

Non-Delegatable Strong Designated Verifier Signature Using a

Trusted Third Party without Pairings

Maryam Rajabzadeh Asaar
1
, Ali Vardasbi

2
, Mahmoud Salmasizadeh

2 *

1
Department of Electrical Engineering,

2
 Electronics Research Institute, Sharif University of

Technology, Tehran, Iran.

asaar@ee.sharif.ir, vardasbi@alum.sharif.edu, salmasi@sharif.edu

Abstract Strong designated verifier signature (SDVS) is

characterized by two properties; namely the non-

transferability and the privacy of the signer’s identity

(PSI). Non-transferability prevents anyone else other than

the designated verifier to verify the signature, while PSI

prevents a third party to distinguish between two different

signers. In this paper, we propose a non-delegatable

SDVS which uses a trusted third party for the key

generation. Our signature scheme does not use bilinear

pairings which makes it suitable for the resource

constraint applications. Using one-way homomorphic

functions, our scheme is presented at an abstract level, the

unification of which was noticed by Maurer in the context

of zero knowledge proofs of knowledge in Africacrypt

2009. The security of the proposed scheme is proved in

the random oracle model, provided that the

homomorphism one-wayness and the gap Diffie-Hellman

assumptions hold. When a Schnorr-like homomorphism is

used to construct our scheme, six exponentiations are

needed in the signing step and seven for the verification

step. This means a meaningful gap between the

performance of our scheme and that of its predecessors

which use pairings in their signing and/or verification

steps.
.

Keywords strong designated verifier signature, trusted

third party, non-delegatability, random oracle model

1 Introduction

The notion of designated verifier proofs (DVP) which

was introduced by Jakobson, Sako, and Impagliazzo

(1996), allows the prover to designate a verifier as the

only one by whom the proof can be verified. In other

words, the conviction of the designated verifier is non-

transferable to anyone else. As for many signature

schemes which are non-interactive versions of some zero

knowledge proofs, the designated verifier signatures

(DVS) are the non-interactive versions of DVP. Applica-

tions of DVS include but are not limited to undeniable

* This research is partially supported by the Office of Vice-

President for the Science and Technology and Iran

Telecommunication Research Center through grant no. 15712.

Copyright © 2013, Australian Computer Society, Inc. This

paper appeared at Australasian Information Security Conference

(ACSW-AISC), Adelaide, Australia. It is published as

Conferences in Research and Practice in Information

Technology, Vol. 138, Eds. C. Thomborson and U. Parampalli.

Reproduction for academic, not-for profit purposes permitted

provided this text is included.

signature (Huang, Mu, Susilo, and Wu 2007) and denia-

ble authentication (Wang, and Song 2009).

In addition to the non-transferability which is the

property of DVS, one can think of another property which

states that no third party can distinguish between different

signers by looking at the signature. The concept of such a

DVS for which a third party cannot tell if a designated

signature for Bob is from Alice or from some other

signer, was first noticed by Jakobson, Sako, and

Impagliazzo (1996) and the scheme is called strong

designated verifier signature (SDVS). Later on, SDVS

was formalized by Laguillaumie, and Vergnaud (2004)

where the property of privacy of signer’s identity (PSI)

was defined.

A DVS is either delegatable or non-delegatable. In a

delegatable DVS the signer can delegate her signing

capability to a third party without revealing her secret

key. Non-delegatable DVS, on the other hand, prevents

the signer from such a delegation. Formally, as was intro-

duced by Lipmaa, Wang, and Bao (2005), the non-

delegatability of a DVS necessitates the knowledge of the

secret key of either Alice or Bob in order to generate a

valid signature on behalf of Alice for the designated

verifier Bob.

Huang, Yang, Wong, and Susilo (2011a) propose two

different SDVS schemes: a delegatable SDVS, provably

secure in the standard model; and a non-delegatable

SDVS provably secure in the random oracle model.

Shamir introduced the concept of identity-based

signature (IBS) by suggesting to use the identity of the

signer as the verification key (Shamir 1985). There are

several IBS schemes based on factoring and RSA (e.g.

Shamir 1985, Fiat, and Shamir 1987, Guillou, and

Quisquater 1990, and Okamoto 1993) and many IBS

schemes based on pairings (e.g. Sakai, Ohgishi, and

Kasahara 2000, Hess 2003, Cha, and Cheon 2002). A

framework for deriving security proofs for IBS and iden-

tification schemes has been provided by Bellare,

Namprempe, and Neven 2004. Galindo and Garcia (2009)

propose a provable secure IBS by using sequentially

delegating Schnorr signatures (Schnorr 1991) and they

claim their scheme is among the most efficient provably

secure IBS schemes to that date.

There are some studies which propose DVS schemes

in the identity based setting with the title of IB(S)DVS.

However, most of these IB(S)DVS schemes use pairings

in their signature generation and verification (Huang,

Susilo, Mu, and Zhang 2008, Huang, Susilo, and Wong

2009, Huang, Yang, Wong, and Susilo 2011b, Kang,

Boyd, and Dawson 2009) while the others use pairing

only for their verification (Cao, and Cao 2009, Zhang,

Proceedings of the Eleventh Australasian Information Security Conference (AISC 2013), Adelaide, Australia

13

CRPIT Volume 138 - Information Security 2013

14

and Mao 2008). As the computation cost of pairings is

approximately 20 times higher than that of exponentiation

at the same security level (ECRYPT 2006), the

significance of our scheme whose construction does not

require pairings is evident. In case of the signature size,

IBSDVS schemes which do not support non-

delegatability (Huang, Susilo, Mu, and Zhang 2008,

Kang, Boyd, and Dawson 2009, Zhang, and Mao 2008)

have a smaller size (one, two and three elements,

respectively) compared to the ones which are non-

delegatable. The scheme proposed by Huang, Susilo, and

Wong (2009) which is an IBDVS with non-delegatability

has five output elements (the same as ours), but uses three

pairings for signing and four pairings for verification and

does not support PSI. Huang, Yang, Wong, and Susilo

(2011b) propose an IBSDVS scheme with non-

delegatability which has seven output elements (more

than ours), uses three pairings for signing and five

pairings for verification.

