister test, but retained their Q2b as our 

Q7; and (d) we conducted our first test in week 2 whereas 

they conducted their first test in week 3. 

Figure 1 shows the distribution of student scores on 

Test 1, where 8 is the maximum possible score.  

 

 

 

 

 

 
 

 

 

 

 

 

All questions were worth 1 point, with no fractional 

points awarded. Answers were treated as either right or 

wrong, but syntactic errors were ignored. We eliminated 

from Figure 1 and all subsequent analysis, the small 

number of students who scored zero on Test 1, as they 

were likely to be students who had not attended week 1 
classes. As was the case for Ahadi and Lister (2013), 

there was a wide variation in Test 1 scores. 

Table 1 shows the percentage of students, for each 

Test 1 score out of 8, who correctly answered each of the 

eight questions. The final row of the table represents the 

percentages of all students who answered correctly each 

question in the test. Cells containing asterisk/s indicate a 

statistically significant difference in the two percentages 

above and below the asterisk/s. (NB: percentages are 

rounded down.) As can be seen from that table (especially 

for test scores of 1 to 6 inclusive, as marked with darker 
border lines), an approximate rule of thumb is that if a 

student scored n points out of 8 on the test, then the 

student's first n answers were most commonly right, and 

their remaining answers were most commonly wrong. In 

accordance with that rule of thumb, we characterised the 

students as follows: 

 Score 1 or 2: understands little of the semantics of 

the code.  

 Score 3 or 4: applies inconsistent guessing because 

of fragile understanding of the semantics. 

 Score 5: can conduct a trace with some reliability. 

 Score 6: can perform inductive inference. 

 Score 7: can sometimes perform deductive inference. 

We elaborate on this characterisation in the next section. 

4.1 Semantics of Assignment and Sequence 

In Test 1, Q1–Q3 tested whether a student understood the 

semantics of a sequence of assignment statements. That 

is, the value on the right of the assignment is copied to 

the left, overwriting the previous value, and assignments 

are executed in sequence. Many students who scored 1, 2 
or 3 on Test 1 struggled with Q1–Q3 (see the left three 

shaded columns in Table 1). 

 

Figure 1: Distribution of total scores on Test 1 (N=254) 
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Test1 

Score n 
semantics tracing reasoning 

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 

1 26 53 23 0 4 4 8 12 0 

  ** ** *     

2 27 60 71 26 26 15 4 0 0 

   *** *     

3 17 53 65 89 59 24 6 6 0 

 *    *    

4 30 87 84 80 64 54 14 14 7 

  *  ** **    

5 44 87 96 94 94 85 30 12 5 

      *** * *** 

6 41 86 98 98 96 88 69 35 35 

       *** *** 

7 39 83 100 98 93 98 75 75 80 

 *     ** ** ** 

8 30 100 100 100 100 100 100 100 100 

all 254 78 84 76 73 65 43 34 32 

Table 1: Percentage of students who answered correctly 

each part of Test 1, broken down by total score (χ
2
, * is p ≤ 

0.05, ** is p ≤ 0.01 and *** is p ≤ 0.001) 

Sensorimotor students often have no alternative but to 

use guessing as a strategy for reasoning about code. This 

is because they have not yet built a clear mental model of 

the notional machine (du Boulay 1989), nor do they have 

a solid comprehension of the concepts to which they have 

only just been introduced. Because of this, they 

inconsistently apply mis/conceptions about the semantics 

of code. 

4.1.1 Vignettes from Charlotte 

One of our think-aloud students, Charlotte, demonstrated 

this type of sensorimotor reasoning when she was asked 

to trace the effect of the three assignment statements (Q2) 

shown both in the appendix and again here in Figure 2. 

 

 
 

 

 

 

 

As Charlotte considered the code she said: 

C: Hmm. … I don't know, but I imagine … it's kind of a 

guess here [laugh], that … r will equal 4 … and s 

will equal 4.  

Of course students will get the marks for correct guesses 

in exams, and as this think aloud session showed, it is not 

until you listen to a student's reasoning that you can start 

to understand their true level of ability. This is consistent 

with the findings of Teague et al. (2012) who provided an 

astonishing contrast between the correct solution a 

programming student was able to produce and the 

inexplicable reasoning and method he actually used to 
produce that solution. This is of course the advantage of 

think alouds. It is quite obvious when a student flukes a 

correct answer. Think alouds also explain why, in other 

cases, students answer incorrectly. 

With her very next task (Q3, shown again in Figure 3), 

Charlotte thought she was being consistent with her 

"guess", but that was not actually the case. 

