
Mired in the Web: Vignettes from Charlotte and Other Novice

Programmers

Donna Teague
Queensland University of Technology

Brisbane, QLD, Australia

d.teague@qut.edu.au

Raymond Lister and Alireza Ahadi
University of Technology, Sydney

Sydney, NSW, Australia

Raymond.Lister@uts.edu.au

Abstract
1

Ahadi and Lister (2013) found that many of their

introductory programming students had fallen behind as

early as week 3 of semester, and those students often then

stayed behind. Our later work (Ahadi, Lister and Teague

2014) supported that finding, for students at another

institution. In this paper, we go one step further than those
earlier studies by observing a number of students as they

complete programming tasks while thinking aloud. We

describe the types of inconsistencies students manifest,

which are often not evident on analysis of conventional

written tests. We again interpret our findings using neo-

Piagetian theory. We conclude with some thoughts on the

pedagogical implications of our research results.

Keywords: Programming, neo-Piagetian theory, novices,
assessment, think aloud.

1 Introduction

Many computing educators have noted a large variation
in the ability of introductory programming students.

Ahadi and Lister (2013) found significant differences in

performance among their students, as early as week 3, on

trivial coding problems. Furthermore, those students with

lower scores on the week 3 test also tended to perform

lower on test questions in subsequent weeks — that is,

some students fall behind very early and then stay behind.

Ahadi et al. (2014) conducted a second study,

comparing students at two different institutions. They

found that tests held early in semester were good
indicators of success in the final exam. In this paper, we

report on a similar quantitative study, but we go further,

by triangulating with qualitative think aloud data from

students completing the same test questions.

2 Neo-Piagetian Theory

Lister (2011) proposed that we can describe students'
development in programming in terms of neo-Piagetian

theory. Other studies (Falkner, Vivian, and Falkner 2013;

Teague et al. 2013; Teague and Lister 2014c) provide

empirical evidence of novices manifesting neo-Piagetian

stage-related characteristics as they reason about

programming tasks. According to the evidence

accumulated from these and related studies, the first three

stages of development are characterised as follows.
At the sensorimotor stage, novices tend to

inconsistently apply mis/conceptions about programming.

Because of their fragile knowledge, these students

1Copyright (c) 2015, Australian Computer Society, Inc. This paper appeared at the

17th Australasian Computer Education Conference (ACE 2015), Sydney,

Australia, January 2015. Conferences in Research and Practice in Information

Technology (CRPIT), Vol. 160. D. D'Souza and K. Falkner, Eds. Reproduction for

academic, not-for-profit purposes permitted provided this text is included.

struggle to successfully trace code, let alone reason about

its purpose or write their own code.

At the next more mature level are preoperational

students who have begun mastering the semantics, and
any misconceptions that remain at this stage are at least

applied consistently. Although preoperational students

can accurately trace code, they are often not able to

reason about its purpose other than by induction from

input/output pairs (see Teague and Lister (2014b)).

It is at the concrete operational stage, the next more

mature stage, where students have developed an ability to

reason deductively about abstractions and write more

complex code. This is the stage at which computing

educators typically expect students to be working by the

end of their first semester of learning programming, and
the level at which students are traditionally assessed.

However, the findings of this study, and previous studies,

suggest that many students are not manifesting concrete

operational skills even by their second semester of study

(Teague et al. 2013).

Rather than making quantum leaps between these

three stages, our view of development is described by the

Overlapping Waves Model (Boom 2004; Feldman 2004;

Siegler 1996). In that model, characteristics of an earlier

stage dominate initially, but there is a gradual increase in

the use of the next more mature level of reasoning and a

decrease in the less mature stage. This model accounts for
students manifesting characteristics of more than one

stage simultaneously.

3 Method

The undergraduate introductory programming course we
studied ran at the first author’s institution over a 13 week

semester comprised of a two hour lecture and a two hour

workshop each week.

To collect the data for this study, students completed a

short "in-class" test at the start of the lectures in weeks 2,

4, 7 and 9. These tests did not contribute to a student’s

final grade. However, most students present at the lecture

did the test, as the lecture did not proceed until the test

was over. The time students took to complete a test was

not formally recorded, but each test took around 15
minutes. Students were under little time pressure.

Immediately after each test, the lecturer would review the

test and explain the correct answers.

Much of the work of the first author in recent years

has involved observing approximately 40 individual

student programmers, as they developed over the course

of a semester. Those students completed programming

tasks while thinking out loud (Ericsson and Simon 1993).

In this paper we describe some of those students' attempts

at the tasks that in-class test data identified as being

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

165

problematic for many students. The qualitative data from

the think aloud sessions help to answer some of the

questions that arise from the in-class results:

What strategies do students use? (In other words, how

did they get that answer?);

What behaviour is evident with students who have
difficulty completing programming tasks?; and

What programming misconceptions (if any) are

evident? (Are incorrect answers a result of careless

mistakes, misinterpretation of the question or lack of

understanding the concept?)

Once we have that information, we can answer the "why"

questions by interpreting the qualitative data using the

neo-Piagetian framework:

Why do students get particular questions wrong?

Can a student have disparate levels of ability with two

tasks which test similar programming concepts? (For

example tracing, explaining and writing the same
code.)

Why are some students unable to work with

abstractions? (For example, why do they rely on

tracing code with specific values?)

It is not possible to include all our think aloud data in this

paper. We have simply selected three sessions that are

representative of the broadly different types of reasoning

manifested by our think aloud students.

