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Abstract Strong designated verifier signature (SDVS) is 

characterized by two properties; namely the non-

transferability and the privacy of the signer’s identity 

(PSI). Non-transferability prevents anyone else other than 

the designated verifier to verify the signature, while PSI 

prevents a third party to distinguish between two different 

signers. In this paper, we propose a non-delegatable 

SDVS which uses a trusted third party for the key 

generation. Our signature scheme does not use bilinear 

pairings which makes it suitable for the resource 

constraint applications. Using one-way homomorphic 

functions, our scheme is presented at an abstract level, the 

unification of which was noticed by Maurer in the context 

of zero knowledge proofs of knowledge in Africacrypt 

2009. The security of the proposed scheme is proved in 

the random oracle model, provided that the 

homomorphism one-wayness and the gap Diffie-Hellman 

assumptions hold. When a Schnorr-like homomorphism is 

used to construct our scheme, six exponentiations are 

needed in the signing step and seven for the verification 

step. This means a meaningful gap between the 

performance of our scheme and that of its predecessors 

which use pairings in their signing and/or verification 

steps.  
. 

Keywords strong designated verifier signature, trusted 

third party, non-delegatability, random oracle model 

1 Introduction 

The notion of designated verifier proofs (DVP) which 

was introduced by Jakobson, Sako, and Impagliazzo 

(1996), allows the prover to designate a verifier as the 

only one by whom the proof can be verified. In other 

words, the conviction of the designated verifier is non-

transferable to anyone else. As for many signature 

schemes which are non-interactive versions of some zero 

knowledge proofs, the designated verifier signatures 

(DVS) are the non-interactive versions of DVP. Applica-

tions of DVS include but are not limited to undeniable 
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signature (Huang, Mu, Susilo, and Wu 2007) and denia-

ble authentication (Wang, and Song 2009). 

In addition to the non-transferability which is the 

property of DVS, one can think of another property which 

states that no third party can distinguish between different 

signers by looking at the signature. The concept of such a  

DVS for which a third party cannot tell if a designated 

signature for Bob is from Alice or from some other 

signer, was first noticed by Jakobson, Sako, and 

Impagliazzo (1996) and the scheme is called strong 

designated verifier signature (SDVS). Later on, SDVS 

was formalized by Laguillaumie, and Vergnaud (2004) 

where the property of privacy of signer’s identity (PSI) 

was defined. 

A DVS is either delegatable or non-delegatable. In a 

delegatable DVS the signer can delegate her signing 

capability to a third party without revealing her secret 

key. Non-delegatable DVS, on the other hand, prevents 

the signer from such a delegation. Formally, as was intro-

duced by Lipmaa, Wang, and Bao (2005), the non-

delegatability of a DVS necessitates the knowledge of the 

secret key of either Alice or Bob in order to generate a 

valid signature on behalf of Alice for the designated 

verifier Bob. 

Huang, Yang, Wong, and Susilo (2011a) propose two 

different SDVS schemes: a delegatable SDVS, provably 

secure in the standard model; and a non-delegatable 

SDVS provably secure in the random oracle model. 

Shamir introduced the concept of identity-based 

signature (IBS) by suggesting to use the identity of the 

signer as the verification key (Shamir 1985). There are 

several IBS schemes based on factoring and RSA (e.g. 

Shamir 1985, Fiat, and Shamir 1987, Guillou, and 

Quisquater 1990, and Okamoto 1993) and many IBS 

schemes based on pairings (e.g. Sakai, Ohgishi, and 

Kasahara 2000, Hess 2003, Cha, and Cheon 2002). A 

framework for deriving security proofs for IBS and iden-

tification schemes has been provided by Bellare, 

Namprempe, and Neven 2004. Galindo and Garcia (2009) 

propose a provable secure IBS by using sequentially 

delegating Schnorr signatures (Schnorr 1991) and they 

claim their scheme is among the most efficient provably 

secure IBS schemes to that date. 