C: So…going from how I did the last one, I might as well 

be consistent. … p will equal 8 and q will equal 1. 

 

 

 

 

 

 
 

Charlotte later reflected on that answer and explained: 

C: I looked up to the original integer rather than looking 

at the switched integer 

In other words, she looked only to the first assignment of 

q (i.e., q = 8) rather than taking account of its 

subsequent reassignment (q = p). Charlotte's fragile 

understanding of the semantics (as well as a floundering 

command of the jargon) is also exemplified in her next 

comment: 

C: I'm just not confident in how the rules of inheritance 

were applied. It was like I was just going on a whim. 

Students who scored 4 on Test 1 tended to answer Q1–Q3 

correctly, and either Q4 or Q5 correctly. We characterise 

these students as novices who still have a fragile 

understanding of the semantics of the language, and like 

Charlotte, inconsistently apply mis/conceptions. 

4.2 Inductive Reasoning 

Lister (2011) proposed that a preoperational 
programming student can make reasonable inductive 

guesses about the function of a piece of code based upon 

the input/output behaviour they observe from tracing it, 

without understanding how the code achieves that 

function. 

We have witnessed this type of reasoning in previous 

work (Teague et. al. 2013, Teague and Lister 2014a) 
where the student (Donald) attempted to explain the 

purpose of code that sorted the values in three variables. 

Donald based his answer on the effect of a single set of 

poorly chosen input values. As a result, his answer, 

although accurate for that single test case, did not reflect 

the purpose of the code for any set of input values. 

The students described in this paper who scored 5 on 

Test 1 usually answered all the tracing questions correctly 

(Q1–Q5) but often could not explain the swap code they 

had just traced (Q6). In fact, Table 1 shows that out of the 

students who scored 5 on the test, only 12% of them 

could explain similar swap code (Q7); and only 5% of 
them could write similar swap code (Q8). 

4.2.1 More Vignettes from Charlotte 

Charlotte is illustrative of those students who can 
sometimes trace a piece of code but cannot explain that 

code. In her previous two tasks, Charlotte guessed, and 

applied inconsistently her misconceptions about 

assignment statements. It is not surprising, therefore, that 

her ability to reason about the purpose of code (Q6, 

shown in Figure 4) is very limited. This time, Charlotte 

traced the code accurately (or at least managed to guess 

the correct effect of assignment consistently), but she was 

unable to explain the code's overall purpose: 

r = 2 

s = 4 

r = s 

Solution: r is 4, s is 4 

Figure 2: Test 1 Q2 - Tracing Task 

p = 1  

q = 8  

q = p  

p = q  

Solution: p is 1, q is 1 

Figure 3: Test 1 Q3 – Tracing Task 
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C: So if z equals x from above, that will become 7 … If x 

becomes y … y is 5, so x becomes … 5 … If y equals 

z … it becomes 7, so I don't know what I observe.  

As shown in Table 1, of the students who scored 6 on 

Test 1, approximately two thirds of them made the correct 

observation for Q6, but only about a third could answer 

either Q7 or Q8.  

Table 2 shows contingency tables for Q6 and Q7, and 

also Q6 and Q8, for those students who answered both 

Q4 and Q5 correctly. Most students who answered Q6 

(explain swap by induction) incorrectly could not answer 

correctly either Q7 (explain swap by deduction) or Q8 

(write swap). Even among students who did answer Q6 
correctly, a substantial percentage could not answer 

correctly either Q7 or Q8. As a rough guide, answering 

Q6 correctly tends to be a necessary, but not sufficient, 

condition for answering Q7 and Q8 correctly. 

Test 1 Q6 "what 

do you observe 
about final values 

in x and y" 
(induction) 

Test 1 Q7  

"explain swap" 

(deduction) 

Test 1 Q8 

"write swap" 

wrong right wrong right 

wrong (n = 55) 26% 13% 30%   9% 

right (n = 89) 28% 33% 25% 36% 

Table 2: Contingency tables for Q6 & Q7 and Q6 & Q8, for 

students who answered both Q4 & Q5 correctly (χ
2, p= 0.012 

for Q7 and p < 0.001 for Q8, N=144 for each of Q7 & Q8) 

As noted above, Charlotte was one of those students who 

could not answer Q6 correctly. She was prompted by the 

interviewer to see that the code was swapping the values 

in variables x and y. She was then asked to explain the 

Q7 swap code, shown in Figure 5. 

