
MyPyTutor: an interactive tutorial system for Python

Peter J. Robinson

School of Information Technology and Electrical Engineering,
The University of Queensland,

Brisbane, Australia,
Email: pjr@itee.uq.edu.au

Abstract

MyPyTutor is an interactive tutorial system for the
Python programming language. The system provides
support for both students doing tutorial problems
and tutorial developers. MyPyTutor can be used in
two modes: stand-alone or with online support. For
courses where MyPyTutor is used for assessment it
can be set up so that students submit correct solu-
tions to problems online for marks.

Keywords: Automatic marking, interactive tutorials,
Python, code analysis

1 Introduction

For some years we have been using xTutor from MIT
(Ehrmann et al., 2006) for interactive tutorials, first
for Scheme and more recently for Python. One of
the disadvantages of xTutor is that the student en-
ters Python code into a text box that provided little
support for the kinds of support expected in an IDE
such as syntax highlighting, layout and error feed-
back. It is also difficult to provide questions about
GUIs where the student can see the results of their
code. Also, students need to be registered, i.e. have
a username and password, in order to use xTutor and
students need to be logged on to the system in order
to do the tutorial problems. On the other hand xTu-
tor supports several kinds of tutorial questions other
than coding questions such as multiple choice ques-
tions.

Python installations come with Tkinter (a GUI li-
brary based on Tcl/Tk) and an IDE written in Tk-
inter called IDLE. Most of our students, particularly
Windows users, use IDLE for writing and testing their
code. Furthermore, we use IDLE in lectures when
writing code. One of the key design decisions for
MyPyTutor is to provide, as much as possible, a fa-
miliar interface for students. Consequently, MyPyTu-
tor is written in Tkinter and uses the same code edit
window as is used in IDLE. Further, various kinds of
errors, such as syntax errors, produce the same error
highlighting in the edit window as when using IDLE.
Also, by using Tkinter we are able to write tutorial
questions about GUIs (written in Tkinter) where, as
part of checking the code, the result of running the
code can appear as a window, giving the student vi-
sual feedback.

Unlike xTutor, where everything is run on a server,
MyPyTutor is an application that students download

Copyright c©2011, Australian Computer Society, Inc. This pa-
per appeared at the 13th Australasian Computing Education
Conference (ACE 2011), Perth, Australia, January 2011. Con-
ferences in Research and Practice in Information Technology
(CRPIT), Vol. 114, John Hamer and Michael de Raadt, Ed.
Reproduction for academic, not-for profit purposes permitted
provided this text is included.

to their machines. The collection of tutorial problems
are also downloaded. This means that MyPyTutor
can be run in a stand-alone mode if it is simply used as
a resource for students, or if a student wants to work
on problems without being connected. If MyPyTutor
is used for assessment then it can be set up so that
students can log on and submit answers to problems.

MyPyTutor supports only coding problems, i.e.
students write their answer as code and the system
checks their code for correctness.

In order to provide more feedback to students
other than just telling them if they are right or
wrong, we often use parsing of student code to ei-
ther give more information about where the student
went wrong or possibly provide suggestions on better
ways of solving the problem. These techniques are
not specific to MyPyTutor but could be used in any
interactive system in any language for which exami-
nation of the parse tree is easy to do.

As discussed in Douce et al. (2005), most modern
automatic systems for assessing student programs are
web based (like xTutor) and so typically have simi-
lar advantages and disadvantages as discussed above
for xTutor. Douce et al. point out that security is
an issue for automatic marking systems. In partic-
ular, malicious or badly behaving student code can
be problematic. This can be avoided by, for exam-
ple, sandboxing the test code (as is done in xTutor).
MyPyTutor does not suffer from this problem as all
test code is run on the student machine.

MyPyTutor is currently being used for very in-
troductory problems and so the testing, apart from
analysis of the parse tree, is quite straightforward. In
principle, though, it would be possible to write more
sophisticated testing code as used in other systems
such as AutoGrader (Helmick, 2007) and Web-CAT
(Edwards, 2003).

