
Moving animation script creation from textual to visual representation

Erik Haugvaldstad Tim Wright

School of Mathematics, Statistics, and Computer Science
Victoria University of Wellington

New Zealand
{kyllingen,tim}@mcs.vuw.ac.nz

Abstract

Animation scripts are an integral part of developing com-
puter games: they describe which character animations
to play and when to switch between animations. These
scripts are often written in text editors which can be an
error-prone task since there are multiple variables and con-
ditions that needs to be understood, and text editors gives
no indication of how animations are linked together. This
paper describes how a graphical user interface, using lines
and circles to simulate direction and speed, can simplify
the process of creating character animation scripts.

1 Introduction

The computer game industry is a multi billion dollar enter-
prise, with sales in the US alone being 7.3 billion in 2004
(ESA 2005). However, competition is stiff and many de-
velopers barely survive past their first game as costs are in-
creasing and players are demanding more from the games
they play (Williams 2002, Wikipedia 2005).

We have been working with a local game company
where the developers wanted to find a better and more ef-
ficient way to create their animation scripts, which they
are currently making using text editors. They felt that im-
provements could be made by having a tool to streamline
the process.

In the game company the scripts are written so that the
animators can use them to put together the animations for
the game objects, but they often have to ask the program-
mers for help when building a script, defeating the purpose
of having scripts.

Scripts are programs that evaluate user decisions and
then points the main program (the game) in the right direc-
tion (Kerlow 2004). In games, animation scripts are used
to glue animations together, as well as constrain which
animations can be accessed so that they are played in the
right order when objects move and interact in the game
world. For example, if we are moving our game character
left, the script might tell the game to play thewalkLeft
animation, and from that animation we can only stop, walk
right or run left; but not run right. The sample script in
Figure 1shows that scripts are composed of different vari-
ables and conditions that a game engine needs to read in
order to find out when and which animation to play.

These scripts are often written in a text editor, or in
software with little to no visual aid. Currently, the prob-
lem of having to write these by hand in a text editor are
twofold. First, having to write similar code over several
pages where only a few names or variables change is te-
dious. It can lead to errors as users can have trouble deter-
Copyright c©2006, Australian Computer Society, Inc. This pa-
per appeared at the Seventh Australasian User Interface Conference
(AUIC2006), Hobart, Australia. Conferences in Research and Practice
in Information Technology, Vol. 50. Wayne Piekarski, Ed. Reproduc-
tion for academic, not-for profit purposes permitted provided this text is
included.

Node {
AnimName = Run
AnimFile = RunAnim.ani
MinSpeed = 30 MaxSpeed = 50
}

Node {
AnimName = Walk
AnimFile = WalkAnim.ani
MinSpeed = 10 MaxSpeed = 30
}

Transition {
From = Run To = Walk
When = Speed < Run.MinSpeed AND

Direction.Angle > 330 AND
Direction.Angle < 30

}

Transition {
From= Walk To = Run
When = Speed > Walk.MaxSpeed AND

Direction.Angle > 330 AND
Direction.Angle < 30

}

... plus 100’s of other similar rules

Figure 1: Sample script showing animations nodes and
transition nodes

mining exactly which parts to change and predicting how
the changes will impact the rest of the script. Second,
understanding the script’s structure is hard: determining
what animations exist and how to combine them. Visual
aids, like charts or graphs, detailing how the animations
work together can be helpful, but it assumes that someone
had the time to write this down, and in a way that is un-
derstandable for everyone. Graphs and charts are of lim-
ited use as well since they will not necessarily explain the
layout of the script nor what every variable and condition
means.

In this paper we try to describe how a graphical inter-
face simulating movement and direction using a 2D plane
can make it easier to generate different animation scripts
within the domain of character animations, and at the same
time make the process more understandable.

2 Cognitive Dimension Analysis of Script Notation

The cognitive dimensions framework (Green 2000), uses
a set of dimensions that lets designers conduct usability
evaluations of visual programming environments.

Although the framework was designed to deal with vi-
sual notations, the notations can still be applied to a textual
environment. We are using the notation to do an analysis



of the scripts when they are edited in a text editor. The
scripts can be thought of as a programming notation for a
particular domain, in this case, character animations. We
assume that a general text editor is used, like notepad or
emacs, as there is no default editor for scripts. The Cogni-
tive Dimensions analysis follows:

A text editor can have partial highviscosity. Replace
commands can make simple tasks, like substituting all in-
stances of a keyword for another in the file, but more com-
plicated replacements needs regular expressions. Depend-
ing on the complexity, this can be a challenge and having
to create regular expressions can both be time consuming
and difficult to learn. It also introduces a higher level of
abstraction.