 

 

 

 

 

 

 

C: when these lines of code are executed, j becomes ... is 

already i. i is k, k is j, so thereby … j equals k 

which is already done at the end so I doubt that's right 

Perhaps Charlotte was reading the "=" as a statement of 

mathematical equality: if j is equal to i, and i is equal to 

k, then j is equal to k. However, the "=" operator is 

about assignment, not equality. In any event, Charlotte  

then shifted her reasoning about the code from being 

about statements of equality, to assigning values: 

C: Oh, well maybe … j equals i, i equals k, k equals j 

…Yeah! well it takes away the need for i. 

Our interpretation of what Charlotte said is that i is not 

needed when swapping the values in j and k. In other 

words, a swap can be effected simply by assigning k to j 

and then j to k. Whatever her reasoning, we have seen 

that it is confused.   

4.3 Deductive Reasoning and Code Writing 

Lister (2011) proposed that deductive reasoning in 
programming was the ability to infer the computation 

performed by a piece of code, without needing to trace 

the code with specific values. Such ability is 

characteristic of the concrete operational stage in neo-

Piagetian terms. 

Students who scored 7 on Test 1 tended to answer all 

the tracing questions correctly (i.e. Q1–Q5) but tended to 

only answer correctly two questions out of Q6, Q7 and 

Q8, in near-equal percentages (75%, 75% and 80% 
respectively). 

Table 3 shows the relationship between Q7 (explain 

swap by deduction) and Q8 (write swap) among the 144 

students tested. Among these students, 24% of them 

could only answer one but not both of Q7 and Q8 

correctly. However, a greater percentage of students who 

had explained the swap (Q7) could write a swap (Q8). 

This result is consistent with earlier findings by others 

that the ability to explain code is a prerequisite for the 

ability to write similar code (Lopez, Whalley, Robbins, 

and Lister 2008).  

 

 

 

 

 

 

 

 

 

4.3.1 Vignettes from Jim  

Jim, another think-aloud student, had trouble with both 

Q7 and Q8, even after completing Q1–Q6 successfully. 

Jim looked at the code in Q7 (see Figure 5) and said: 

J: j has been changed … to take the value of i ... 

because j took the value of i, so k takes the value of 

j … therefore k is taking the value … of i … 

Here, Jim used only the first and third lines of code in 

Figure 5 (and ignored the second line where i is 

reassigned) to reason about the value being assigned to k. 

J: so it’s just a loop. 

By "loop" we believe Jim meant something about the 
movement of data between the variables rather than a 

looping control structure in the code. Jim's 

misconceptions about the assignments remained evident 

when he then took into account the second line of code, 

having considered the code in order of lines 1, 3 then 2: 

J: So … basically k will keep its value and 

everything will become the value of k. 

x = 7  

y = 5  

z = 0  

z = x  

x = y  

y = z 

Solution: The values in x and y were swapped 

Figure 4: Q6 – Reasoning Task 

j = i 

i = k 

k = j 

Solution: The values in i and k were swapped 

Figure 5: Q7 – Reasoning Task 

Test 1 Q7 

"explain swap" 

Test 1 Q8 "write swap" 

wrong right 

wrong (n= 79) 43% 12% 

right (n = 65) 12% 33% 

 Table 3: A contingency table comparing the performance of 

students on Q7 and Q8, for the students who answered both 

Q4 and Q5 correctly. (χ2, p < 0.001, N = 144) 
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In other words, his reasoning was: j is given the value of 

i (line 1); therefore k (in line 3) is taking the value of i 

too because it is assigned j; and i's value originally came 

from k. So therefore, k is unchanged by this process, and 

the other variables both have the value of k. After the 

interviewer questioned Jim’s summation (i.e. that k 

remained unchanged) he became less sure: 

J: No, the k will keep it’s ... j will keep its value... no 

By this stage, Jim was confused and probably cognitively 

overloaded. He decided to restart the task and this time he 

wrote specific values for each of the variables. Resorting 

to tracing with specific values is typical behaviour for 
students who are yet to reach the concrete operational 

stage and who are weak at reasoning with abstractions.  

J: Ok, we’ll just say … we have j is equal to 1, i is 

equal to 2 and k is equal to 3. 

Jim traced the code again using those specific values 

which he wrote above the variables. However, he made a 

transposing error with the final line, causing him to assign 

k's value to j instead of the other way around. His final 

trace of the three lines of code in Q7 (Figure 5) is shown 

in Figure 6. 

 

 

 

 

 

 

 
 

 

 

 

 

 

Jim was prompted to recheck this trace, and the 

interviewer suggested that a clearer way to articulate 

assignment was to say "is given" (rather than "is equal 

to") to help him focus on the direction of the assignment. 