There are some studies which propose DVS schemes 

in the identity based setting with the title of IB(S)DVS. 

However, most of these IB(S)DVS schemes use pairings 

in their signature generation and verification (Huang, 

Susilo, Mu, and Zhang 2008, Huang, Susilo, and Wong 

2009, Huang, Yang, Wong, and Susilo 2011b, Kang, 

Boyd, and Dawson 2009) while the others use pairing 

only for their verification (Cao, and Cao 2009, Zhang, 
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and Mao 2008). As the computation cost of pairings is 

approximately 20 times higher than that of exponentiation 

at the same security level (ECRYPT 2006), the 

significance of our scheme whose construction does not 

require pairings is evident. In case of the signature size, 

IBSDVS schemes which do not support non-

delegatability (Huang, Susilo, Mu, and Zhang 2008, 

Kang, Boyd, and Dawson 2009, Zhang, and Mao 2008) 

have a smaller size (one, two and three elements, 

respectively) compared to the ones which are non-

delegatable. The scheme proposed by Huang, Susilo, and 

Wong (2009) which is an IBDVS with non-delegatability 

has five output elements (the same as ours), but uses three 

pairings for signing and four pairings for verification and 

does not support PSI. Huang, Yang, Wong, and Susilo 

(2011b) propose an IBSDVS scheme with non-

delegatability which has seven output elements (more 

than ours), uses three pairings for signing and five 

pairings for verification. 

Our scheme shares similarity with the IBDVS scheme 

proposed by Rajabzadeh Asaar, Salmasizadeh (2012), but 

their scheme is not a strong DVS; i.e. does not support 

the PSI property. There are also some identity based 

schemes in the multi-DVS setting such as the schemes in 

Chow (2008) and Chow (2006). For instance, Chow 

(2008) proposes two generic constructions of MDVS, one 

of which enables many ID-based ring signature schemes 

to support anonymous subset. 

In this paper, we propose a non-delegatable SDVS 

using a trusted third party without pairings and prove its 

security in the random oracle model. Our proposed 

scheme can be instantiated for any one-way group 

homomorphic where GDH assumption is believed to be 

true. It has five output elements and it uses six 

exponentiations for signing and seven exponentiations for 

verification. As a price for not using the costly bilinear 

pairings, our scheme is not a pure identity based scheme. 

However, it shares some features with the IB schemes 

and uses a trusted third party for delivering the keys to 

the signer and verifier. 

The next section contains some preliminaries, defini-

tions, notations and assumptions which are used through 

the rest of the paper. Section 3 is the main part of the 

paper which is devoted to an abstract scheme for a light-

weight IBS, a modified version of a non-delegatable 

SDVS and our proposed scheme. Furthermore, the 

security analysis of scheme is presented in this section. 

Finally, the concluding remarks and future work are 

appeared in section 4. 

2 Preliminaries and Notations 

This section contains the notations, definitions and 

assumptions which are used in the rest of the paper. 

Furthermore, the abstract model of (Maurer 2009), which 

is exploited in the construction of our scheme, is 

reviewed in this section.  

2.1 An Abstract Model 

As was noted by Maurer (2009), many protocols for the 

zero knowledge proof of knowledge (ZKPK) can be 

unified as proofs of knowledge of a preimage of a group 

homomorphism. Since a considerable number of 

signatures in the literature use a (non-interactive) ZKPK, 

the abstract model of (Maurer 2009) can be exploited in 

the context of signature schemes as well. Here we briefly 

explain this abstract model. 