Our scheme shares similarity with the IBDVS scheme

proposed by Rajabzadeh Asaar, Salmasizadeh (2012), but

their scheme is not a strong DVS; i.e. does not support

the PSI property. There are also some identity based

schemes in the multi-DVS setting such as the schemes in

Chow (2008) and Chow (2006). For instance, Chow

(2008) proposes two generic constructions of MDVS, one

of which enables many ID-based ring signature schemes

to support anonymous subset.

In this paper, we propose a non-delegatable SDVS

using a trusted third party without pairings and prove its

security in the random oracle model. Our proposed

scheme can be instantiated for any one-way group

homomorphic where GDH assumption is believed to be

true. It has five output elements and it uses six

exponentiations for signing and seven exponentiations for

verification. As a price for not using the costly bilinear

pairings, our scheme is not a pure identity based scheme.

However, it shares some features with the IB schemes

and uses a trusted third party for delivering the keys to

the signer and verifier.

The next section contains some preliminaries, defini-

tions, notations and assumptions which are used through

the rest of the paper. Section 3 is the main part of the

paper which is devoted to an abstract scheme for a light-

weight IBS, a modified version of a non-delegatable

SDVS and our proposed scheme. Furthermore, the

security analysis of scheme is presented in this section.

Finally, the concluding remarks and future work are

appeared in section 4.

2 Preliminaries and Notations

This section contains the notations, definitions and

assumptions which are used in the rest of the paper.

Furthermore, the abstract model of (Maurer 2009), which

is exploited in the construction of our scheme, is

reviewed in this section.

2.1 An Abstract Model

As was noted by Maurer (2009), many protocols for the

zero knowledge proof of knowledge (ZKPK) can be

unified as proofs of knowledge of a preimage of a group

homomorphism. Since a considerable number of

signatures in the literature use a (non-interactive) ZKPK,

the abstract model of (Maurer 2009) can be exploited in

the context of signature schemes as well. Here we briefly

explain this abstract model.

Consider two groups () and () and a

homomorphism as follows:

 () () () (1)

As in (Maurer 2009), we write , - instead of () for

simplicity and we will consider the case where is

(believed to be) a one-way function, such that it is

infeasible to compute

← from , -. Furthermore, we

use the following notations:

 () () (2)

 () (3)

Two of the most popular instantiations of this model

are as follows:

1) For a prime , assume is an additive group

and is a multiplicative group of order and

generator . In this setting, a homomorphism can be

defined as follows:

 , - (4)

In this case, the homomorphism one-wayness

assumption is equivalent to the discrete logarithm

assumption. This homomorphism is exploited in the

Schnorr protocol (Schnorr 1991) and in the ElGamal

cryptosystem (ElGamal 1984). In the rest of this

paper, we refer to this homomorphism by Schnorr-

like homomorphism.

2) For large primes and , assume and

() (
) (). For a given prime

exponent (with (())), a

homomorphism can be defined as follows:

 , - (5)

In this case, the homomorphism one-wayness

assumption is equivalent to compute - roots

modulo without knowing the factor of , which

means breaking the RSA cryptosystem. This

homomorphism is exploited in the Guillou-

Quisquater (GQ) protocol (Guillou, and Quisquater

1988). In the rest of this paper, we refer to this

homomorphism by GQ-like homomorphism.

2.2 Notations

Throughout this paper, is the signer and is the

verifier. The secret keys of and are represented by

and respectively. It is assumed that a common key is

shared between and through a Diffie-Hellman-like

protocol (Diffie, and Hellman 1976). It means that the

common key should be feasibly computable from either

one of these two pairs: (, -) or (, -), but not

Proceedings of the Eleventh Australasian Information Security Conference (AISC 2013), Adelaide, Australia

15

from (, - , -). In what follows, the common key

shared between and with the above property is shown

by:

 *, - + *, - + (6)

In the case of a Schnorr-like homomorphism, the

description of *, - + is straight forward:

 *, - + , - *, - + (7)

However, in the case of a GQ-like homomorphism,

one cannot simply consider *, - + , -
()

 , since , - , - , -. In this case, it

requires some more thought to propose a suitable function

for *, - +. A trivial solution is proposed in the

appendix A.

We use the notations , -* + and * , -+

for public key encryption and decryption with the

public/private key pair (, -) and the randomizer .

These functions are defined as follows
1
:

 , -* + *, - + (8)

 * , -+ (*, - +) (9)

2.3 Definitions

In what follows, a formal definition for the unforgeability

of a SDVS scheme, non-transferability, non-

delegatability and PSI is given. Further discussions and

remarks on these definitions can be found in (Huang,

Yang, Wong, and Susilo 2011a).

Definition 1. (Unforgeability) An IBSDVS scheme is

()-unforgeable if no adversary

which runs in time at most ; issues at most queries

to issues at most queries to ; and issues

at most queries to can win the following game

with probability at least .

This is the game which is considered to be played

between the challenger and a probabilistic polynomial

time (PPT) adversary :

i. runs the algorithm to generate a master key

pair (), and gives to .

ii. issues queries to the following oracles:

 : This oracle returns the user’s secret key

(, -) ← () on a given .