Jim then corrected the miscopied assignment statement at 

line 3 in Figure 6 (to:"k = j"), but said: 

J: k is given to j, there we go 

Jim seemed to be getting confused between the direction 

of assignment (i.e. the movement between variables) and 

the articulation of the assignment statement (i.e. reading 

left to right). So the interviewer ("I") intervened further: 

I: No. k is assigned the value of j. So j is given to k. 

Depends which way you want to read it. … 

J: Yeah, so … j becomes k. 

I: No. in this case, k becomes j 

J: oh, k becomes j sorry ... so k is equal to 2. 

Given the difficulties with assignment that Jim 

manifested here in Q7, it is surprising that Jim managed 

to answer Q1 to Q6 correctly. We speculate that Jim's 

problems here are due to the higher cognitive load. 

Finally having traced the code correctly, Jim attempted 

to explain its purpose. This proved even more difficult: 

J: it's just really reassigning. Isn’t it? Because we have 

j is equal to 2, i is equal to ... 3 and k is equal to 2. 

Jim's response is a vague overview of the code, 

equivalent to "all the variables have been changed". 

Asked if the code was doing something similar to that in 

the example in Q7 he replied: 

J: it’s similar, in the sense that it’s swapping … um, 

we’ve got .... c becomes a ... a becomes ... b and b 

becomes c, so that’s just swapping them  

In terms of the SOLO taxonomy (Biggs and Collis 1982) 
this is a multistructural answer – recounting the effect of 

each individual line, rather than the total effect of all 

three lines. Asked which variables are swapped: 

J: the first ones … j swapped, j took the value of i … i 

and j swapped 

It is clear now that what Jim meant by "swap" was 

"change", rather than a two-way exchange of values. 

After clarification of what a "swap" was, and looking at 

what each of the variables started and ended up with, Jim 

was finally able to answer that indeed there had been a 

swap of values between two variables: 

J: apparently i swapped with k 

Jim's use of the word "apparently" suggests a lack of 

conviction. His difficulty with the tracing task showed 

misconceptions which are characteristic of novices at the 

sensorimotor stage. However, sensorimotor novices are 

also reluctant to retrace as it is a cognitively demanding 
task given their fragile domain knowledge. But Jim 

decided to redo the task, this time in a manner he was 

more comfortable with. He introduced specific values. 

Novices at the preoperational stage are unable to deal 

solely with abstractions and require specific values to 

make sense of code. In terms of the Overlapping Waves 

Model (as described Section 2), we suggest that Jim is in 

the process of developing preoperational skills, while still 

displaying some legacies of the sensorimotor stage. 

4.3.2 Vignettes from Lance 

After seeing how Jim dealt with reasoning about three 

lines of assignment statements, the reader will not be 

surprised that he had difficulty writing similar code. In 

fact (as shown in Table 1) 20% of the students who 

scored 7 correctly answered all of preceding tracing and 
reasoning questions (Q1–Q7) but then could not write 

similar code (Q8). 

Our final think aloud student, Lance, had difficulty 

writing the code, even though he had answered Q1–Q7 

correctly. For Q8, Lance wrote the first (correct) lines of 

code to swap the variables first and second: 

 

 

 

 

 

 

But his explanation of that code was inaccurate: 

 

Figure 7: Lance's 1st two Lines of Q8 Swap Code 

Figure 6: Jim's trace of Q7 

 

Line 1 of code:  

Line 2 of code:  

(Miscopied) 

Line 3 of code:  
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L: ok so now ... second should have the number that 

first has in it 

Lance had written the assignment statement in one 

direction and articulated it in the opposite direction. He 

continued with the third line of code before hesitating: 

 
 

 

 

 

 

 

L: oh no that's wrong ... I think ... that is wrong because 

... um ... ok it should be second equals store ... 

shouldn't it 

Lance changed his code to: 

 

 

 

 

 

 

 
 

 

After reading his revised code, Lance decided to start 

again. Like Jim and other novices reasoning at the 

preoperational stage, this time he used specific values to 

help him reason about the code he was writing. 

L: ok so you've got ... let's just say that's 1 and that's 2 so 

I can keep it in my head. ok this will make it a bit 

easier alright 

While Lance assigned the values 1 and 2 to variables 

first and second, writing the code still proved not to 

be straight forward: 

L: so first you're going to need to store the ... memory of 

first ... like the number in first ... so we're 

gunna go ... store ... equals first ...  

Although Lance said "store ... equals first" he wrote 

"store = 1". We don't believe he meant to write "1", 

but he was no doubt thinking that first had the value 1. 