In the next section we describe the student view
of MyPyTutor. In Section 3 we describe the devel-
opers and course administrators view. In Section 4
we discuss the design of tutorial problems and in Sec-
tion 5 we consider testing using parsing. In Section 6
we describe the implementation and we conclude with
some remarks.

2 Student View

MyPyTutor consists of two windows. One window
is for editing code and is the same as the IDLE edit
window apart from some minor changes to the menus.
The other window consists of two text widgets. The
top one displays the problem being worked on as a
rendered HTML document. The bottom text widget
is used to output the results of testing the student
code.

It is used to display a “Correct” message if the
code successfully passed the tests or some kind of er-
ror or warning message otherwise. Any output from

student code will also be displayed in this widget. The
Problems menu allows the student to choose a prob-
lem to work on. If MyPyTutor is set up for online
use, the Online menu is present and allows the user
to log on and off, change their password, submit the
current (correct) problem answer, upload/download
their (partial) solution to the problem, and view the
submission status of the problems.

Each student can configure MyPyTutor by choos-
ing fonts and the folders where the tutorial problems
and the student answers for each problem is to be
found. MyPyTutor supports multiple problem sets
for students doing more that one course using MyPy-
Tutor.

Typically, students start up the application and
choose a problem to work on. If they have previously
saved their code for the problem then the code will
be automatically loaded from the answers folder on
their machine. They might wish to overwrite this by
downloading a previously uploaded version of their
code (if they are logged on).

After working on the code they can check their
code for correctness. If the code passes the test, and
they are logged on, they can submit their answer to
the server for marks. If the code fails the test they
can edit their code and check again.

When students checks correct code, MyPyTutor
will respond with a message saying that the code is
correct, and if MyPyTutor is set up for answer sub-
mission then it will also remind the students to sub-
mit their answers. If the code is incorrect, MyPyTu-
tor responds by displaying an error message of some
kind. All exceptions produced by student code are
displayed and exceptions such as syntax errors or
name errors will cause the offending line of code to be
highlighted. The other error messages displayed are
based on the results of testing the code. This could
simply be a message saying that the code is producing
the wrong value and what the correct value should be.
It could be an error message that gives more feedback
on where the student has gone wrong based on, for
example, the use of parsing (see later). In some cases
the system might provide some feedback as a warn-
ing and then continue testing. This typically occurs
when the analysis of the student code suggests that
the student may be, for example, using the wrong test
for termination of recursion. In this situation it may
be possible that the student code is correct but not
using the expected test.

When MyPyTutor is set up for online use (and for
marks), due dates are associated with each section in
the Tutorials menu. If the student submits after the
due date, the problem is marked as late and is not
counted towards marks.

Figures 1 and 2 given an example of MyPyTutor
in action. The user has chosen a problem to work
on and has pressed the hint button to reveal the hint.
The user has added the last line in the edit window
(the other lines are pre-loaded). The user has checked
the code and the output shows the result of checking
the code. When the user corrects this problem by
replacing the print with a return then, on checking
again, the output window will display an error mes-
sage such as “Wrong: for input 7 the correct result is
49, you got 14”. This problem is used as an example
in Section 5.

3 Developer and Administrator View

The developer is the person who creates individual
tutorial problems and collects some or all of these
problems into a tutorial set. The administrator is the
person running a course where MyPyTutor is used
for assessment. The MyPyTutor system comes with

Figure 1: MyPyTutor Example: Problem Description
and Output Window

Figure 2: MyPyTutor Example: Edit Window

several tools to support the developer and administra-
tor. All these tools are written in Tkinter and share
some of the MyPyTutor code. The developer has the
use of three tools: a problem creator tool, a problem
checking tool, and a tutorial creator tool.

The problem creator tool is used to construct tuto-
rial problems. It has two edit windows. One window
is where the problem description is written in HTML
source. The other window is where the testing code
is written.

The problem testing tool is a cut-down version of
MyPyTutor that the developer can use to test to see
if the problem he/she has written behaves correctly
from a student point of view. These two tools are
designed to work together, making it easy to edit and
check problems.