 : Given a query of the form of

(), this oracle signs the

message as ← (),

and returns it to .

 : Given a query of the form of

() this oracle simulates the

 in order to output the corresponding

signature.

iii. outputs a forgery (

) and wins

1 By definition { , -* + , -}

the game if the three following conditions hold

 (

) ,

 did not query on input
 or

 , and

 did not query and on input

(

).

Definition 2. (Non-transferability). An IBSDVS is non-

transferable if there exists a PPT simulation algorithm

 on , , , and a message outputs a simu-

lated signature which is indistinguishable from the real

signatures generated by the signer on the same message.

For any PPT distinguisher , any (), (), and

any message , it holds that

| , ← ()
 -

| ()

where ← (), ←

 (),

←* + and () is a

negligible function in the security parameter , and the

probability is taken over the randomness used in

and , and the random coins consumed by . If the

probability is equal to , the IBSDVS scheme is

perfectly non- transferable.

Definition 3. (Non-delegatability). It is assumed that

 , - be the knowledge error. An IBSDVS scheme is

()-non-delegatable if there is a black box knowledge

extractor which produces either the secret key of the

signer or the secret key of the designated verifier with

oracle access to the forger . If generates a valid

signature with probability on a message for every
() ← (), every and , every
(, -) ← (), (, -) ←
 (), then, the extractor can extract either

 or in expected time () with the help of the

forger , where without considering the required

time to make oracle queries.

Definition 4. (Privacy of Signer’s Identity) An IBSDVS

scheme is ()-PSI-secure if no

adversary which runs in time at most , issues at most

 queries to , queries to and

queries to , can win the game bellow with probability

that deviates from by more than .

The game is played between the challenger and a

distinguisher as follows:

i. runs to generate a master key pair

(), and gives to . Then calls

 for generating the key pairs ([
]

),

([]) and (, -) for , and with

identities
,

 and , and invokes on

input ([] [] , -).

ii. issues queries adaptively as in the unforgeability

game, except that now all the oracles take an

additional input * + indicating which signer

responds to the query. That is, the oracles generate

CRPIT Volume 138 - Information Security 2013

16

and verify signatures with respect to [
] and

, -.

iii. submits a message . tosses a coin

* +, computes the challenge signature ←

 (

) and returns to

 .

iv. continues to issue queries as in Step (ii). Finally

it outputs a bit and wins the game if:

 ; and

 it did not query on input ()

for any * +.

2.4 Assumptions

The security proofs in this paper use the following

assumptions:

Assumption 1 (one-wayness)- The one-wayness

assumption holds for a group homomorphism if for all

PPT Algorithms , the following probability:

 (← (, -) , - , -) (10)

is a negligible function of the security parameter. In other

words, it is hard to compute the preimage of a one-way

homomorphism. In the case of the Schnorr-like homo-

morphism, this assumption is analogous to the DL

assumption.

Assumption 2 (Diffie-Hellman)- The DH assumption

holds for a function *, - + defined on a group

homomorphism, if for all PPT algorithms the

following probability:

 (*, - + ← (, - , -)) (11)

is a negligible function of the security parameter.

Assumption 3 (Gap Diffie-Hellman)- The GDH

assumption holds for a function *, - + defined on a

group homomorphism, if for all PPT algorithms

having oracle access to which on the inputs , -,
, - and , correctly decides whether or not
 *, - +, the following probability:

 . *, - +

← ()(, - , -)/

(12)

is a negligible function of the security parameter.

3 Non-Delegatable SDVS without Pairings

In this section we present a model for a non-delegatable

SDVS using trusted third party. The scheme is composed

of a lightweight IBS and an efficient non-delegatable

SDVS. These two building blocks are described in the

next subsections. In the sequel of this section, the

construction of our proposed scheme, together with its

security proof in the random oracle model, will be

presented.

3.1 Lightweight IBS

The identity based signature (IBS) scheme presented in

(Galindo, and Garcia 2009) enjoys the property of not

using pairings. Founding the signature only on the

modular exponentiations and avoiding the high-cost time-

taking pairing computations, Galindo and Garcia were

able to propose a lightweight ID-based signature scheme

in which two schnorr-like signatures are concatenated:

one for the PKG (private key generator) to sign the

identity of the signer and one for the signer to sign the

message (Galindo, and Garcia 2009).

In fact, their novel idea is not limited to the schnorr-

like signatures. With the help of Maurer’s unified zero

knowledge proof of knowledge together with the Fiat-

Shamir heuristic (Fiat and Shamir 1987), the

aforementioned Schnorr-like signature can be generalized

to an abstract model for lightweight IBS.

Another efficient IBS scheme that is based on the

elliptic curve discrete log problem and does not use

bilinear pairings is suggested by Zhu, Yang, and Wong

(2007). Nevertheless, these two IBS schemes are quite

similar in the abstraction level we reviewed in section

2.1. The only difference between the two foregoing IBS

schemes lies in the structure of the user’s secret key

where the scheme of Galindo, and Garcia (2009) releases

the image of the random value selected in the key

generation phase, while the hash output is released in the

Zhu, Yang, and Wong (2007) scheme.

Figure 1 depicts this abstract model upon which we will

set up our lightweight ID-based SDVS with non-

delegatability. Although , - is included in the secret key

of , it is not really secret. Being included in the

signature, , - is a commitment to ensure a verifier that

the signature comes from whose identity is signed by

the PKG. A concrete construction of this scheme can be

obtained by using a Schnorr-like homomorphism which is
, - , and .