Consider two groups (   ) and (   ) and a 

homomorphism       as follows: 

        (   )   ( )   ( ) (1) 

As in (Maurer 2009), we write , - instead of  ( ) for 

simplicity and we will consider the case where   is 

(believed to be) a one-way function, such that it is 

infeasible to compute  
 
←  from , -. Furthermore, we 

use the following notations: 

      (   )         (       ) (2) 
 

                       (       ) (3) 

Two of the most popular instantiations of this model 

are as follows: 

1) For a prime  , assume      is an additive group 

and   is a multiplicative group of order   and 

generator  . In this setting, a homomorphism can be 

defined as follows: 

 

      , -     (4) 

 

In this case, the homomorphism one-wayness 

assumption is equivalent to the discrete logarithm 

assumption. This homomorphism is exploited in the 

Schnorr protocol (Schnorr 1991) and in the ElGamal 

cryptosystem (ElGamal 1984). In the rest of this 

paper, we refer to this homomorphism by Schnorr-

like homomorphism. 

2) For large primes   and  , assume      and 

(   )  (  
    )  (   ). For a given prime 

exponent   (with    (   ( ))   ), a 

homomorphism can be defined as follows: 

 

     
  , -     (5) 

 

In this case, the homomorphism one-wayness 

assumption is equivalent to compute  -   roots 

modulo   without knowing the factor of  , which 

means breaking the RSA cryptosystem. This 

homomorphism is exploited in the Guillou-

Quisquater (GQ) protocol (Guillou, and Quisquater 

1988). In the rest of this paper, we refer to this 

homomorphism by GQ-like homomorphism. 

2.2 Notations 

Throughout this paper,   is the signer and   is the 

verifier. The secret keys of   and   are represented by    

and    respectively. It is assumed that a common key is 

shared between   and   through a Diffie-Hellman-like 

protocol (Diffie, and Hellman 1976). It means that the 

common key should be feasibly computable from either 

one of these two pairs: (,  -    ) or (,  -    ), but not 
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from (,  -  ,  -). In what follows, the common key 

shared between   and   with the above property is shown 

by: 

  *,  -    +    *,  -    + (6) 

 

In the case of a Schnorr-like homomorphism, the 

description of   *,  -    + is straight forward: 

 

  *,  -    +        ,    -    *,  -    + (7) 

 

However, in the case of a GQ-like homomorphism, 

one cannot simply consider   *,  -    +  ,    -  
(    )

 , since ,    -  ,  -  ,  -. In this case, it 

requires some more thought to propose a suitable function 

for   *,  -    +. A trivial solution is proposed in the 

appendix A. 

We use the notations    , -*    + and     *   , -+ 

for public key encryption and decryption with the 

public/private key pair (  , -) and the randomizer  . 

These functions are defined as follows
1
: 

 

   , -*    +      *, -   + (8) 

    *   , -+    (  *, -   +)   (9) 

2.3 Definitions 

In what follows, a formal definition for the unforgeability 

of a SDVS scheme, non-transferability, non-

delegatability and PSI is given. Further discussions and 

remarks on these definitions can be found in (Huang, 

Yang, Wong, and Susilo 2011a). 

 

Definition 1. (Unforgeability) An IBSDVS scheme is 

(                      )-unforgeable if no adversary   

which runs in time at most  ; issues at most      queries 

to       issues at most       queries to      ; and issues 

at most       queries to      can win the following game 

with probability at least  . 

This is the game which is considered to be played 

between the challenger   and a probabilistic polynomial 

time (PPT) adversary  : 

i.   runs the     algorithm to generate a master key 

pair (       ), and gives     to  . 

ii.   issues queries to the following oracles: 

     : This oracle returns the user’s secret key 

(, -   ) ←    (           ) on a given   . 

      : Given a query of the form of 

(               ), this oracle signs the 

message   as  ←     (                ), 

and returns it to  . 

     : Given a query of the form of 

(               ) this oracle simulates the 

      in order to output the corresponding 

signature. 

iii.   outputs a forgery (      
      

      ) and wins 

                                                           
1 By definition     {   , -*    +  , -}    

the game if the three following conditions hold 

    (      
     

    )   , 

   did not query      on input    
  or    

 , and 

   did not query       and      on input 

(      
      

      ). 