The tutorial creator tool is used by the developer
to create a collection of tutorial problems to be used in
a course. This consists of an editor window in which
the developer can list the tutorial sections and each
problem within each section together with any auxil-
iary files (e.g. GIF files for images in the HTML). If
the system is intended for online use, the first line is
the URL of the MyPyTutor server and due dates are
added to the section headers.

When the developer has finished designing the tu-
torial set, the tutorial set can then be exported for
use by the student. This consists of copying all the
required files to the designated folder, encrypting the
test code part of each problem, and zipping the con-
tents of the folder.

The system has been designed in such a way that,
if it is used in online mode, any modifications to the
problems can be uploaded to the server and when
a student next logs on, the updated problem set will
be downloaded to replace the old version. This means

that any errors found can be corrected and an update
problem set distributed to students is a straightfor-
ward manner.

The administrator tool is used to manage student
information when MyPyTutor is used in online mode.
The administrator typically starts by registering stu-
dents (i.e. create usernames and passwords) individu-
ally or from a class list in a particular format. At any
time, the administrator can change the password of a
student. The administrator can search for matching
patterns in the user file (e.g. search for family name
or username).

As was discussed earlier, if a student submits a
problem late then no marks are awarded for that
problem. The administrator has the ability to unset
the late flag on a problem so that it will be counted.

The administrator can also extract results from
the server. At the end of the course (or indeed at
any time) the administrator can collect the marks for
all the students and can also obtain information on
the percentage of the class that have submitted each
question. As a very rough guide to determining how
hard students found a particular problem the average
number of times a given problem was checked in the
current session can be displayed. Although this is a
very rough estimate of difficulty, it seems to provide
a good guide in practice. This information might be
used by the problem designer, for example, to reword
the problem description or add extra hints for prob-
lems students appear to be having problems with.

4 Problem Design

Writing the problem description is reasonably
straightforward. It is written in HTML source with a
restricted number of tags. Images in GIF format can
be embedded in the problem description. It’s also
possible to add hints. If a problem has one or more
hints then a Hints button appears and each time the
button is pressed the next hint is displayed in the
problem description widget. Hints are also written in
restricted HTML.

The other component of problem design is the test
code. Any number of different tests can be run on the
student code and any test can be repeated a number
of times (for example, if random numbers are used
to generate values). Tests can be straightforward, for
example, simply comparing the answer produced by
student code with the expected answer. The tests can
also be quite sophisticated. For example, the student
code can be parsed and tests carried out based on the
structure of the code (see later).

For the introductory course in which MyPyTu-
tor is currently being used, the problems are all very
straightforward and so, if simply testing the answer is
all that is required, the test code could be very sim-
ple. However, experience with using xTutor suggests
that simply giving the results of the tests to begin-
ner students is not very helpful. In response, many of
the problems use parsing to provide better feedback.
As students and problems become more sophisticated,
parsing is probably less necessary and so the testing
code would typically be much simpler.

An example of test code is given in Figure 3. The
problem asks the student to assign to the variable
prod the product of the variables item1 and item2.

The comments such as #{global}# are headers
for the different blocks of the test code. The main
part of the testing code is the test blocks (with the
#{test}# header). There needs to be at least one of
these blocks. When the student code is checked, the
code of each test block is run until either an error
occurs or all tests have completed. There are three
blocks that may appear before the first test block.

#{global}#
import random
#{test}#
#{start}#
item1_save = random.randint(2,100)
item2_save = random.randint(2,100)
#{init}#
item1 = item1_save
item2 = item2_save

#{code}#
import sys
if prod == item1_save*item2_save:

correct()
else:

print_error("Wrong - You got %s \
the correct result is %d \n\
The right hand of the assignment should be \
an expression involving item1 and item2" \
% (str(prod), item1_save*item2_save)

Figure 3: Test Code Example

The #{global}# block contains code that is common
to all tests. In this case it imports the random module
but it could be, for example, a class definition to be
used in testing or some function definitions students
are expected to use. The #{preload}# block (not
used in this example) contains code that is copied
into the edit window when this problem is chosen. It
might, for example, be a partially defined function
that the student needs to complete (Figure 2 shows
an example). MyPyTutor uses a timeout (default one
second) to stop runaway student code after the given
time. For some problems this may not be enough
time. The block of the form #{timeout = secs}#
(with no body) allows the designer to specify the
timeout for running the tests.