Figure 1 Abstract model for lightweight IBS

Proceedings of the Eleventh Australasian Information Security Conference (AISC 2013), Adelaide, Australia

17

Note that the signature in figure 1 contains some extra

terms which are represented by and have a

contribution in generating the challenge . This extra

information can help adding some extra properties such

as non-transferability, non-delegatability and privacy of

the signer’s identity to the signature scheme. This is

further discussed in the following section.

3.2 Non-Delegatable SDVS

In order to construct a signature scheme which is strong

designated verifier, non-transferable, non-delegatable and

has PSI, Huang, Yang, Wong, and Susilo (2011a)

suggested the following ideas:

I1- Perfect non-transferability: and should be able

to produce the same signature on any message.

This can be achieved through producing a

composition of: 1) a zero knowledge proof of

one’s secret key; and 2) a simulation of a zero

knowledge proof of the other’s secret key. These

two ZKPs should constitute a hierarchical order

such that producing a valid simulation of a ZKP of

both of the secret keys at the same time has a

negligible probability.

I2- Privacy of signature’s identity: the common key

shared between and can be included into the

message to be signed, so that no one can

distinguish the signature without knowing this

shared key.

I3- Non-delegatability: for not to be able to delegate

his signing capability, the signature contains a

(non-interactive) ZKP of signer’s secret key.

Moreover, to prevent from delegating his

capability, each signature contains a fresh (non-

interactive) challenge which can only be (non-

interactively) responded by the knowledge of the

verifier’s secret key.

The above ideas were successfully combined in

(Huang, Yang, Wong, and Susilo 2011a) and a SDVS

scheme with non-delegatability was proposed which does

not use pairings and is secure in the random oracle model.

The signing and verifying is carried out via four and five

modular exponentiations
1
, respectively, and the signature

consists of five elements in (Huang, Yang, Wong, and

Susilo 2011a). Here we propose a marginal improvement

to this signature. Relegated the role of one element from

the signature to another and with the same number of

modular exponentiations for signing and verifying, our

modified signature consists of four elements (instead of

five). This is further discussed in the next section.

3.3 Construction of the Scheme

Through the rest of this paper, it is assumed that the

output of hash functions are from for some prime

number . Wherever the output of a hash function is

treated as the input/output of the homomorphism

1 The computation of is omitted since it can be computed

once and stored for the rest of transactions.

(elements from or), it is implicitly assumed that a

suitable mapping or is used.

Here is the description of our signature scheme:

- Key Generation: According to the security parameter

 , the key generation function generates a master

secret key and its corresponding master public key

 , -.

- Key Extraction: Taking as input the master secret key

 , the master public key and the identity of the

signer (verifier), the key extraction function

outputs a commitment , - (respectively , -) and a

challenge response () (respectively

 ()).

- Signing: To sign a message for a designated

verifier , the signer uses her secret key and

the master public key and performs as follows:

first, to simulate a ZKPK of the verifier’s secret key

(cf. I1 in section 3.2), chooses a random challenge

 , a random challenge response ()

and computes the corresponding simulated

commitment , - , - , -
 . Next, in order to

present a ZKPK of her owns secret key, she commits

to a random , computes her challenge
 () , and produces the challenge

response (). Finally, outputs the

signature which contains: PKG’s commitment on her

identity , -, her commitment , - and challenge

response , the simulated challenge response and

an encryption of with the verifier’s public key.

- Verification: To verify a signature on a message

from a signer , the verifier uses his secret key

 and the master public key and performs as

follows: first, decrypts using his secret key

together with to obtain . Next, from , and

he computes to obtain the required inputs for the

hash function, evaluate it and consequently obtain .

Finally, he simultaneously checks the validity of the

signer’s challenge response with respect to her

commitment and the validity of the PKG’s signature

on the identity of the signer.

The scheme is depicted in figure 2. As was discussed

in section 3.1, , - and , - are publicly known. If this is

not the case a priori, can ask either PKG or for , -.
Since , - contains no secret information, its release

causes no harm. A concrete construction can be obtained

for this model by using a Schnorr-like homomorphism;

i.e. letting , , - , ,
() , *, - + and so on.

As was mentioned in the previous section, our

modification to the SDVS2 in (Huang, Yang, Wong, and

Susilo 2011a) makes its output length shorter, without

increasing the computational complexity. To be concise,

our modification to the Huang et al.’s SDVS2 is twofold:

1) To prevent the verifier from delegating his

capability in (Huang, Yang, Wong, and Susilo

2011a), for some

← ,

 is included

CRPIT Volume 138 - Information Security 2013

18

Figure 2 Non-Delegatable SDVS using trusted third party

in the input of the hash function, while the signature

contains . Therefore, only with the knowledge of

 one can obtain the output of the hash function

and verify the signature. In the modified scheme,

however, this role is played by which, together

with the , constitute an ElGamal encryption of

using the public key of . As a consequence, is

removed from the signature and the signature size is

reduced from five elements to four elements. This

idea in which an element is saved by sharing the

random element , - between the ElGamal

encryption and the Schnorr signature component

was used previously in Zheng's signcryption scheme

(Zheng 1997).

2) The signature in (Huang, Yang, Wong, and Susilo

2011a) contains both the and and the

verification is carried out by checking the equality

of to the output of the hash function.

Verifying the signature in the modified scheme is

somehow different. With the included in the

signature, the verification is carried out much like

the ZKPs. This introduces two extra exponentiations

to the verification which, together with an

exponentiation for decrypting , results in three

more exponentiations compared to the verification

of the original scheme. However, the original

scheme requires two exponentiations for evaluating

 and one for . Since these three computations

are omitted in the modified scheme, the efficiency

of the verification remains the same to the original

one.