 

Definition 2. (Non-transferability). An IBSDVS is non-

transferable if there exists a PPT simulation algorithm 

    on   ,    ,    , and a message   outputs a simu-

lated signature which is indistinguishable from the real 

signatures generated by the signer on the same message. 

For any PPT distinguisher  , any (      ), (      ), and 

any message  , it holds that 

 

|  ,  ←  (                )  
   -  

 

 
|   ( ) 

 

where   ←     (                ),   ←

   (                ),  
 
←*   + and  ( ) is a 

negligible function in the security parameter  , and the 

probability is taken over the randomness used in      

and    , and the random coins consumed by  . If the 

probability is equal to    , the IBSDVS scheme is 

perfectly non- transferable. 

 

Definition 3. (Non-delegatability). It is assumed that 

  ,   - be the knowledge error. An IBSDVS scheme is 

(   )-non-delegatable if there is a black box knowledge 

extractor which produces either the secret key of the 

signer or the secret key of the designated verifier with 

oracle access to the forger  . If   generates a valid 

signature with probability   on a message   for every  
(       ) ←    (  ), every     and    , every 
(,  -    ) ←    (            ), (,  -    ) ←
   (            ), then, the extractor can extract either 

   or    in expected time  (   )   with the help of the 

forger  , where     without considering the required 

time to make oracle queries. 

 

Definition 4. (Privacy of Signer’s Identity) An IBSDVS 

scheme is (                            )-PSI-secure if no 

adversary   which runs in time at most  , issues at most 

      queries to      ,      queries to      and      

queries to     , can win the game bellow with probability 

that deviates from     by more than  . 

The game is played between the challenger   and a 

distinguisher   as follows: 

i.   runs     to generate a master key pair 

(       ), and gives     to  . Then   calls 

     for generating the key pairs ([   
]     

), 

([   ]     ) and (,  -    ) for   ,    and   with 

identities     
,     

  and    , and invokes   on 

input ([   ] [   ] ,  -). 

ii.   issues queries adaptively as in the unforgeability 

game, except that now all the oracles take an 

additional input   *   + indicating which signer 

responds to the query. That is, the oracles generate 
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and verify signatures with respect to [   
] and 

,  -. 

iii.   submits a message   .   tosses a coin   

*   +, computes the challenge signature   ←

    (   
      

              ) and returns    to 

 . 

iv.   continues to issue queries as in Step (ii). Finally 

it outputs a bit    and wins the game if: 

     ; and 

 it did not query      on input (       ) 

for any   *   +. 

2.4 Assumptions 

The security proofs in this paper use the following 

assumptions: 

Assumption 1 (one-wayness)- The one-wayness 

assumption holds for a group homomorphism if for all 

PPT Algorithms  , the following probability: 

  (        ←  (, -)  ,  -  , -) (10) 

is a negligible function of the security parameter. In other 

words, it is hard to compute the preimage of a one-way 

homomorphism. In the case of the Schnorr-like homo-

morphism, this assumption is analogous to the DL 

assumption. 

Assumption 2 (Diffie-Hellman)- The DH assumption 

holds for a function   *, -  + defined on a group 

homomorphism, if for all PPT algorithms   the 

following probability: 

  (         *, -  + ←  (, - , -)) (11) 

is a negligible function of the security parameter. 

Assumption 3 (Gap Diffie-Hellman)- The GDH 

assumption holds for a function   *, -  + defined on a 

group homomorphism, if for all PPT algorithms   

having oracle access to     which on the inputs , -, 
, - and  , correctly decides whether or not   
  *, -  +, the following probability: 

  .          *, -  +

←     ( )(, - , -)/ 

(12) 

is a negligible function of the security parameter. 

3 Non-Delegatable SDVS without Pairings 

In this section we present a model for a non-delegatable 

SDVS using trusted third party. The scheme is composed 

of a lightweight IBS and an efficient non-delegatable 

SDVS. These two building blocks are described in the 

next subsections. In the sequel of this section, the 

construction of our proposed scheme, together with its 

security proof in the random oracle model, will be 

presented. 