He was working at the preoperational level at which it is 

difficult to reason in abstract terms. In any event, he 

quickly self-corrected this error by changing the code to 

"store = first". 

Lance then gave an confused explanation of what the 

code needed to do: 

L: ok ... just stored ... the number from first into ... 

store ... then you go from … we need to put the 

number that was in first into second so if we go 

... because we're stored first we can put ... that in 

there because it's remembered now ... so if we go … 

first equals second ... I think … no that's what I 

was doing before ... and I thought it was wrong ... 

maybe if we just store second 

Lance sought confirmation from the interviewer that it 

would in fact make no difference whether he stored the 

value of first or second to begin with. He decided to 

make the change anyway, although he wrote by mistake 

"store = stores". After fixing this error he said: 

L: ok so store equals second ... why is it so 

confusing it's so simple [laugh] confusing ... alright 

store equals second so you go store second 

and then ... that number's remembered ... and that's 2 

... and basically we want to assign that ... to ... we 

want to assign first ... alright we want to overwrite 

the 2 in second ... to the 1 in first so if we go ... 

um ... second equals first  

 

 

 

 

 

 

 

 

Although he made no note of the changing values on 

paper, Lance constantly used specific values to talk about 
the effect of the assignments. He seemed unable to cope 

with even the abstraction of variable names. As he said 

before, using specific values makes it easier for him "to 

keep in his head". And this tactic eventually worked.  

L: so now you've got … ah the 1 in second ... and the 2 

in store and then if you go first equals store...  

In summary, when it came to writing code in Q8, Lance 

struggled to implement code very similar to code he had 

just successfully traced and reasoned about. He failed to 

write code until he introduced specific values, which 

enabled him to visualise the changing values in the 

variables. Preoperational novices are reliant on specific 
values to reason about and write code. 

Only 30 students (12%) who completed Test 1 scored 

the maximum possible 8 marks, and were deemed 

competent at tracing, reasoning about and writing very 

simple code. Given their consistent correct performance, 

these students are unlikely to have been guessing about 

the semantics of the code. The fact that they were also 

able to write the code in Q8 would lend us to believe that 

they were at least operating at the preoperational level. 

While these students may be reasoning at the concrete 

operational stage we are reluctant to draw that conclusion 
with confidence, without knowing how they went about 

solving the problems, given the evidence of superficially 

correct solutions presented by Teague et al (2012). 

5 Test 2 (Week 4) 

We conducted our second test two weeks later, in week 4.  

5.1 Test 2 Q1 (tracing question) 

This first question in Test 2 was a tracing question 
equivalent to the last tracing question in Test 1 (Q4). 

Students who scored 1–4 in Test 1 tended to perform 

poorly on the last tracing question in that same test (Q4, 

see Table 1). However, all students performed very well 

on the first tracing question in Test 2, with the probability 

 

Figure 9: Lance's Revised 2nd Line of Q8 Swap Code 

 

Figure 10: Lance's 2nd Attempt at Q8 Swap Code 

 

Figure 8: Lance's 3rd Line of Q8 Swap Code 
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of answering this question at 77% for those who scored 2 

in Test 1, and at 96% for all other students. So the 

students who had lagged behind on tracing skills in week 

2 had substantially closed the gap by week 4, at least on 

this type of question. 

5.2 Test 2 Q2 (writing question) 

The second question in Test 2 was exactly the same as Q8 

in Test 1. That is, the students were required to write code 

to swap the values in two variables, first and second 

(see appendix). 

Figure 11 plots the probability of students answering 

this Test 2 question correctly, against their total score on 

Test 1. The largest circle in Figure 11 represents 26 

students, while the smallest circle represents 10 students. 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

The solid regression line shown in Figure 11 accounts 

for 72% of the variation, and that regression line is 

statistically significant at the 0.05 level. Therefore overall 

performance on Test 1 (week 2) is a good predictor of 

performance on this code writing question in the week 4 

test (Test 2, Q2). Recall from the previous subsection, 

however, that performance on the week 2 test was not a 

good predictor of performance on the week 4 tracing 

question (Q1), so we cannot conclude simply that 
students who do better on Test 1 tend to do better on all 

questions in subsequent tests. 