Remark. The term plays no role in the security

proofs of Huang et al.’s SDVS2. Similarly, our scheme

which replaces with
* +, does not

depend on its security. The question is: ―why this element

which is supposed to prevent from delegating her

ability, does not appear in the security proof of non-

delegatability (Theorem 3 in this paper and Theorem 6 in

(Huang, Yang, Wong, and Susilo 2011a))?‖ This is

because:

- Simulating a valid signature by , requires not only

the shared key (*, - +), but also the

private key of (in order to compute the

(
)). Therefore, if someone other than

generates a valid signature, showing that she knew

 does not require the decryption of ; i.e. anyone

who can compute must have known (and the

knowledge of alone does not suffice). In this case,

as appears in the security proofs, inclusion of

instead of in the signature has no impact in the

security.

- Verifying a signature, on the other hand, can

perfectly be accomplished using the knowledge of

alone, if is known. Therefore, an encryption of

(which is) is included in the signature. From this

point of view, the role of in the SDVS2 of

(Huang, Yang, Wong, and Susilo 2011a) and

* + in our scheme is exactly the

same; i.e. they both prevent a third party to verify

the signature without knowing .

3.4 Security Analysis

The security of our scheme follows immediately from the

security of its two components: the lightweight IBS

(section 3.1) and the modified non-delegatable SDVS

(section 3.2). However, for the sake of concreteness, we

provide the security proofs of our model for the signature

scheme. Our scheme is proved to have the desired

properties in the random oracle model, provided that the

one-wayness and the GDH assumptions hold.

Our scheme uses two hash functions and which

are modeled as random oracles during the security proofs.

As usual, these random oracles are simulated by keeping

two separate lists and containing the queried values

together with their corresponding answers. There are four

other oracles involved in the security proofs of our

scheme, as follows:

Proceedings of the Eleventh Australasian Information Security Conference (AISC 2013), Adelaide, Australia

19

 Key Extraction Oracle () which takes in an

identity and gives out ().

 Signing Oracle () which takes in the three-

tuple () and generates

 ()

 Simulation Oracle () which simulates the ,

using instead of .

 Verification Oracle () which on the input of
(), determines whether or not is a

valid SDVS of from to .

Since the scheme is perfectly non-transferable (Theorem

2), the queries to need not be dealt with. The

following four theorems formally prove the security of

the signature scheme of figure 2 in the random oracle

model. In what follows the scheme described in figure 2

is called IBSDVS and the homomorphic function which

is used in the scheme is represented by .

Theorem 1 (Unforgeability) – If one-wayness

assumption () –holds for , IBSDVS is

() –strongly unforgeable in the random

oracle model, where and either

(

 ⁄ ⁄) (unforgeability of the signing part)

or (
 ()

 ⁄ ⁄) (unforgeability of

the key extraction part), where is the security

parameter.

Proof As for all the IBS schemes, the unforgeability of

our signature scheme is twofold: (I) the unforgeability of

the Signing part; and (II) the unforgeability of the Key

Extraction part. Assume forges a valid signature

() on behalf of with probability at most , in

time at most , making , queries to and .

Based on the two cases are distinguishable:

1) forged a valid signature on behalf of after

querying for at least one signature with

either as the signer or the verifier. In this case, the

signing part is forged.

2) Querying no signatures from/to from ,

was successful at forging a valid signature on her

behalf. This is the case where the key extraction part

is forged.

To each case we will associate an adversary who, using

as a subroutine, can contradict the one-wayness

assumption.

Case 1: In this case we will build who finds a

preimage of with probability at least
 . With

being forged by , tries to extract the secret key of

 . Note that in this case the signature from/to on

some message is queried by , which means is

queried from at least once. Let represent the index

of ’s call to the random oracle with the target

identity . Given a one-way homomorphism

(represented by , -) and an image , - for some

unknown preimage , flips a fair coin to decide

whether is the identity of the forged signer, or the

verifier. Here we assume the case where corresponds

to the forged signer. The simulation in the other case can

be done similarly. picks

←

, having a chance of

 ⁄ at correctly guessing the target identity (i.e.),
and simulates the environment of as follows:

Master Key Generation chooses

← , sets

 , -, and uses () as the master key pair

for the queries.

Hash Queries Given a query to or , if there is a

tuple in or with the same input, returns the

corresponding answer; otherwise, it selects a fresh

← , stores the new tuple in the appropriate list and

returns .

 Queries Every time queries for user ,

chooses

←

← , sets , -

 and adds

(()) to the . Then it returns () to

 Queries On input a message , when the signer’s

identity differs from , simply computes the private

key of and as described in the Queries and

returns the output of the signing algorithm to . When

 is the signer’s identity, chooses

← , sets

, adds (()
) to the , and

computes the private key of as described in the

Queries. It chooses

← and

← , computes

 , -, , - , ,
() and adds ((* +)) to

the . Then from and , -, it computes

* + and returns () to .

Finally, outputs its forgery () on behalf of to

 . If (

) is not valid, aborts.

Otherwise, computes

*

 + and

 , - , -

. Let be the corresponding answer

to the query (

 * +) which is

stored in the . computes

 and rewinds

 to the status where it queried for
(

 * +) and this time feeds

with ̅ . The subsequent queries are answered as

above. At this stage, we assume outputs (̅)

which is another valid forgery on the same message.

From the new signature ̅ (

 ̅
 ̅

 ̅
),

computes ̅

* ̅

 + and ̅
 ̅ ̅

 . If

 ̅

 , aborts. Otherwise, it outputs the preimage of

 as follows:

,
 -

 , ̅
 - ̅

 ,

 ̅
 -

 , -
 ̅

 ,(

 ̅
) -

 (
 ̅

) (
 ̅

)⁄ (13)

Probability Analysis has to make two guesses before

using the forgeries of for computing the preimage of .