Each test block can contain three subblocks: the
start block, the init block, and the code block. The
first two are optional. When a test is executed, the
code in the start block is first executed in an environ-
ment that cannot be accessed when running the stu-
dent code. Then the init code is run in environment
that has access to the start environment. Then the
student code is executed followed by the code in the
code block. The reason for this rather complicated
setup is to prevent, in this example, the student code

prod, item1, item2 = 0, 0, 0

from being a solution.
By keeping a copy of the values of item1 and item2

in an environment that can’t be accessed by the stu-
dent code, then the proper test can be carried out.
This is discussed in more detail in Section 6.

When using random numbers for testing it is of-
ten necessary to run a given test multiple times in
order to be reasonably confident the student code
is correct. This can be done by using the header
#{test repeats = 3}#, say, rather than #{test}#.

Exception handling is an important issue when
testing student code. To hide details of the test
code all exceptions produced by the testing code
(that are not explicitly handled in the test code) are
trapped and the error message ’Error: report to
maintainer’ is output. This should be avoided at all
costs as it gives no information to the student about
the cause of the problem. It is therefore important to
structure the test code so this does not happen.

Below is a fragment of test code for a problem that
calls a function f defined by the student.

try:

result = f(test_arg)
ok = True

except Exception, e:
print_exception(e)
ok = False

if not ok:
pass

elif result ==

In this example, if no exception is thrown by the
student code then the result is tested for correctness.
If, however, an exception is thrown the exception is
passed to a MyPyTutor function that displays the
exception and further testing is short-circuited.

Now consider an example where an integer value
is expected as the result of calling a student defined
function (as in the above example). It is tempting to
write test code as follows

if result != 42:
print_error("Wrong: you got %d \

the correct answer is 42" % result)

where print_error is a MyPyTutor function that
displays the message. The problem is that, if the stu-
dent returns something other than an integer (None,
for example), then an exception will be thrown by the
formatting. This can be avoided by using either str
or repr as follows.

if result != 42:
print_error("Wrong: you got %s \

the correct answer is 42" % repr(result))

Another place where exceptions can crop up is in
walking the parse tree of the student code. If the
problem designer assumes too much about the shape
of the student code then it’s easy to produce an ex-
ception if the student writes “unexpected” code. So,
although parsing student code can provide excellent
feedback, the parsing code must be carefully crafted
to avoid this problem.

5 Parsing Student Code

Parsing is a powerful tool for finding certain kinds
of errors and for providing more detailed feedback to
students than simply saying what the student code
produced and what the correct answer was. The ideas
presented below are not specific to MyPyTutor or to
Python.

In the following example we present fragments of a
relatively straightforward example using parsing. The
tutorial problem is to write a square function that
takes an integer and returns its square. This is an
introductory example and as such the student might
be having trouble with return statements, the use of
arithmetic operators and the use of formal parameters
to functions. By walking the parse tree of the student
code we can check if this is being done correctly or
provide some feedback.

Python comes with a module called compiler that
has a function for constructing the abstract syntax
tree (AST) of the student code. It also has a function
that takes an AST and a code visitor object (defined
by the problem designer) and visits nodes according
to the methods defined in the code visitor class. An
example of such a class is given in Figure 4.