Visibility in a text editor tends to be poor, even with
colour coding of keywords, as its contents is still repre-
sented as paragraphs of text going from the top to the bot-
tom of the page. It is therefore hard to find exactly the
parts we want, and even harder to find which ones are de-
pendent on each other. For example, deleting animation
nodeWalk in Figure 1. would introduce errors as one of
the transition nodes is expecting to use a value from the
’Walk’ node.

A text editor has ahidden dependencyproblem with
the scripts. For example, an animation allows a charac-
ter to move left or right. The animations would change
depending on the angle of our character, so that if we
turned more than 40 degrees to the left or right the ani-
mation would change. These angle values have to corre-
spond with each other so that the correct animation will
be played. If there is an inconsistency between these val-
ues the text editor will not find it and problems may arise
when the game engine tries to read the script.

It is quite easy to makeerrors in a text editor, as it
does not tell us if we have written something wrong se-
mantically, nor if we have followed the structure set by
the script. We could delete content or change values and
we would not know if it affected anything negatively until
the game engine tries to read the script.

The text editor does not put any constraints when writ-
ing the scripts, which means it does not introduceprema-
ture commitments — we do not have to write a part of
the script before any other parts and it is easy to change
anything we have written before, although we might have
to worry about hidden dependencies.

There are several helper tools in a text editor that help
achieveabstraction. Examples include regular expres-
sions or the replace command. These fit within the context
of manipulating words or sentences, but they fail to make
the scripts more understandable.

Although a text editor will get the job done, and there
are tools in the editor that can simplify some of the script
creation, there are many problems which makes it cum-
bersome. Green (1996) argue that something that is hard
in one environment may be easier in another. We want to
move this script creation to software that will reduce the
problems with text, while keeping the power of the nota-
tion.

3 Using spacial arrangement of nodes to create ani-
mation scripts

Character animations often have a direction and a speed,
for example, a person walking to the left or running for-
wards. Using a 2D plane (see Figure2), we can use a pat-
tern of lines going from the centre and outwards to divide
areas into directions, and circles to further divide these ar-
eas into different levels of actions in a given direction. In
other words we are using a vector from origin to a point to
define the speed and direction of an object.

Each of these regions consist of an animation and its
corresponding variables and conditions. The variables are
used to store facts about an animation that a game en-
gine needs to know in order to process the files like the

Figure 2: Using lines and circles to create several areas
that contains animations and code. Lines and circles can
store values as well.

name, file path for the animation, or values to be used
in a transition condition specifying when a change be-
tween two animations is going to happen. Examining
Figure 1, we see that each animation node has a mini-
mum and maximum speed that is used in the transition
to determine when the animation should change between,
say, walking and running. Variables consist of a vari-
able name and its value. Since the scripts are in plain
text they are easy to add without having to think what
type a variable is. For example, whether an array of
numbers are represented asvalues = (2, 3, 4) or
values = Array[2, 3, 4] should not matter for
the tool. We want to ensure users have an easier time
putting the right variables to the right animations.

Through the animations and the variables the tool has
enough information to create scripts. The tool can cre-
ate the transitions by changing animations to neighbour-
ing or even distant areas. Animation transitions could be
used between levels, or just in a given direction. Empty
areas may or may not be allowed, and there could even
be a complicated mesh of transitions between the nodes.
This means we can create a multitude of different scripts
just by changing a few rules regarding how animations are
connected together. Since the 2D plane allows for so many
different ways of specifying a change between animations,
it will be up to the developers to state how they want the
transitions to function.

To make these transitions there needs to be one or sev-
eral conditions that tells us when a change can happen.
Animations often change when we change the direction of
our game characters. The lines can therefore be used to
set the constraints for when a change happens or which
animations are to be played in a given direction. The most
obvious way would be to store the angles of the lines and
use those values to specify the different directions that can
be achieved. Of course, other (non-numeric) values could
be used as well, likeleft or right , if that is what the
game engine needs to read.

The circle’s radius value could also be used as a vari-
able and constraint for when we need to go a step up or
down in a given direction (changing speed). The variable
could be represented as a minimum and maximum value
by retrieving the radius value from the two circles closest
to the animation node. For example, when an animation
should change from running to walking we could look at
the value of the circle between these two nodes and decide
if we should change an animation based on the speed we
currently have in the game.

The other variables for each animation can also play
an integral part, as these often will give additional con-
straints for when a transition between animations can hap-
pen. We therefore need a way of specifying how options
affect the conditions. As mentioned before, since condi-



tions can have such diverse structures depending on the
script, the best approach would be to use a selection model
that tells whether an option should be used in a condition.