First it guesses the was queried at the th call to the

 with a probability of . Secondly, it guesses with a

 probability that belongs to the signer or the

verifier of the forged signature. Conditioned on these two

guesses, by an analysis similar to that in (Galindo, and

Garcia 2009), the success probability of can be

CRPIT Volume 138 - Information Security 2013

20

obtained by the Forking Lemma (Pointcheval, and Stern

2000) to be greater than:

 (

) (14)

where is the security parameter. Therefore, we have

that:

(

) (15)

Case 2: In this case we will build who finds a

preimage of with probability at least
 . As was

mentioned earlier, in this case the is forged by .

Consequently, exploits this forgery to extract from
, -. Given a one-way homomorphism

(represented by , -) and an image , - for some

unknown preimage , sets and tries to

obtain by simulating the environment of as

follows:

 acts just the same as did in Case 1 until it obtains

two valid forgeries () and (̅) on behalf of

 to whose identities were never queried from

by . However, the following relation should be satisfied:

, -

 (
)

(16)

 repeats the above process to obtain two more valid

forgeries () and (̅) on behalf of to ;

but this time it defines
 (

) with
 .

Ultimately, is left with the following two equations:

{

 ,

 -

 , ̅

 -
 ̅

 (
 ̅

) (
 ̅

)⁄

 ,
 - (

)

 , ̅
 - (

) ̅

 (

 ̅
) (

 ̅
)⁄

 (17)

and from the and
 , the unknown preimage is

obtained as follows (note that
 remains unchanged in

all of the four forged signatures):

 () (

)
 (

) (
)⁄

(18)

Probability Analysis In this case, no guesses are made

by and by an analysis similar to that of (Galindo, and

Garcia 2009), using the Multiple-Forking Lemma

[BPW03, BN06] the success probability of at finding

a preimage of is obtained as follows:

 (

()

) (19)

This completes the proof. ■

Theorem 2 (Non-Transferability) – IBSDVS is

perfectly non-transferable.

Proof The subsequent steps can easily be followed by

in order to simulate the signature of on :

1. Compute: (, -) , -

 , -

2. Choose:

← and

←

3. Compute: , - , -

4. Compute:

 (* +)

5. Using the knowledge of (, -), compute:

* +

6. Compute: (
)

7. Output: (, -)

It can be easily verified that the distribution of the ZKPK

by in the above steps is identical to the distribution of

the ZKPK by . ■

Theorem 3 (Non-Delegatability) – IBSDVS is non-

delegatable with knowledge error in the random

oracle model.

Proof Let be the forger to whom the machine has

oracle access in order to produce either or . Let

be with as input, who forges a valid signature ()

with (, -) on behalf of to ,

with probability after at most queries from the

oracle. executes to the point where it outputs its

forgery on . Then it rewinds to the status of asking

the oracle for (* +),

replaces its answer with a different value ,̅ and

continues the execution of until it outputs another

signature ̅ (, - ̅ ̅ ̅) on . Since ()

are in the hash input, they remain the same in both runs.

Furthermore, due to the following discussions, one of the

pairs of () or () must remain unchanged: As

was mentioned during I1 in section 3.2, it is impossible to

generate a valid signature by selecting both and

after obtaining (); the construction of

the scheme is such that the chronological order for

computing the three parameters () is forced to be

either () or (). Here, as one of or was

selected prior querying , changing the answer of

oracle only affects one of or . Therefore, either:

 ̅ ̅ ̅ (20)

or

 ̅ ̅ ̅ (21)

In the first case, computes (̅) ()̅⁄ ;

while the second case leads to (̅) ()̅⁄ .

Note that the extractor does not know the value of

 * + and it guesses in which hash query the last

element is the correct value of * +. This imposes

a factor of to the extractor’s success probability. By

a similar analysis to that in (Boneh, Boyen, and Shacham

2004, and Pointcheval, and Stern 2000), succeeds at

extracting either or with a probability at least
 ⁄

.

Theorem 4 (PSI) – if GDH assumption ()-

holds, IBSDVS is then ()-PSI-secure in the random

oracle model, where and .

Proceedings of the Eleventh Australasian Information Security Conference (AISC 2013), Adelaide, Australia

21

Proof Let be an adversary who can break the privacy

of signer’s identity with probability

 in time at most

 . We build an algorithm which uses as a subroutine

to solve the GDH problem. The idea is that cannot

distinguish between the signatures of and unless it

had queried (or otherwise correctly guessed the output of)

the random oracle for { } or { }.

monitors ’s calls to for the aforementioned query

and succeeds in solving the GDH problem as soon as

makes such a query.

Assume is given , -, , -, , - and a

DDH oracle and it wants to compute either * + or

 * +. is successful if it outputs () where

 * +. To do so, it sets ,

and for , and with identities ,

and . It also selects

← and sets , - for

the master public and private keys. It then selects

← , computes

 ,

 and
 and adds

.() /, .() / and (())

to the . simulates the environment of as follows:

Hash Queries On the input (
), if

this was queried before, returns the corresponding

answer. Otherwise, using the oracle, it checks

whether {
}. If this equation holds,

successfully terminates the run by returning (); else it

selects

← and appends the new tuple to the .

 Queries Given a bit and a message , chooses

← ,

← and returns (

).

Note that decrypting a random only with the

knowledge of and implies breaking the DH

assumption. Furthermore, in order to obtain , one

should know the decryption of together with .