We use aliases to obfuscate students' identity. Excerpts

from the sessions with Charlotte ("C"), Lance ("L) and

Jim ("J") are detailed in the following sections. Lance
was in the same cohort as those completing the in-class

tests. Unlike the others, Charlotte was a postgraduate

student, but as she was in her first programming unit at

the time of her think aloud session, she was at a similar

level to those students in the in-class tests. Jim was in

week 2 of his second programming unit.

In these excerpts, a pause in speech is marked "...", as

a placeholder for dialog we have removed as it added

nothing to the context of the think aloud session.

4 Test 1 (Week 2)

When the students completed Test 1 at the beginning of
their week 2 lecture, they had completed two hours of

lectures and a two hour workshop. The test questions are

provided in the appendix. (We will hereafter refer to test

questions in an abbreviated form. For example, Question

1 will now simply be Q1.) Our Test 1 is very similar to

the Test 1 of Ahadi and Lister (2013), differing in only

four respects: (a) our test is a translation from their Java

to our Python, which is a trivial change given that all the

questions in Test 1 are about assignment statements; (b)

we renumbered their questions, (c) we omitted Q2a from
the Ahadi and Lister test, but retained their Q2b as our

Q7; and (d) we conducted our first test in week 2 whereas

they conducted their first test in week 3.

Figure 1 shows the distribution of student scores on

Test 1, where 8 is the maximum possible score.

All questions were worth 1 point, with no fractional

points awarded. Answers were treated as either right or

wrong, but syntactic errors were ignored. We eliminated

from Figure 1 and all subsequent analysis, the small

number of students who scored zero on Test 1, as they

were likely to be students who had not attended week 1
classes. As was the case for Ahadi and Lister (2013),

there was a wide variation in Test 1 scores.

Table 1 shows the percentage of students, for each

Test 1 score out of 8, who correctly answered each of the

eight questions. The final row of the table represents the

percentages of all students who answered correctly each

question in the test. Cells containing asterisk/s indicate a

statistically significant difference in the two percentages

above and below the asterisk/s. (NB: percentages are

rounded down.) As can be seen from that table (especially

for test scores of 1 to 6 inclusive, as marked with darker
border lines), an approximate rule of thumb is that if a

student scored n points out of 8 on the test, then the

student's first n answers were most commonly right, and

their remaining answers were most commonly wrong. In

accordance with that rule of thumb, we characterised the

students as follows:

 Score 1 or 2: understands little of the semantics of

the code.

 Score 3 or 4: applies inconsistent guessing because

of fragile understanding of the semantics.

 Score 5: can conduct a trace with some reliability.

 Score 6: can perform inductive inference.

 Score 7: can sometimes perform deductive inference.

We elaborate on this characterisation in the next section.

4.1 Semantics of Assignment and Sequence

In Test 1, Q1–Q3 tested whether a student understood the

semantics of a sequence of assignment statements. That

is, the value on the right of the assignment is copied to

the left, overwriting the previous value, and assignments

are executed in sequence. Many students who scored 1, 2
or 3 on Test 1 struggled with Q1–Q3 (see the left three

shaded columns in Table 1).

Figure 1: Distribution of total scores on Test 1 (N=254)

CRPIT Volume 160 - Computing Education 2015

166

Test1

Score n
semantics tracing reasoning

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

1 26 53 23 0 4 4 8 12 0

 ** ** *

2 27 60 71 26 26 15 4 0 0

 *** *

3 17 53 65 89 59 24 6 6 0

 * *

4 30 87 84 80 64 54 14 14 7

 * ** **

5 44 87 96 94 94 85 30 12 5

 *** * ***

6 41 86 98 98 96 88 69 35 35

 *** ***

7 39 83 100 98 93 98 75 75 80

 * ** ** **

8 30 100 100 100 100 100 100 100 100

all 254 78 84 76 73 65 43 34 32

Table 1: Percentage of students who answered correctly

each part of Test 1, broken down by total score (χ
2
, * is p ≤

0.05, ** is p ≤ 0.01 and *** is p ≤ 0.001)

Sensorimotor students often have no alternative but to

use guessing as a strategy for reasoning about code. This

is because they have not yet built a clear mental model of

the notional machine (du Boulay 1989), nor do they have

a solid comprehension of the concepts to which they have

only just been introduced. Because of this, they

inconsistently apply mis/conceptions about the semantics

of code.

4.1.1 Vignettes from Charlotte

One of our think-aloud students, Charlotte, demonstrated

this type of sensorimotor reasoning when she was asked

to trace the effect of the three assignment statements (Q2)

shown both in the appendix and again here in Figure 2.

As Charlotte considered the code she said:

C: Hmm. … I don't know, but I imagine … it's kind of a

guess here [laugh], that … r will equal 4 … and s

will equal 4.

Of course students will get the marks for correct guesses

in exams, and as this think aloud session showed, it is not

until you listen to a student's reasoning that you can start

to understand their true level of ability. This is consistent

with the findings of Teague et al. (2012) who provided an

astonishing contrast between the correct solution a

programming student was able to produce and the

inexplicable reasoning and method he actually used to
produce that solution. This is of course the advantage of

think alouds. It is quite obvious when a student flukes a

correct answer. Think alouds also explain why, in other

cases, students answer incorrectly.

With her very next task (Q3, shown again in Figure 3),

Charlotte thought she was being consistent with her

"guess", but that was not actually the case.

C: So…going from how I did the last one, I might as well

be consistent. … p will equal 8 and q will equal 1.