Although the layout looks only suitable for scripts that
deal with changing directions and moving at different
speeds, it can be easily modified to fit a large variety of
other animations, as the structure of these scripts are often
quite similar. For example, the circles could be different
modes of firing a weapon in a different direction, or we
could use it for a car to specify which animations to play
when a car turns or changes gears.

A tool implementing these ideas should achieve a
higher degree of visibility and a lower level of viscosity
and error-proneness since it is easier to see how each part
of the script connects to each other, and many errors can
be avoided. The cost comes as a higher level of abstrac-
tion, although we believe that the abstractions introduced
will not add to the complexity of the task — the layout
should make it easier for users to see how the animations
are tied together and where each animation node is sup-
posed to be.

4 The Animation Scripting Utility Tool

The Animation Scripting Utility (ASU) tool is a prototype
being developed for a local computer game company in
New Zealand. The animators there have been creating
their animation scripts by hand in text editors and were
looking for some kind of software that could simplify the
process of creating these scripts. This tool takes advantage
of many of the key points discussed in the previous section
to help with that process. It is still more constrained than
what has been described in the previous sections, as many
of the ideas were not implemented due to time constraints.
The tool will most likely be redesigned and include ad-
ditional content by them to better fit their own standards
after they have reviewed it.

The tool draws upon programming by demonstration
principles (PBD) (Halbert 1984, Myers 1986, Wolber
1997) as we are trying to use an interactive graphical in-
terface to construct code. However, the animations in our
context have already been created by professional 3D an-
imators. The task we are trying to solve is not creating
the animations, but, rather, providing an efficient and easy
mechanism to sequence different animations depending
on game variables like character speed and movement di-
rection.

The tool was created using Java and Java2D for graph-
ics. It uses a graphical plane where circles and lines can
be added and manipulated by a user to specify the number
of directions and levels that should be added. The lines
store an angle that can be displayed as degrees using ei-
ther [0-360] or [(-180)-180]. This angle can then be used
as a constraint or variable in the scripts. The circles store
the radius value which can be used as a variable in anima-
tion nodes or used in a transition condition. A scale value
can also be applied so that very small values can used for
the circle’s radius whilst still being able to see and manip-
ulate the circles on the graphical plane. Changing values
is as easy as selecting a circle or line and moving it to the
desired position. For more fine-grained control, the value
can also be supplied in a text field.

The areas between the lines and circles are used to
store animations files and its variables. When a user clicks
on any area, they are presented with a table that shows the
animations currently in that area. To help distinguish be-
tween areas that contain animations and those which do
not, a small circle is drawn to show which areas contain
an animation. These animations store the name, debug
info and the animation file name. Animation file names
can be written in the text field or they can be supplied by
browsing through a file menu. Whenever an animation is
selected, another table is presented where variables can be
added or changed to the selected animation node. There is

Figure 3: Main screen of the ASU tool

also the possibility of adding global options that will ap-
ply for all animations, saving time having to add the same
variable to every area. Global options which can then be
overridden at each area.

After having added all necessary animations and op-
tions, ASU can create an animation script by first extract-
ing the animation details and its variables and adding this
to the script as an animation node. Next, ASU adds the
transition details between neighbours. To fit with the game
company’s scripting specifications, neighbours are defined
as a non-empty area either a level above or below an ani-
mation in a given direction.

We allow areas to be empty, in which case a neighbour
will be the next closest area that contains an animation.
Again, this is to fit with the scripting requirements of the
game company, but this is likely true for many other ani-
mations as well. Since we always have an equal number
of areas in all directions, we might end up with surplus
areas that can not be used. The only animation node that
does not follow these constraints, is the root node.

The root node is the centre of the circles and lines and
is not represented on the plane as its own area, as it is
not an animation, but rather a common centre that all an-
imations can go to and from and is a point of entry for
reading a script. Being a special case, the root node is
added under an option screen where its variables can be
specified, and we can also choose whether a root node
should be included at all, as not all scripts will necessarily
have one. The root panel could also include an idle anima-
tion to be played if the game character is just waiting, but
the idle animation is not included by default as there may
be many different idle animations to play, which means a
script for these transitions should be instead created indi-
vidually first, and then combined with other scripts.

The script, when produced, can be displayed in a text
window for further analysis or it can be saved to a file
which can then be used with the game engine. Alterna-
tively, the contents on the drawing plane can be saved to a
file as well for further processing at a later stage.