The code for using the parse tree is given below.

ast = compiler.parse(user_text)
visitor = CodeVisitor()
compiler.walk(ast, visitor)
if not visitor.has_return:

class CodeVisitor:
def __init__(self):

self.arg1 = None
self.in_defn = False
self.has_return = False
self.use_mult = False
self.use_power = False
self.in_mult = False
self.in_power = False
self.use_arg1 = False

def visitFunction(self,t):
if t.name == ’square’:

self.in_defn = True
if len(t.argnames) == 1:

self.arg1 = t.argnames[0]
for n in t.getChildNodes():

compiler.walk(n, self)
self.in_defn = False

def visitReturn(self,t):
if self.in_defn:

self.has_return = True
for n in t.getChildNodes():

compiler.walk(n, self)

def visitPower(self,t):
if self.in_defn:

self.use_power = True
self.in_power = True
for n in t.getChildNodes():

compiler.walk(n, self)
self.in_power = False

def visitMul(self,t):
if self.in_defn:

self.use_mult = True
self.in_mult = True
for n in t.getChildNodes():

compiler.walk(n, self)
self.in_mult = False

def visitName(self,t):
if self.in_defn and \

(self.in_power or \
self.in_mult):

self.use_arg1 = \
self.arg1 == t.name

Figure 4: Code Visitor Class

print_error(’You need a return \
statement’)
elif not (visitor.use_mult or \

visitor.use_power):
print_error(’You should use either \

* or **’)
elif not visitor.use_arg1:

print_warning(’Are you using the \
variable %s in the body of the \
definition?’% visitor.arg1)

By doing this we give feedback if, for example,
a return statement is not used. This is a common
mistake by beginners who often use a print statement
rather than a return statement.

As another example, if the question asked the stu-
dent to write a for loop to solve a problem but the
student produced a correct solution using a while loop
then straightforward testing is not enough to detect
the non-use of a for loop. By parsing we can give
feedback that a for loop should be used.

6 Implementation

MyPyTutor is implemented in Python using the Tk-
inter GUI library. One important aspect of the im-
plementation of MyPyTutor relates to the fact that
the application itself and the tutorial problems are
loaded on to the student machine. This differs from
server or web based systems like xTutor where all the
code lives on the server. Because the xTutor code
is on the server, the student does not have access to
the implementation of xTutor or the problem testing
code. In MyPyTutor, however, the student has all
the code on their machine. Consequently, attempts
to hide the application code and the problem testing
code has been made. Firstly, apart from the top-level
interface to the MyPyTutor application, the support
code is compiled to pyc files. We believe this makes
it sufficiently difficult for students to decompile the
support code in order to understand how the code
works.

In order to hide the problem testing code, when
the tutorial developer exports the set of tutorial prob-
lems, the testing code for each problem is encrypted
using a moderately strong and fast algorithm. When
a student chooses to work on a given problem MyPy-
Tutor renders the HTML problem description and de-
crypts the testing code ready for use.

Admittedly this is “security by obfuscation” but
we feel it is good enough to hide the code from all
but the most talented students.

The MyPyTutor code edit window inherits from
the IDLE code edit window. By doing this, students
use the same editor for doing MyPyTutor problems as
they do when doing their assignments or other Python
coding. Furthermore, MyPyTutor traps exceptions
such as Syntax errors, extracts the line number for
the error and highlights that line in the same way as
is done in IDLE.

For rendering the HTML for the problem descrip-
tion, the HTMLParser module is used. We currently
support the following tags.

h1 h2 h3 h4 h5
b it tt
br p ul li
pre
img
span

The img tag is of the form img src="filename.gif"
- i.e. the image must be a GIF file. Currently, only
span with a colour style of red, green or blue is
supported.

The key part of the implementation of MyPyTutor
is the testing of student code. When the testing code
is run on the student code, first a global environment
is created.

global_env = \
{’user_text’: self.user_text,
’print_warning’:self.print_warning,
’print_error’:self.print_error,
’print_exception’:self.print_exception,
’correct’:self.correct,
’master’:self.master}

This environment provides the testing code with ac-
cess to MyPyTutor code: user_text is the student
code; print_warning displays a warning in the out-
put text widget; print_error and print_exception
display messages and set a flag that will terminate
testing; correct displays a message that the code is
correct and sets a flag to signal this; and master pro-
vides a mechanism for students to write GUI code
that will be displayed in a window.