Consequently, checking the distribution of a signature

without knowing the private key of the signer of verifier

(to decrypt), contradicts the DH assumption. This

means cannot distinguish between a real signature and

the one which provided.

 Queries Given a bit , a message and an alleged

signature , if the signature was generated before,

returns 1; otherwise, it returns 0. As there is a

probability that correctly guesses the answer of

without querying it and successfully forges a valid

signature, this behavior of reduces the success

probability of at winning the game by .

When it is ready, submits a challenge message .

then selects

← * + and runs the as was discussed

in the Queries. Then continues to simulate oracles

for and monitor the hash queries as above. Finally, if

the run has not been terminated until now, outputs a bit

 and aborts.

Probability Analysis By a discussion like that of

(Huang, Yang, Wong, and Susilo 2011a), there is at least

a probability that wins the game without

querying for either { } or { },

being the probability of correctly guessing the output of

 . Furthermore, as was shown during the security

analysis, there is a difference in the simulation of the

 . Therefore, can be bounded by:

 (

) (

)

 (22)

This completes the proof. ■

3.5 Comparison to Previous Schemes

A comparison between the efficiency of previous

IB(S)DVS schemes and our proposal is shown in table 1.

It should be noted that all of these schemes are provably

secure in the random oracle model. In this table, the

dominating computational signing and verification cost as

well as the signature size are compared in the existing

IB(S)DVS schemes. The table also contains two

additional columns ND and PSI, respectively indicating

whether the scheme supports non-delegatability and

privacy of signer’s identity.

4 Conclusions and Future Work

We proposed a non-delegatable IBSDVS scheme without

pairings and proved its security in the random oracle

model. To the best of our knowledge, this is the first non-

delegatable IBSDVS which can be efficiently employed

in the resource constraint applications since it has smaller

signature size compared to previous non-delegatable

IBSDVS and does not suffer the costly computations

imposed by the use of pairings.

Table 1. Comparison between our scheme and the previous IB(S)DVS schemes

Scheme Signing Cost
Verification

Cost
Signature size ND PSI

Huang, Susilo, Mu, and Zhang (2008) X √
Kang, Boyd, and Dawson (2009) X √
Zhang, and Mao (2008) X √
Huang, Susilo, and Wong (2009) √ X
Huang, Yang, Wong, and Susilo (2011b) √ √
Chow (2008) X X
Rajabzadeh Asaar, Salmasizadeh (2012) √ X
Ours √ √

CRPIT Volume 138 - Information Security 2013

22

The proposed scheme can be instantiated for any one-

way group homomorphism where GDH assumption is

believed to be true. As a consequence, the literature can

be investigated for one-way homomorphisms with a

desired property in order to make the scheme more

efficient or stronger than that which is implemented using

a Schnorr-like homomorphism. A good example for such

a case may be the use of lattice-based homomorphic

functions in order to make the scheme a post-quantum

signature.

5 References

Bellare, M., Namprempre, C., Neven, G. (2004): Security

proofs for identity-based identification and signature

schemes. In: Cachin, C., Camenisch, J.L. (eds.)

EUROCRYPT 2004. LNCS, vol. 3027, pp. 268–286.

Springer, Heidelberg.

Boneh, D., Boyen, X. and Shacham, H. (2004): Short

group signatures, In: Proceedings of Advances in

Cryptology—CRYPTO 2004, vol. 3152 of LNCS, pp.

41–55, Springer.

Cao, F. and Cao, Z. (2009): An identity based universal

designated verifier signature scheme secure in the

standard model, International Journal of Systems and

Software, vol. 82(4), pp. 643-649.

Cha, J.C. and Cheon, J.H. (2002): An identity-based

signature from gap Diffe-Hellman groups. In:

Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp.

18–30. Springer, Heidelberg.

Chow, S. (2008): Multi-Designated Verifiers Signatures

Revisited. I. J. Network Security 7(3): pp. 348-357.

Chow S. (2006): Identity-Based Strong Multi-Designated

Verifiers Signatures. EuroPKI 2006: pp. 257-259

Diffie, W. and Hellman, M.E. (1976): New directions in

cryptography, IEEE Transactions on Information

Theory 22(6), pp. 644–654.

ECRYPT, Ecrypt yearly report on algorithms and key

length (2006): revision 1.1,

http://www.ecrypt.eu.org/documents/D.SPA.21-

1.1.pdf.

ElGamal, T. (1984): A public key cryptosystem and a

signature scheme based on discrete logarithms, In G.

R. Blakley and D. Chaum (Ed.), CRYPTO’84, LNCS

196, pp. 10–18, Springer.

Fiat, A. and Shamir, A. (1987): How to prove yourself:

practical solutions of identification and signature

problems, In: A.M. Odlyzko (Ed.) CRYPTO’86,

LNCS 263, pp. 186–194, Springer-Verlag.

Galindo, D. and Garcia, F. D. (2009): A Schnorr-Like

Lightweight Identity-Based Signature Scheme, In: B.

Preneel (Ed.) AFRICACRYPT’09, LNCS 5580, pp.

135-148, Springer-Verlag.

Guillou, L.C. and Quisquater, J.J. (1988): A practical

zero-knowledge protocol fitted to security

microprocessor minimizing both transmission and

memory, In: C.G. Günther (Ed.) EUROCRYPT’88,

LNCS 330, pp. 123–128, Springer, Heidelberg, 1988.

Guillou, L.C. and Quisquater, J.J. (1990): A

―paradoxical‖ indentity-based signature scheme

resulting from zero-knowledge. In: Goldwasser, S.

(ed.) CRYPTO 1988. LNCS, vol. 403, pp. 216–231.