Charlotte later reflected on that answer and explained:

C: I looked up to the original integer rather than looking

at the switched integer

In other words, she looked only to the first assignment of

q (i.e., q = 8) rather than taking account of its

subsequent reassignment (q = p). Charlotte's fragile

understanding of the semantics (as well as a floundering

command of the jargon) is also exemplified in her next

comment:

C: I'm just not confident in how the rules of inheritance

were applied. It was like I was just going on a whim.

Students who scored 4 on Test 1 tended to answer Q1–Q3

correctly, and either Q4 or Q5 correctly. We characterise

these students as novices who still have a fragile

understanding of the semantics of the language, and like

Charlotte, inconsistently apply mis/conceptions.

4.2 Inductive Reasoning

Lister (2011) proposed that a preoperational
programming student can make reasonable inductive

guesses about the function of a piece of code based upon

the input/output behaviour they observe from tracing it,

without understanding how the code achieves that

function.

We have witnessed this type of reasoning in previous

work (Teague et. al. 2013, Teague and Lister 2014a)
where the student (Donald) attempted to explain the

purpose of code that sorted the values in three variables.

Donald based his answer on the effect of a single set of

poorly chosen input values. As a result, his answer,

although accurate for that single test case, did not reflect

the purpose of the code for any set of input values.

The students described in this paper who scored 5 on

Test 1 usually answered all the tracing questions correctly

(Q1–Q5) but often could not explain the swap code they

had just traced (Q6). In fact, Table 1 shows that out of the

students who scored 5 on the test, only 12% of them

could explain similar swap code (Q7); and only 5% of
them could write similar swap code (Q8).

4.2.1 More Vignettes from Charlotte

Charlotte is illustrative of those students who can
sometimes trace a piece of code but cannot explain that

code. In her previous two tasks, Charlotte guessed, and

applied inconsistently her misconceptions about

assignment statements. It is not surprising, therefore, that

her ability to reason about the purpose of code (Q6,

shown in Figure 4) is very limited. This time, Charlotte

traced the code accurately (or at least managed to guess

the correct effect of assignment consistently), but she was

unable to explain the code's overall purpose:

r = 2

s = 4

r = s

Solution: r is 4, s is 4

Figure 2: Test 1 Q2 - Tracing Task

p = 1

q = 8

q = p

p = q

Solution: p is 1, q is 1

Figure 3: Test 1 Q3 – Tracing Task

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

167

C: So if z equals x from above, that will become 7 … If x

becomes y … y is 5, so x becomes … 5 … If y equals

z … it becomes 7, so I don't know what I observe.

As shown in Table 1, of the students who scored 6 on

Test 1, approximately two thirds of them made the correct

observation for Q6, but only about a third could answer

either Q7 or Q8.

Table 2 shows contingency tables for Q6 and Q7, and

also Q6 and Q8, for those students who answered both

Q4 and Q5 correctly. Most students who answered Q6

(explain swap by induction) incorrectly could not answer

correctly either Q7 (explain swap by deduction) or Q8

(write swap). Even among students who did answer Q6
correctly, a substantial percentage could not answer

correctly either Q7 or Q8. As a rough guide, answering

Q6 correctly tends to be a necessary, but not sufficient,

condition for answering Q7 and Q8 correctly.

Test 1 Q6 "what

do you observe
about final values

in x and y"
(induction)

Test 1 Q7

"explain swap"

(deduction)

Test 1 Q8

"write swap"

wrong right wrong right

wrong (n = 55) 26% 13% 30% 9%

right (n = 89) 28% 33% 25% 36%

Table 2: Contingency tables for Q6 & Q7 and Q6 & Q8, for

students who answered both Q4 & Q5 correctly (χ
2, p= 0.012

for Q7 and p < 0.001 for Q8, N=144 for each of Q7 & Q8)

As noted above, Charlotte was one of those students who

could not answer Q6 correctly. She was prompted by the

interviewer to see that the code was swapping the values

in variables x and y. She was then asked to explain the

Q7 swap code, shown in Figure 5.

C: when these lines of code are executed, j becomes ... is

already i. i is k, k is j, so thereby … j equals k

which is already done at the end so I doubt that's right

Perhaps Charlotte was reading the "=" as a statement of

mathematical equality: if j is equal to i, and i is equal to

k, then j is equal to k. However, the "=" operator is

about assignment, not equality. In any event, Charlotte

then shifted her reasoning about the code from being

about statements of equality, to assigning values:

C: Oh, well maybe … j equals i, i equals k, k equals j

…Yeah! well it takes away the need for i.

Our interpretation of what Charlotte said is that i is not

needed when swapping the values in j and k. In other

words, a swap can be effected simply by assigning k to j

and then j to k. Whatever her reasoning, we have seen

that it is confused.

4.3 Deductive Reasoning and Code Writing

Lister (2011) proposed that deductive reasoning in
programming was the ability to infer the computation

performed by a piece of code, without needing to trace

the code with specific values. Such ability is

characteristic of the concrete operational stage in neo-

Piagetian terms.

Students who scored 7 on Test 1 tended to answer all

the tracing questions correctly (i.e. Q1–Q5) but tended to

only answer correctly two questions out of Q6, Q7 and

Q8, in near-equal percentages (75%, 75% and 80%
respectively).

Table 3 shows the relationship between Q7 (explain

swap by deduction) and Q8 (write swap) among the 144

students tested. Among these students, 24% of them

could only answer one but not both of Q7 and Q8

correctly. However, a greater percentage of students who

had explained the swap (Q7) could write a swap (Q8).

This result is consistent with earlier findings by others

that the ability to explain code is a prerequisite for the

ability to write similar code (Lopez, Whalley, Robbins,

and Lister 2008).