Inspection of Figure 11 suggests that, although the 

solid line of regression is a good predictor, there does 

appear to be a non-linear jump in performance between 

students who scored 1–3 on Test 1 and students who 

scored 4–8. The two dashed lines are lines of regression 

through each of those two groups of students, and serve 

to highlight that possible performance gap. Note, 

however, that neither of these two dashed regression lines 

meets the traditional 0.05 statistical criterion for 

significance, perhaps because of the small sample size. 
This possible performance gap suggests that, while 

students who scored 1–3 on Test 1 have closed the gap on 

tracing skills for these simple tracing problems, they have 

not closed the gap on deductive and code writing skills. 

That is, while students who scored 1–3 on Test 1 are 

progressing in their learning, they are not progressing as 

quickly as students who scored higher on Test 1. Our 

interpretation of this in neo-Piagetian terms is that the 

students who scored 1–3 on Test 1 were now better at 

tracing code, but they were still operating (at most) at a 

preoperational level of reasoning. They had not made the 

transition to the concrete operational stage. They 

remained unable to reason about abstractions and 

therefore unable to write simple code. 

6 Test 3 (Week 7) 

Our third test was conducted in week 7, five weeks after 

the first test. By this stage of semester, students had been 

introduced, amongst other concepts, to conditional 

statements and Python lists. 

6.1 Test 3 Q1 (swapping list elements) 

Figure 12 shows the first question from Test 3, which 

also requires students to write a swap, but in this case it is 

a swap between two elements of a Python list.  

 
 

 

 

 

 

 

 

 

Figure 13 plots the probability of students answering 

Test 3 Q1 correctly, against their total score on Test 1. 

The largest circle in Figure 13 represents 18 students, 

while the smallest circle represents 4 students.  

While the regression in Figure 13 does show a 

statistically significant linear relationship (p < 0.01), there 

is a clear non-linearity in the neighbourhood of the Test 1 

score of 5. A non-parametric χ2 test shows that the gap 

between scores of 5 and 6 is statistically significant at the 
0.1 level (see Table 4). 

 

 

 

 

 

 

 

 

 

 

Thus students who could not perform inductive inference 

(i.e. those operating at the sensorimotor level) in the week 

2 test are, 5 weeks later, still tending to reason at the 

sensorimotor level, and lag behind those students who 

could perform inductive inference (i.e., those operating at 

least at the preoperational level) in week 2.  

Test 1 score N 
Test 3 Q1  

Wrong Right 

5  (i.e. typically could trace with 
some reliability in Test 1) 

21 52% 48% 

6  (i.e. typically could perform 
inductive inference in Test 1) 

20 30% 70% 

Table 4: A contingency table comparing students on Test 1 

scores 5 & 6 versus Test 3 Q1 (χ
2, p=0.1, N=41) 

The gap between Test 1 scores of 6 and 7 is also 

statistically significant at the 0.1 level (see Table 5). 

 

Figure 13: Relationship between Test 1 scores and the 

probability of answering Test 3 Q1 correctly (N=117) 

 

Figure 11: Relationship between Test 1 scores and the 

probability of answering Test 2Q2 correctly (N=156) 

A list called ages has been created in Python. There are 

two values out of order in the list and these values are stored 

at indexes 0 and 2. Write code to swap those two values so 
that the list would be in order. 

Sample Solution: 

temp = ages[0] 

ages[0] = ages[2] 

ages[2] = temp 

Figure 12: Test 3 Q1 with sample solution 
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Students who could not perform deductive inference (at 

best, preoperational) in the week 2 test are, 5 weeks later, 

still lagging behind those students who could perform 

deductive inference (concrete operational) in week 2. 

Test 1 score N 
Test 3 Q1  

Wrong Right 

6  (i.e. typically could perform 
inductive inference in Test 1) 20 30% 70% 

7  (i.e. could sometimes perform 
deductive inference in Test 1) 20 10% 90% 

Table 5: A contingency table comparing students on Test 1 

scores 6 & 7 versus Test 3 Q1 (χ
2, p=0.1, N=40) 

7 Test 4 (Week 9) 

We conducted a final test in week 9. One of the questions 
required students to write code to swap values in a list.  

On this occasion the values in the list were to be swapped 

only if they were out of order.  The only students who did 

well with this question were those who scored 100% on 

Test 1. For all other students, the probability of getting it 

right was less than 50%. 

Among those who scored 1 to 7, there appears to be a 

performance gap on this question with students  who 

performed very poorly on Test 1 (29% probability for 

Test 1 scores 1–3) performing considerably worse than 

the students who demonstrated some ability to trace 
reliably in Test 1 (49% for scores 4–7).  