Springer, Heidelberg.

Hess, F. (2003): Effcient identity based signature schemes

based on pairings. In: Nyberg, K., Heys, H.M. (eds.)

SAC 2002. LNCS, vol. 2595, pp. 310–324. Springer,

Heidelberg.

Huang, X., Mu, Y., Susilo, W. and Wu, W. (2007):

Provably secure pairing-based convertible undeniable

signature with short signature length. In: Proceedings

of 1st International Conference on Pairing-Based

Cryptography, Pairing 2007, vol. 4575 of Lecture

Notes in Computer Science, pp. 367–391. Springer.

Huang, X., Susilo, W., Mu, Y. and Zhang, F. (2008):

Short designated verifier signature scheme and its

identity- based variant, International Journal of

Network Security, vol. 6(1), pp.82-93.

Huang, Q., Susilo, W., Wong, D. S. (2009): Non-

delegatable identity-based designated verifier

signature, Cryptology ePrint Archive, Report

2009/367.

Huang, Q., Yang, G., Wong, D. S. and Susilo, W.

(2011a): Efficient strong designated verifier signature

schemes without random oracle or with non-

delegatability, International Journal of Security, pp.

373-385.

Huang, Q., Yang, G., Wong, D. S. and Susilo, W.

(2011b): Identity-based strong designated verifier

signature revisited, International Journal of Systems

and Software, vol.84(1), pp.120-129.

Jakobsson, M., Sako, K. and Impagliazzo, R. (1996):

Designated verifier proofs and their applications. In:

Proceedings of Advances in Cryptology—

EUROCRYPT 1996, vol. 1070 of Lecture Notes in

Computer Science, pp. 143 – 154. Springer.

Kang, B., Boyd, C. and Dawson, E. (2009): A novel

identity based strong designated verifier signature

scheme, International Journal of Systems and

Software, vol. 82(2), pp. 270-273.

Laguillaumie, F. and Vergnaud, D. (2004): Designated

verifier signatures: anonymity and efficient

construction from any bilinear map. In: Proceedings

of 4th International Conference on Security in

Communication Networks, SCN 2004, vol. 3352 of

Lecture Notes in Computer Science, pp. 105–119.

Springer

Lipmaa, H., Wang, G. and Bao, F. (2005): Designated

verifier signature schemes: Attacks, new security

notions and a new construction. In: Proceedings of

32th International Colloquium on Automata,

Languages and Programming, ICALP 2005, LNCS

3580 , pp. 459–471. Springer.

Maurer, U. (2009): Unifying Zero Knowledge Proofs of

Knowledge, In: B. Preneel (Ed.) AFRICACRYPT’09,

LNCS 5580, pp. 272-286, Springer-Verlag, 2009.

Proceedings of the Eleventh Australasian Information Security Conference (AISC 2013), Adelaide, Australia

23

Okamoto, T. (1993): Provably secure and practical

identification schemes and corresponding signature

schemes. In: Brickell, E.F. (ed.) CRYPTO 1992.

LNCS, vol. 740, pp. 31–53. Springer, Heidelberg.

Pointcheval, D. and Stern, J. (2000): Security arguments

for digital signatures and blind signatures, Journal of

Cryptology 13(3), pp. 361–396.

Rajabzadeh Asaar, M., Salmasizadeh, M. (2012): A Non-

delegatable Identity-based Designated Verifier

Signature Scheme without Bilinear Pairings. IACR

Cryptology ePrint Archive (IACR) 2012:332

Sakai, R., Ohgishi, K. and Kasahara, M. (2000):

Cryptosystems based on pairing. In: The 2000

Symposium on Cryptography and Information

Security, Oiso, Japan.

Shamir, A. (1985): Identity-based cryptosystems and

signature schemes. In: Blakely, G.R., Chaum, D.

(eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53.

Springer, Heidelberg.

Schnorr, C. P. (1991): Effcient signature generation by

smart cards. Journal of Cryptology 4(3), pp. 161–174.

Wang, B. and Song, Z. (2009): A non-interactive deniable

authentication scheme based on designated verifier

proofs. Inf. Sci. 179(6), pp. 858–865.

Zhang, J. and Mao, J. (2008): A novel id-based

designated verifier signature scheme, International

Journal of Information Sciences, vol.178(3), pp.766-

773.

Zheng, Y. (1997): Digital signcryption or how to achieve

Cost (Signature & Encryption) << Cost (Signature) +

Cost (Encryption), Advances in Cryptology–

CRYPTO'97, vol. 1294 of Lecture Notes in Computer

Science, pp.165-179, Springer-Verlag.

Zhu, R., Yang G. and Wong, D. S. (2007): An Efficient

Identity-Based Key Exchange Protocol with KGS

Forward Secrecy for Low-Power Devices, Theoretical

Computer Science, 378(2), pp. 198-207.

Appendix A Some Constructions for

GQ-Like Homomorphism

A function for *, - +, in the case of a GQ-like

homomorphism, can be achieved as follows:

- The entity in charge of the key distribution (KD)

chooses a secret
 with order (). In order

to set

←

 in his transactions, KD randomly

selects

←

 instead, and sets .

- At the end of the key generation procedure for the

party , KD sends to the pair of (

) as his secret key
1
.

- In order to compute their common key, and can

each do as follows:

1 Note that obtaining from means computing the -

roots which is believed to be infeasible.

 *, - + , -
 , -

 *, - +

(23)

The secrecy of is required if the one-wayness is

going to be independent of the discrete logarithm

assumption.

It should be noted that the above construction needs more

analysis and evaluation.

CRPIT Volume 138 - Information Security 2013

24