4.3.1 Vignettes from Jim

Jim, another think-aloud student, had trouble with both

Q7 and Q8, even after completing Q1–Q6 successfully.

Jim looked at the code in Q7 (see Figure 5) and said:

J: j has been changed … to take the value of i ...

because j took the value of i, so k takes the value of

j … therefore k is taking the value … of i …

Here, Jim used only the first and third lines of code in

Figure 5 (and ignored the second line where i is

reassigned) to reason about the value being assigned to k.

J: so it’s just a loop.

By "loop" we believe Jim meant something about the
movement of data between the variables rather than a

looping control structure in the code. Jim's

misconceptions about the assignments remained evident

when he then took into account the second line of code,

having considered the code in order of lines 1, 3 then 2:

J: So … basically k will keep its value and

everything will become the value of k.

x = 7

y = 5

z = 0

z = x

x = y

y = z

Solution: The values in x and y were swapped

Figure 4: Q6 – Reasoning Task

j = i

i = k

k = j

Solution: The values in i and k were swapped

Figure 5: Q7 – Reasoning Task

Test 1 Q7

"explain swap"

Test 1 Q8 "write swap"

wrong right

wrong (n= 79) 43% 12%

right (n = 65) 12% 33%

 Table 3: A contingency table comparing the performance of

students on Q7 and Q8, for the students who answered both

Q4 and Q5 correctly. (χ2, p < 0.001, N = 144)

CRPIT Volume 160 - Computing Education 2015

168

In other words, his reasoning was: j is given the value of

i (line 1); therefore k (in line 3) is taking the value of i

too because it is assigned j; and i's value originally came

from k. So therefore, k is unchanged by this process, and

the other variables both have the value of k. After the

interviewer questioned Jim’s summation (i.e. that k

remained unchanged) he became less sure:

J: No, the k will keep it’s ... j will keep its value... no

By this stage, Jim was confused and probably cognitively

overloaded. He decided to restart the task and this time he

wrote specific values for each of the variables. Resorting

to tracing with specific values is typical behaviour for
students who are yet to reach the concrete operational

stage and who are weak at reasoning with abstractions.

J: Ok, we’ll just say … we have j is equal to 1, i is

equal to 2 and k is equal to 3.

Jim traced the code again using those specific values

which he wrote above the variables. However, he made a

transposing error with the final line, causing him to assign

k's value to j instead of the other way around. His final

trace of the three lines of code in Q7 (Figure 5) is shown

in Figure 6.

Jim was prompted to recheck this trace, and the

interviewer suggested that a clearer way to articulate

assignment was to say "is given" (rather than "is equal

to") to help him focus on the direction of the assignment.

Jim then corrected the miscopied assignment statement at

line 3 in Figure 6 (to:"k = j"), but said:

J: k is given to j, there we go

Jim seemed to be getting confused between the direction

of assignment (i.e. the movement between variables) and

the articulation of the assignment statement (i.e. reading

left to right). So the interviewer ("I") intervened further:

I: No. k is assigned the value of j. So j is given to k.

Depends which way you want to read it. …

J: Yeah, so … j becomes k.

I: No. in this case, k becomes j

J: oh, k becomes j sorry ... so k is equal to 2.

Given the difficulties with assignment that Jim

manifested here in Q7, it is surprising that Jim managed

to answer Q1 to Q6 correctly. We speculate that Jim's

problems here are due to the higher cognitive load.

Finally having traced the code correctly, Jim attempted

to explain its purpose. This proved even more difficult:

J: it's just really reassigning. Isn’t it? Because we have

j is equal to 2, i is equal to ... 3 and k is equal to 2.

Jim's response is a vague overview of the code,

equivalent to "all the variables have been changed".

Asked if the code was doing something similar to that in

the example in Q7 he replied:

J: it’s similar, in the sense that it’s swapping … um,

we’ve got c becomes a ... a becomes ... b and b

becomes c, so that’s just swapping them

In terms of the SOLO taxonomy (Biggs and Collis 1982)
this is a multistructural answer – recounting the effect of

each individual line, rather than the total effect of all

three lines. Asked which variables are swapped:

J: the first ones … j swapped, j took the value of i … i

and j swapped

It is clear now that what Jim meant by "swap" was

"change", rather than a two-way exchange of values.

After clarification of what a "swap" was, and looking at

what each of the variables started and ended up with, Jim

was finally able to answer that indeed there had been a

swap of values between two variables:

J: apparently i swapped with k

Jim's use of the word "apparently" suggests a lack of

conviction. His difficulty with the tracing task showed

misconceptions which are characteristic of novices at the

sensorimotor stage. However, sensorimotor novices are

also reluctant to retrace as it is a cognitively demanding
task given their fragile domain knowledge. But Jim

decided to redo the task, this time in a manner he was

more comfortable with. He introduced specific values.

Novices at the preoperational stage are unable to deal

solely with abstractions and require specific values to

make sense of code. In terms of the Overlapping Waves

Model (as described Section 2), we suggest that Jim is in

the process of developing preoperational skills, while still

displaying some legacies of the sensorimotor stage.

4.3.2 Vignettes from Lance

After seeing how Jim dealt with reasoning about three

lines of assignment statements, the reader will not be

surprised that he had difficulty writing similar code. In

fact (as shown in Table 1) 20% of the students who

scored 7 correctly answered all of preceding tracing and
reasoning questions (Q1–Q7) but then could not write

similar code (Q8).