8 Charlotte's Progress 

We have so far seen that Charlotte struggled in Test 1 to 
both trace and explain simple assignment statements. In 

neo-Piagetian terms this means she was likely reasoning 

at the sensorimotor stage. Not surprisingly, she also failed 

the concrete operational task of code writing in that same 

test. She hypothesised that a third variable would be 

required in order to make a swap, referring to the code 

shown in the previous question (Test 1 Q7, see appendix).  

C: I'll follow the format from above … 'cause it makes 
sense 'cause it worked 

Her strategy was to give each of the variables a value, and 

she noted what their values should be once her code had 

executed. Then she wrote the incorrect code in Figure 14. 
 

 

 

 

 

 

 

When Charlotte attempted the very same code-writing 

task five weeks after her first think aloud, she still 

struggled with it. She initially failed to use a third 

(temporary) variable, as can be seen from the first line of 
code in Figure 15. For the second line, she started writing 

"second", crossed it out and replaced it with (an 

incomplete) "third" before crossing out all that she had 

written (shown in Figure 15). 

 

 

 

 

 

 
Charlotte almost immediately then wrote correct code, 

and verified her solution using specific values for first 

and second. Charlotte was now, five weeks after the 

first think aloud, working at the preoperational level: 

having overcome her initial misconceptions, she was able 

to trace and write very simple, familiar, code. 

Two weeks later, Charlotte completed Test 4 before 

we had a think aloud session with her. Her final code for 

a conditional swap of list elements was accurate. 

However, when she reflected on this question in a 

subsequent think aloud session, Charlotte confessed to 

not being sure of the correctness of her solution and 
voiced some confusion about assigning array elements: 

C: I was thinking temp had to be an array… 

Having previously developed the ability write swap code, 

Charlotte was then manifesting misconceptions with less 

familiar material: arrays. Her behaviour is consistent with 
an Overlapping Waves Model, where the introduction of 

a new concept may result in reversion to a less mature 

stage (for that concept).  

9 Conclusion 

Our think aloud excerpts have answered the first of the 
questions posed earlier, regarding the strategies, 

behaviour and misconceptions that are evident in novice 

programmers. We categories these (in Table 6) using the 

neo-Piagetian (NP) framework (where SM=sensorimotor; 

Preop=preoperational). 

Behaviour NP Stage 

guessing SM 

fragile grasp of semantics SM 

confused use of nomenclature SM 

inability to trace simple code SM 

misconceptions (about sequence, assignment, 
mental models and the notional machine) 

SM 

errors due to cognitive overload SM/Preop 

reluctance to trace SM/Preop 

ability to trace but not explain code Preop 

reliance on specific values Preop 

Table 6: Novice Programmer Behaviour 

Next, we address each of the remaining questions: 

Why do students get particular questions wrong?  

There are a number of reasons, including guessing, 

misconceptions, inability to work with abstractions; and 

inability to focus on more than one element of a scenario. 

Can a student have disparate levels of ability with two 

tasks which test similar programming concepts? 

This behaviour was in fact evident with the tasks 

requiring students to trace code, then to reason about its 
purpose. A preoperational student can trace code, but they 

do not develop the ability to reason about its purpose until 

the concrete operational stage. 

 

Figure 14: Charlotte's First Attempt in Week 2 

 

Figure 15: Charlotte's Second Attempt in Week 7 
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Why are some students unable to work with 

abstractions?  

Ability to work with abstractions is not evident until the 

concrete operational stage. Based on our quantitative 

results , only the 12% of students who answered all the 

week 2 test questions correctly were likely to be  
reasoning at the concrete operational stage at that time, 

and only those students were manifesting concrete 

operational skills late in semester.  

These results are consistent with our previous studies 

(Ahadi and Lister 2013; Ahadi et al. 2014) and means 

that most students are still manifesting sensorimotor and 

preoperational reasoning at the end of their first semester. 

Our think aloud studies support this. These results 

suggest that introductory programming educators are 

underestimating the foreignness to students of concepts 

taught very early in semester as well as their inability to 

reason abstractly.  

10 Pedagogical Discussion 

While it may be up to each student to practise and 

improve within a neo-Piagetian stage, we believe the 
teacher's role is to assist the students to transition from 

one neo-Piagetian stage to the next. We now offer 

suggestions on how they might facilitate that. As a 

general rule we agree with Bruner (1960): 

It is into the language of (the novice's) internal 

structures that one must translate ideas if the (novice) 
is to grasp them. 

10.1 From Sensorimotor to Preoperational 

A sensorimotor student who guesses cannot be aware of 
which reasoning is accurate without external feedback. 