5 Usability Analysis

We performed a usability evaluation of ASU using four
university students. The analysis consisted of three
phases. In the first phase, the evaluators used the tool
freely; trying different functions, reading through the user
manual, and asking questions. In the last two phases par-
ticipants created a complete animation script by following
a set of instructions. The instructions to create the script
in the second phase were more detailed than in the third
phase.

The positive the participants quickly found a good



work pattern and learned how the tool worked and how
the animation nodes were linked together on the graphical
plane. None of the evaluators had any animation scripting
experience which shows that the interface has been helpful
— it allowed the evaluators to create simple scripts with-
out having to know the details and structure of the finished
script file.

The evaluation found several issues that were resolved:
most of these were minor bugs. The two main issues
the evaluators had were moving between selecting values
from the animation table and the graphical plane, and old
values not automatically being overwritten. This was fixed
by setting the focus on the animation table cells and mak-
ing sure that values would be overwritten instead of ap-
pended. A third issue was the lack of a copy function for
areas or not being able to select several animations at once
for quick editing. This would take longer to implement
and was left for future work.

6 Future Work

There are several features we would like to implement for
the ASU tool which were not implemented due to time
constraints. Since the process of adding new animations
can be cumbersome we would like to have a copy function
that makes it easy to copy contents from one area to the
other so that similar animations can be constructed more
quickly. Preferably a drag and drop function that allows
us to copy an area’s contents to another.

Two important features that we would like to see im-
plemented are support for multiple animations and extend-
ing the graphics plane for 3D support. This will generalise
our tool enough to allow for more complicated character
animation scripts, as well as other domains of animation
scripts that previously would not fit with our model. By
allowing more than one animation per area, a different an-
imation can be selected during a transition based on ei-
ther defined constraints, or even chosen randomly. For
example, whenever we want our game character to kick,
it might start as a standard kick animation and then de-
pending on where we want him to kick the animation will
play two different animations. The first animation might
just show our character getting the leg off the ground; but
depending on whether we want to kick high or low it will
play a different animation.

7 Conclusion

Creating animation scripts can be a difficult and time con-
suming task. The CD usability analysis shows that text ed-
itors are not the best tools for creating animation scripts,
which means we have to have alternate software that can
handle the task more effectively (Green 2000). Moving

difficult and repetitive tasks to a more graphic oriented in-
terface needs to take several things into consideration. The
software needs to make sure the job is simplified, and that
the interface is understandable for the users as well as pro-
viding the level of detail that is needed for a script.

Focusing on the domain of character animations, we
have come up with a general scheme of how to create these
scripts. We built and evaluated a tool using these ideas.
Creating animation scripts by simulating a region of di-
rections and movements will make the task easier, even for
people who have little experience with scripting, since the
environment should feel more natural to them and it gives
a better overview of the relationships between animations.
Variables and constraints can be added individually to an
animation or as a global value that affects all animations.
The sample scripts we had showed that over half the con-
tent was transition data, meaning, on average, users need
to do half as much work when using ASU.

References

ESA (2005), ‘Esa top 10 industry facts’,http://www.
theesa.com/facts/top_10_facts.php .

Green, T. (1996), An Introduction to the Cognitive Di-
mensions Framework,in ‘MIRA Workshop’, MIRA,
Monselice, Italy.

Green, T. (2000), Instructions and Descriptions: some
cognitive aspects of programming and similar activ-
ities, in ‘AVI Proceedings’, AVI.

Halbert, D. (1984), Programming by Example, PhD the-
sis, Department of Electrical Engineering and Com-
puter Science, University of California, Berkely,
California.

Kerlow, I. (2004),The Art of 3D Computer Animations
and Effects, third edn, Wiley.

Myers, B. A. (1986), ‘Visual Programming, Programming
by Example and Program Visualization: A Taxon-
omy’, CHI Proceedingspp. 59–66.

Wikipedia (2005), ‘Video game developers’,
http://en.wikipedia.org/wiki/
Video_game_developer .

Williams, D. (2002), ‘Structure and Competition in the
U.S. Home Video Game Industry’,The International
Journal on Media Managements4(1), 41–54.

Wolber, D. (1997), ‘Pavlov: An Interface Builder for
Designing Animated Interfaces’,Transactions on
Computer-Human Interaction4(4), 347–386.

http://www.theesa.com/facts/top_10_facts.php
http://www.theesa.com/facts/top_10_facts.php
http://en.wikipedia.org/wiki/Video_game_developer
http://en.wikipedia.org/wiki/Video_game_developer

	Introduction
	Cognitive Dimension Analysis of Script Notation
	Using spacial arrangement of nodes to create animation scripts
	The Animation Scripting Utility Tool
	Usability Analysis
	Future Work
	Conclusion