Our final think aloud student, Lance, had difficulty

writing the code, even though he had answered Q1–Q7

correctly. For Q8, Lance wrote the first (correct) lines of

code to swap the variables first and second:

But his explanation of that code was inaccurate:

Figure 7: Lance's 1st two Lines of Q8 Swap Code

Figure 6: Jim's trace of Q7

Line 1 of code: 

Line 2 of code: 

(Miscopied)

Line 3 of code: 

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

169

L: ok so now ... second should have the number that

first has in it

Lance had written the assignment statement in one

direction and articulated it in the opposite direction. He

continued with the third line of code before hesitating:

L: oh no that's wrong ... I think ... that is wrong because

... um ... ok it should be second equals store ...

shouldn't it

Lance changed his code to:

After reading his revised code, Lance decided to start

again. Like Jim and other novices reasoning at the

preoperational stage, this time he used specific values to

help him reason about the code he was writing.

L: ok so you've got ... let's just say that's 1 and that's 2 so

I can keep it in my head. ok this will make it a bit

easier alright

While Lance assigned the values 1 and 2 to variables

first and second, writing the code still proved not to

be straight forward:

L: so first you're going to need to store the ... memory of

first ... like the number in first ... so we're

gunna go ... store ... equals first ...

Although Lance said "store ... equals first" he wrote

"store = 1". We don't believe he meant to write "1",

but he was no doubt thinking that first had the value 1.

He was working at the preoperational level at which it is

difficult to reason in abstract terms. In any event, he

quickly self-corrected this error by changing the code to

"store = first".

Lance then gave an confused explanation of what the

code needed to do:

L: ok ... just stored ... the number from first into ...

store ... then you go from … we need to put the

number that was in first into second so if we go

... because we're stored first we can put ... that in

there because it's remembered now ... so if we go …

first equals second ... I think … no that's what I

was doing before ... and I thought it was wrong ...

maybe if we just store second

Lance sought confirmation from the interviewer that it

would in fact make no difference whether he stored the

value of first or second to begin with. He decided to

make the change anyway, although he wrote by mistake

"store = stores". After fixing this error he said:

L: ok so store equals second ... why is it so

confusing it's so simple [laugh] confusing ... alright

store equals second so you go store second

and then ... that number's remembered ... and that's 2

... and basically we want to assign that ... to ... we

want to assign first ... alright we want to overwrite

the 2 in second ... to the 1 in first so if we go ...

um ... second equals first

Although he made no note of the changing values on

paper, Lance constantly used specific values to talk about
the effect of the assignments. He seemed unable to cope

with even the abstraction of variable names. As he said

before, using specific values makes it easier for him "to

keep in his head". And this tactic eventually worked.

L: so now you've got … ah the 1 in second ... and the 2

in store and then if you go first equals store...

In summary, when it came to writing code in Q8, Lance

struggled to implement code very similar to code he had

just successfully traced and reasoned about. He failed to

write code until he introduced specific values, which

enabled him to visualise the changing values in the

variables. Preoperational novices are reliant on specific
values to reason about and write code.

Only 30 students (12%) who completed Test 1 scored

the maximum possible 8 marks, and were deemed

competent at tracing, reasoning about and writing very

simple code. Given their consistent correct performance,

these students are unlikely to have been guessing about

the semantics of the code. The fact that they were also

able to write the code in Q8 would lend us to believe that

they were at least operating at the preoperational level.

While these students may be reasoning at the concrete

operational stage we are reluctant to draw that conclusion
with confidence, without knowing how they went about

solving the problems, given the evidence of superficially

correct solutions presented by Teague et al (2012).

5 Test 2 (Week 4)

We conducted our second test two weeks later, in week 4.

5.1 Test 2 Q1 (tracing question)

This first question in Test 2 was a tracing question
equivalent to the last tracing question in Test 1 (Q4).

Students who scored 1–4 in Test 1 tended to perform

poorly on the last tracing question in that same test (Q4,

see Table 1). However, all students performed very well

on the first tracing question in Test 2, with the probability

Figure 9: Lance's Revised 2nd Line of Q8 Swap Code

Figure 10: Lance's 2nd Attempt at Q8 Swap Code

Figure 8: Lance's 3rd Line of Q8 Swap Code

CRPIT Volume 160 - Computing Education 2015

170

of answering this question at 77% for those who scored 2

in Test 1, and at 96% for all other students. So the

students who had lagged behind on tracing skills in week

2 had substantially closed the gap by week 4, at least on

this type of question.

5.2 Test 2 Q2 (writing question)

The second question in Test 2 was exactly the same as Q8

in Test 1. That is, the students were required to write code

to swap the values in two variables, first and second

(see appendix).

Figure 11 plots the probability of students answering

this Test 2 question correctly, against their total score on

Test 1. The largest circle in Figure 11 represents 26

students, while the smallest circle represents 10 students.

The solid regression line shown in Figure 11 accounts

for 72% of the variation, and that regression line is

statistically significant at the 0.05 level. Therefore overall

performance on Test 1 (week 2) is a good predictor of

performance on this code writing question in the week 4

test (Test 2, Q2). Recall from the previous subsection,

however, that performance on the week 2 test was not a

good predictor of performance on the week 4 tracing

question (Q1), so we cannot conclude simply that
students who do better on Test 1 tend to do better on all

questions in subsequent tests.

Inspection of Figure 11 suggests that, although the

solid line of regression is a good predictor, there does

appear to be a non-linear jump in performance between

students who scored 1–3 on Test 1 and students who

scored 4–8. The two dashed lines are lines of regression

through each of those two groups of students, and serve

to highlight that possible performance gap. Note,

however, that neither of these two dashed regression lines

meets the traditional 0.05 statistical criterion for

significance, perhaps because of the small sample size.
This possible performance gap suggests that, while

students who scored 1–3 on Test 1 have closed the gap on

tracing skills for these simple tracing problems, they have

not closed the gap on deductive and code writing skills.