Until they have external feedback they are unlikely to 

resolve their misconceptions. Teachers should facilitate 

environments that encourage deliberate, supported 

practice (Guzdial 2014). We speculate that students who 

have not had external feedback "hedge their bets" in 

exams in the hope that one of the strategies is correct and 

will at least get them part marks. 

Teachers should begin by offering students one-liner 

single-concept tasks. The earliest tasks should be purely 

literal expressions with gradual progression to univariate 
expressions. Teachers should be aware of and discourage 

rote learning and pattern matching, as that delays the 

transition to a higher stage. 

Teach students how to trace code systematically, for 

example with a trace table, using appropriate values (test 

categories and cases). Furthermore, test them to ensure 

that they are tracing correctly. 

Students at the sensorimotor stage require, more than 

anything else, that their misconceptions are corrected. For 

example: "what is an assignment statement?" or "what 

can (and can't) a variable do?". When students have 

overcome any misconceptions (especially about variables, 
assignment and sequence) and have a clear idea of the 

notional machine, and can start to trace code reliably, 

they are probably reasoning at the preoperational stage.  

10.2 From Preoperational to Concrete 

Teachers should gradually increase the complexity of the 

tasks with multivariate expressions and more complex 

code. Roles of variables (Kuittinen and Sajaniemi 2004) 

is one example of useful cognitive concepts that 

encourage abstract reasoning. In general, there should be 

a focus on tracing and explaining tasks with code writing 

tasks secondary. 

10.2.1 Tracing and Explaining Code 

Give preoperational students a complete function or very 
small program that does something interesting – perhaps 

with visual impact. Set them the task of experimenting 

with the code by making small, superficial changes. Give 

them practice at interpreting the results of a trace (i.e., 

identifying invariants and explaining the code's overall 

purpose). A good assessment task at this stage is to 

supply "buggy" code where the skills students have 

developed (above) are used to fix the code. 

10.2.2 Abstract Tracing 

Preoperational students are heavily reliant on specific 
values in variables to reason about code. This reliance 

diminishes as they become more proficient with 

programming and they develop an ability to trace 

"abstractly".  In other words they are able to compute the 

effect of the code without using specific values. This 

ability to start working with abstractions signals the 

transition into concrete operational reasoning. Jim, for 
example, tried unsuccessfully to trace code abstractly 

(i.e., without specific values). However, he then 

succeeded by resorting to the use of specific values. He, 

and other preoperational students, will develop abstract 

tracing skills with persistent practice and challenges that 

require more mature strategies until they learn to reason 

about and work with abstractions. Tracing abstractly also 

means that the trace need not be complete in order to 

determine the code's purpose. A student transitioning into 

concrete operational stage may be able to short-circuit a 

trace because they can also simultaneously process a 

number of features of a block of code (e.g., in a loop). 
Only once students have begun to develop those sorts of 

reading skills will they begin to write code 

systematically. 
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Appendix: The Test 1 Questions 

Q1 In the boxes, write the values in the variables after the following 
code has been executed: 

a = 1 

b = 2 

a = 3 

The value in a is              and the value in b is  

Q2 In the boxes, write the values in the variables after the following 

code has been executed: 

r = 2 

s = 4 

r = s  

The value in r is              and the value in s is  

Q3 In the boxes, write the values in the variables after the following 
code has been executed: 

p = 1 

q = 8 

q = p 

p = q 

The value in p is               and the value in q is  

Q4 In the boxes, write the values in the variables after the following 
code has been executed: 

x = 7 

y = 5 

z = 3 

x = y 

z = x 

y = z 

The value in x is               y is              and z is  

Q5 In the boxes, write the values in the variables after the following 
code has been executed: 

x = 7 

y = 5 

z = 0 

z = x 

x = y 

y = z 

The value in x is              y is              and z is   

Q6 In Q5 above, what do you observe about the final values in x and y?  

Write your observation (in one sentence) in the box below. 

 

 
Q7 The purpose of the following three lines of code is to swap the 

values in variables a and b, for any set of possible values stored in 

those variables. 
c = a 

a = b 

b = c 

In one sentence that you should write in the box below, describe the 

purpose of the following three lines of code, for any set of possible 

initial integer values stored in those variables. Assume that 
variables i, j and k have been declared and initialised. 

j = i 

i = k 

k = j 

 
 
Q8 Assume the variables first and second have been initialised. 

Write code to swap the values stored in first and second.  

 

 

Sample solution:      temp   = first 

                first  = second 

                second = temp 

Sample solution:  Swaps the values in i and k. 

Sample solution:  The values in x and y were swapped. 

3 2 

4 4 

1 1 

5 5 5 

5 7 7 
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