1: test_globals = global_env.copy()
2: try:
3: exec test.get(’start’, ’’) in \
4: test_globals
5: except Exception, e:
6: raise TestError(e)
7: save_globals = test_globals.copy()
8: locs = {}
9: try:
10: exec test.get(’init’, ’’) in \
11: test_globals,locs
12: except Exception, e:
13: raise TestError(str(e))
14: exec self.user_text in locs
15: test_globals.update(locs)
16: test_globals.update(save_globals)
17: try:
18: exec test.get(’code’, ’’) in \
19: test_globals
20: except NameError,e:
21: raise(NameError(e))
22: except Exception, e:
23: raise TestError(str(e))

Figure 5: MyPyTutor Testing Code

The core part of the testing code is listed in Fig-
ure 5. First the global environment is copied into an-
other environment that will be modified during test-
ing. On lines 3 and 4 the start code (if present)
is evaluated in the test_globals environment, up-
dating that environment. That environment is then
copied to save_globals for later use. Then on line 8
an empty (local) environment is created and on lines
10 and 11, the init code (if present) is evaluated rel-
ative to the given global and local environments, up-
dating the local environment. Next, on line 14, the
student code is evaluated in the local environment,
updating that environment. On lines 15 and 16, the
local environment is merged with the global environ-
ment and, just in case the student redefines something
in global_env or in the start code, test_globals
is then updated again with save_globals. Finally,
on line 18 and 19, the test code is evaluated in the
test_globals environment.

By manipulating environments in this way, the
student cannot gain access to, or modify, the informa-
tion used for testing but the testing code can access
all required information needed to test the student
code.

When MyPyTutor is run with an online compo-
nent it is possible to automatically update both the
tutorial problems and even MyPyTutor itself. When-
ever a student logs on, the date stamp of the tutorial
problems is compared with the date stamp on the
server. If the server has a more recent version then it
lets MyPyTutor know that a newer version is avail-
able and in response MyPyTutor downloads the zip
file and overwrites the old version with the new one.
The student is notified that an update has happened.
The same thing happens with MyPyTutor itself, ex-
cept the version numbers are used for comparison.

7 Remarks

MyPyTutor was used for the first time for assessment
in a first year software engineering course in semester
1, 2010. Several errors were discovered with the tu-
torial problems. Some errors were to do with poor
wording and others were to do with code testing as
discussed earlier. Because of the automatic update
facilities of MyPyTutor it was easy to fix errors and

distribute a new version quickly. The ability to up-
date MyPyTutor itself also turned out to helpful as
students discovered several errors when using the ap-
plication.

MyPyTutor provides a feedback facility so that
students can provide feedback on both MyPyTutor it-
self and on specific tutorial problems. Feedback from
students was mostly very positive.

More details of MyPyTutor, developer tools, and
the current database of problems can be obtained
from the author.

References

Stephen C. Ehrmann, Steven W. Gilbert and
Flora McMartin (2006), Factors Affecting the
Adoption of Faculty-Developed Academic Soft-
ware: A Study of Five iCampus Projects, TLT
Group, http://icampus.mit.edu/index.shtml (last
referenced 13/08/2010).

Christopher Douce, David Livingstone and James Or-
well (2005), Automatic Test-Based Assessment of
Programming: A Review, in ‘Journal of Educa-
tional Resources in Computing’, Vol. 5, No. 3, ACM
Press, New York.

S.H. Edwards (2003), Using test-driven development
in the classroom: providing students with auto-
matic, concrete feedback on performance, in ‘Pro-
ceedings of the International Conference on Educa-
tion and Informations Systems: Technologies and
Applications’, pp. 421-426.

Michael T. Helmick (2007), Interface-based Program-
ming Assignments and Automatic Grading of Java
Programs, in ’ITiCSE 07: Proceedings of the 12th
annual conference on Innovation and technology
in computer science education’, ACM Press, New
York, pp. 63-67 .