That is, while students who scored 1–3 on Test 1 are

progressing in their learning, they are not progressing as

quickly as students who scored higher on Test 1. Our

interpretation of this in neo-Piagetian terms is that the

students who scored 1–3 on Test 1 were now better at

tracing code, but they were still operating (at most) at a

preoperational level of reasoning. They had not made the

transition to the concrete operational stage. They

remained unable to reason about abstractions and

therefore unable to write simple code.

6 Test 3 (Week 7)

Our third test was conducted in week 7, five weeks after

the first test. By this stage of semester, students had been

introduced, amongst other concepts, to conditional

statements and Python lists.

6.1 Test 3 Q1 (swapping list elements)

Figure 12 shows the first question from Test 3, which

also requires students to write a swap, but in this case it is

a swap between two elements of a Python list.

Figure 13 plots the probability of students answering

Test 3 Q1 correctly, against their total score on Test 1.

The largest circle in Figure 13 represents 18 students,

while the smallest circle represents 4 students.

While the regression in Figure 13 does show a

statistically significant linear relationship (p < 0.01), there

is a clear non-linearity in the neighbourhood of the Test 1

score of 5. A non-parametric χ2 test shows that the gap

between scores of 5 and 6 is statistically significant at the
0.1 level (see Table 4).

Thus students who could not perform inductive inference

(i.e. those operating at the sensorimotor level) in the week

2 test are, 5 weeks later, still tending to reason at the

sensorimotor level, and lag behind those students who

could perform inductive inference (i.e., those operating at

least at the preoperational level) in week 2.

Test 1 score N
Test 3 Q1

Wrong Right

5 (i.e. typically could trace with
some reliability in Test 1)

21 52% 48%

6 (i.e. typically could perform
inductive inference in Test 1)

20 30% 70%

Table 4: A contingency table comparing students on Test 1

scores 5 & 6 versus Test 3 Q1 (χ
2, p=0.1, N=41)

The gap between Test 1 scores of 6 and 7 is also

statistically significant at the 0.1 level (see Table 5).

Figure 13: Relationship between Test 1 scores and the

probability of answering Test 3 Q1 correctly (N=117)

Figure 11: Relationship between Test 1 scores and the

probability of answering Test 2Q2 correctly (N=156)

A list called ages has been created in Python. There are

two values out of order in the list and these values are stored

at indexes 0 and 2. Write code to swap those two values so
that the list would be in order.

Sample Solution:

temp = ages[0]

ages[0] = ages[2]

ages[2] = temp

Figure 12: Test 3 Q1 with sample solution

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

171

Students who could not perform deductive inference (at

best, preoperational) in the week 2 test are, 5 weeks later,

still lagging behind those students who could perform

deductive inference (concrete operational) in week 2.

Test 1 score N
Test 3 Q1

Wrong Right

6 (i.e. typically could perform
inductive inference in Test 1) 20 30% 70%

7 (i.e. could sometimes perform
deductive inference in Test 1) 20 10% 90%

Table 5: A contingency table comparing students on Test 1

scores 6 & 7 versus Test 3 Q1 (χ
2, p=0.1, N=40)

7 Test 4 (Week 9)

We conducted a final test in week 9. One of the questions
required students to write code to swap values in a list.

On this occasion the values in the list were to be swapped

only if they were out of order. The only students who did

well with this question were those who scored 100% on

Test 1. For all other students, the probability of getting it

right was less than 50%.

Among those who scored 1 to 7, there appears to be a

performance gap on this question with students who

performed very poorly on Test 1 (29% probability for

Test 1 scores 1–3) performing considerably worse than

the students who demonstrated some ability to trace
reliably in Test 1 (49% for scores 4–7).

8 Charlotte's Progress

We have so far seen that Charlotte struggled in Test 1 to
both trace and explain simple assignment statements. In

neo-Piagetian terms this means she was likely reasoning

at the sensorimotor stage. Not surprisingly, she also failed

the concrete operational task of code writing in that same

test. She hypothesised that a third variable would be

required in order to make a swap, referring to the code

shown in the previous question (Test 1 Q7, see appendix).

C: I'll follow the format from above … 'cause it makes
sense 'cause it worked

Her strategy was to give each of the variables a value, and

she noted what their values should be once her code had

executed. Then she wrote the incorrect code in Figure 14.

When Charlotte attempted the very same code-writing

task five weeks after her first think aloud, she still

struggled with it. She initially failed to use a third

(temporary) variable, as can be seen from the first line of
code in Figure 15. For the second line, she started writing

"second", crossed it out and replaced it with (an

incomplete) "third" before crossing out all that she had

written (shown in Figure 15).

Charlotte almost immediately then wrote correct code,

and verified her solution using specific values for first

and second. Charlotte was now, five weeks after the

first think aloud, working at the preoperational level:

having overcome her initial misconceptions, she was able

to trace and write very simple, familiar, code.

Two weeks later, Charlotte completed Test 4 before

we had a think aloud session with her. Her final code for

a conditional swap of list elements was accurate.

However, when she reflected on this question in a

subsequent think aloud session, Charlotte confessed to

not being sure of the correctness of her solution and
voiced some confusion about assigning array elements:

C: I was thinking temp had to be an array…

Having previously developed the ability write swap code,

Charlotte was then manifesting misconceptions with less

familiar material: arrays. Her behaviour is consistent with
an Overlapping Waves Model, where the introduction of

a new concept may result in reversion to a less mature

stage (for that concept).

9 Conclusion

Our think aloud excerpts have answered the first of the
questions posed earlier, regarding the strategies,

behaviour and misconceptions that are evident in novice

programmers. We categories these (in Table 6) using the

neo-Piagetian (NP) framework (where SM=sensorimotor;

Preop=preoperational).

Behaviour NP Stage

guessing SM

fragile grasp of semantics SM

confused use of nomenclature SM

inability to trace simple code SM

misconceptions (about sequence, assignment,
mental models and the notional machine)

SM

errors due to cognitive overload SM/Preop

reluctance to trace SM/Preop

ability to trace but not explain code Preop

reliance on specific values Preop

Table 6: Novice Programmer Behaviour

Next, we address each of the remaining questions:

Why do students get particular questions wrong?

There are a number of reasons, including guessing,

misconceptions, inability to work with abstractions; and

inability to focus on more than one element of a scenario.

Can a student have disparate levels of ability with two

tasks which test similar programming concepts?

This behaviour was in fact evident with the tasks

requiring students to trace code, then to reason about its
purpose. A preoperational student can trace code, but they

do not develop the ability to reason about its purpose until

the concrete operational stage.

Figure 14: Charlotte's First Attempt in Week 2

Figure 15: Charlotte's Second Attempt in Week 7

CRPIT Volume 160 - Computing Education 2015

172

Why are some students unable to work with

abstractions?

Ability to work with abstractions is not evident until the

concrete operational stage. Based on our quantitative

results , only the 12% of students who answered all the

week 2 test questions correctly were likely to be
reasoning at the concrete operational stage at that time,

and only those students were manifesting concrete

operational skills late in semester.

These results are consistent with our previous studies

(Ahadi and Lister 2013; Ahadi et al. 2014) and means

that most students are still manifesting sensorimotor and

preoperational reasoning at the end of their first semester.

Our think aloud studies support this. These results

suggest that introductory programming educators are

underestimating the foreignness to students of concepts

taught very early in semester as well as their inability to

reason abstractly.

10 Pedagogical Discussion

While it may be up to each student to practise and

improve within a neo-Piagetian stage, we believe the
teacher's role is to assist the students to transition from

one neo-Piagetian stage to the next. We now offer

suggestions on how they might facilitate that. As a

general rule we agree with Bruner (1960):

It is into the language of (the novice's) internal

structures that one must translate ideas if the (novice)
is to grasp them.

10.1 From Sensorimotor to Preoperational

A sensorimotor student who guesses cannot be aware of
which reasoning is accurate without external feedback.

Until they have external feedback they are unlikely to

resolve their misconceptions. Teachers should facilitate

environments that encourage deliberate, supported

practice (Guzdial 2014). We speculate that students who

have not had external feedback "hedge their bets" in

exams in the hope that one of the strategies is correct and

will at least get them part marks.

Teachers should begin by offering students one-liner

single-concept tasks. The earliest tasks should be purely

literal expressions with gradual progression to univariate
expressions. Teachers should be aware of and discourage

rote learning and pattern matching, as that delays the

transition to a higher stage.

Teach students how to trace code systematically, for

example with a trace table, using appropriate values (test

categories and cases). Furthermore, test them to ensure

that they are tracing correctly.

Students at the sensorimotor stage require, more than

anything else, that their misconceptions are corrected. For

example: "what is an assignment statement?" or "what

can (and can't) a variable do?". When students have

overcome any misconceptions (especially about variables,
assignment and sequence) and have a clear idea of the

notional machine, and can start to trace code reliably,

they are probably reasoning at the preoperational stage.

10.2 From Preoperational to Concrete

Teachers should gradually increase the complexity of the

tasks with multivariate expressions and more complex

code. Roles of variables (Kuittinen and Sajaniemi 2004)

is one example of useful cognitive concepts that

encourage abstract reasoning. In general, there should be

a focus on tracing and explaining tasks with code writing

tasks secondary.

10.2.1 Tracing and Explaining Code

Give preoperational students a complete function or very
small program that does something interesting – perhaps

with visual impact. Set them the task of experimenting

with the code by making small, superficial changes. Give

them practice at interpreting the results of a trace (i.e.,

identifying invariants and explaining the code's overall

purpose). A good assessment task at this stage is to

supply "buggy" code where the skills students have

developed (above) are used to fix the code.

10.2.2 Abstract Tracing

Preoperational students are heavily reliant on specific
values in variables to reason about code. This reliance

diminishes as they become more proficient with

programming and they develop an ability to trace

"abstractly". In other words they are able to compute the

effect of the code without using specific values. This

ability to start working with abstractions signals the

transition into concrete operational reasoning. Jim, for
example, tried unsuccessfully to trace code abstractly

(i.e., without specific values). However, he then

succeeded by resorting to the use of specific values. He,

and other preoperational students, will develop abstract

tracing skills with persistent practice and challenges that

require more mature strategies until they learn to reason

about and work with abstractions. Tracing abstractly also

means that the trace need not be complete in order to

determine the code's purpose. A student transitioning into

concrete operational stage may be able to short-circuit a

trace because they can also simultaneously process a

number of features of a block of code (e.g., in a loop).
Only once students have begun to develop those sorts of

reading skills will they begin to write code

systematically.

11 References

Ahadi, A. and Lister, R. (2013): Geek Genes, Prior
Knowledge, Stumbling Points and Learning Edge

Momentum: Parts of the One Elephant? Proc. of

Ninth Annual International ACM Conference on

International Computing Education Research (ICER

2013), San Diego, CA. 123-128, ACM.

Ahadi, A., Lister, R. and Teague, D. (2014): Falling
Behind Early and Staying Behind When Learning to

Program. Proc. of Psychology of Programming

Interest Group (PPIG 2014), Brighton, UK.

Biggs, J. B. and Collis, K. F. (1982): Origin and
Description of the SOLO Taxonomy Evaluating the

quality of learning: The SOLO Taxonomy (Structure

of the Observed Learning Outcome). New York:

Academic Press Inc.

Boom, J. (2004): Commentary on: Piaget's stages: the
unfinished symphony of cognitive development. New

Ideas in Psychology, 22, 239-247.

Proceedings of the 17th Australasian Computing Education Conference (ACE 2015), Sydney,
Australia, 27 - 30 January 2015

173

Bruner, J. S. (1960): The Process of Education. London:
Oxford University Press.

du Boulay, B. (1989): Some Difficulties of Learning to
Program. In E. Soloway & J. C. Sphorer (Eds.),

Studying the Novice Programmer 283-300. Hillsdale,

NJ: Lawrence Erlbaum.

Ericsson, K. A. and Simon, H. A. (1993): Protocol
Analysis: Verbal Reports as Data. Cambridge, MA:

Massachusetts Institute of Technology.

Falkner, K., Vivian, R. and Falkner, N. J. G. (2013): Neo-

Piagetian Forms of Reasoning in Software

Development Process Construction. Proc. of
Learning and Teaching in Computing and

Engineering (LaTiCE) 2013, Macau. IEEE.

Feldman, D. H. (2004): Piaget's stages: the unfinished

symphony of cognitive development. New Ideas in

Psychology, 22, 175-231.

Guzdial, M. (2014). Anyone Can Learn Programming:
Teaching > Genetics. BLOG@CACM http://m.cacm

.acm.org/blogs/blog-cacm/179347-anyone-can-learn-

programming-teaching-genetics/fulltext 2014.

Kuittinen, M. and Sajaniemi, J. (2004). Teaching Roles of
Variables in Elementary Programming Courses.

ITiCSE '04. Leeds, UK, ACM.

Lister, R. (2011): Concrete and Other Neo-Piagetian
Forms of Reasoning in the Novice Programmer. Proc.

of 13th Australasian Computer Education

Conference (ACE 2011), Perth, WA. 114:9-18, ACS.

Lopez, M., Whalley, J., Robbins, P. and Lister, R. (2008):
Relationships between Reading, Tracing and Writing

Skills in Introductory Programming. Proc. of ICER

'08, Sydney, Australia. ACM.

Siegler, R. S. (1996): Emerging Minds. Oxford: Oxford

University Press.

Teague, D., Corney, M., Ahadi, A. and Lister, R. (2013):
A Qualitative Think Aloud Study of the Early Neo-

Piagetian Stages of Reasoning in Novice

Programmers. Proc. of 15th Australasian Computing

Education Conference (ACE 2013), Adelaide,

Australia. 136:87-95, ACS.

Teague, D., Corney, M., Fidge, C., Roggenkamp, M.,
Ahadi, A. and Lister, R. (2012): Using Neo-Piagetian

Theory, Formative In-Class Tests and Think Alouds

to Better Understand Student Thinking: A Preliminary

Report on Computer Programming. Proc. of

Australasian Association for Engineering Education
Conference (AAEE 2012), Melbourne.

Teague, D. and Lister, R. (2014a). Longitudinal Think

Aloud Study of a Novice Programmer. Australasian

Computing Education Conference (ACE 2014).

Auckland, New Zealand, ACS. 148.

Teague, D. and Lister, R. (2014b): Blinded by their
Plight: Tracing and the Preoperational Programmer.

Proc. of Psychology of Programming Interest Group

(PPIG) 2014, Sussex, UK.

Teague, D. and Lister, R. (2014c): Manifestations of
Preoperational Reasoning on Similar Programming

Tasks. Australasian Computing Education Conference

(ACE 2014). Auckland, New Zealand. 148, ACS.

Appendix: The Test 1 Questions

Q1 In the boxes, write the values in the variables after the following
code has been executed:

a = 1

b = 2

a = 3

The value in a is and the value in b is

Q2 In the boxes, write the values in the variables after the following

code has been executed:

r = 2

s = 4

r = s

The value in r is and the value in s is

Q3 In the boxes, write the values in the variables after the following
code has been executed:

p = 1

q = 8

q = p

p = q

The value in p is and the value in q is

Q4 In the boxes, write the values in the variables after the following
code has been executed:

x = 7

y = 5

z = 3

x = y

z = x

y = z

The value in x is y is and z is

Q5 In the boxes, write the values in the variables after the following
code has been executed:

x = 7

y = 5

z = 0

z = x

x = y

y = z

The value in x is y is and z is

Q6 In Q5 above, what do you observe about the final values in x and y?

Write your observation (in one sentence) in the box below.

Q7 The purpose of the following three lines of code is to swap the

values in variables a and b, for any set of possible values stored in

those variables.
c = a

a = b

b = c

In one sentence that you should write in the box below, describe the

purpose of the following three lines of code, for any set of possible

initial integer values stored in those variables. Assume that
variables i, j and k have been declared and initialised.

j = i

i = k

k = j

Q8 Assume the variables first and second have been initialised.

Write code to swap the values stored in first and second.

Sample solution: temp = first

 first = second

 second = temp

Sample solution: Swaps the values in i and k.

Sample solution: The values in x and y were swapped.

3 2

4 4

1 1

5 5 5

5 7 7

CRPIT Volume 160 - Computing Education 2015

174