3.1 Lightweight IBS 

The identity based signature (IBS) scheme presented in 

(Galindo, and Garcia 2009) enjoys the property of not 

using pairings. Founding the signature only on the 

modular exponentiations and avoiding the high-cost time-

taking pairing computations, Galindo and Garcia were 

able to propose a lightweight ID-based signature scheme 

in which two schnorr-like signatures are concatenated: 

one for the PKG (private key generator) to sign the 

identity of the signer and one for the signer to sign the 

message (Galindo, and Garcia 2009). 

In fact, their novel idea is not limited to the schnorr-

like signatures. With the help of Maurer’s unified zero 

knowledge proof of knowledge  together with the Fiat-

Shamir heuristic (Fiat and Shamir 1987), the 

aforementioned Schnorr-like signature can be generalized 

to an abstract model for lightweight IBS. 

Another efficient IBS scheme that is based on the 

elliptic curve discrete log problem and does not use 

bilinear pairings is suggested by Zhu, Yang, and Wong 

(2007). Nevertheless, these two IBS schemes are quite 

similar in the abstraction level we reviewed in section 

2.1. The only difference between the two foregoing IBS 

schemes lies in the structure of the user’s secret key 

where the scheme of Galindo, and Garcia (2009) releases 

the image of the random value selected in the key 

generation phase, while the hash output is released in the 

Zhu, Yang, and Wong (2007) scheme. 

Figure 1 depicts this abstract model upon which we will 

set up our lightweight ID-based SDVS with non-

delegatability. Although ,  - is included in the secret key 

of  , it is not really secret. Being included in the 

signature, ,  - is a commitment to ensure a verifier that 

the signature comes from     whose identity is signed by 

the PKG. A concrete construction of this scheme can be 

obtained by using a Schnorr-like homomorphism which is 
,  -     ,         and       . 

 

 

Figure 1 Abstract model for lightweight IBS 
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Note that the signature   in figure 1 contains some extra 

terms which are represented by    and have a 

contribution in generating the challenge   . This extra 

information can help adding some extra properties such 

as non-transferability, non-delegatability and privacy of 

the signer’s identity to the signature scheme. This is 

further discussed in the following section. 

3.2 Non-Delegatable SDVS 

In order to construct a signature scheme which is strong 

designated verifier, non-transferable, non-delegatable and 

has PSI, Huang, Yang, Wong, and Susilo (2011a) 

suggested the following ideas: 

I1- Perfect non-transferability:   and   should be able 

to produce the same signature on any message. 

This can be achieved through producing a 

composition of: 1) a zero knowledge proof of 

one’s secret key; and 2) a simulation of a zero 

knowledge proof of the other’s secret key. These 

two ZKPs should constitute a hierarchical order 

such that producing a valid simulation of a ZKP of 

both of the secret keys at the same time has a 

negligible probability. 

I2- Privacy of signature’s identity: the common key 

shared between   and   can be included into the 

message to be signed, so that no one can 

distinguish the signature without knowing this 

shared key. 

I3- Non-delegatability: for   not to be able to delegate 

his signing capability, the signature contains a 

(non-interactive) ZKP of signer’s secret key. 

Moreover, to prevent   from delegating his 

capability, each signature contains a fresh (non-

interactive) challenge which can only be (non-

interactively) responded by the knowledge of the 

verifier’s secret key.  

The above ideas were successfully combined in 

(Huang, Yang, Wong, and Susilo 2011a) and a SDVS 

scheme with non-delegatability was proposed which does 

not use pairings and is secure in the random oracle model. 

The signing and verifying is carried out via four and five 

modular exponentiations
1
, respectively, and the signature 

consists of five elements in    (Huang, Yang, Wong, and 

Susilo 2011a). Here we propose a marginal improvement 

to this signature. Relegated the role of one element from 

the signature to another and with the same number of 

modular exponentiations for signing and verifying, our 

modified signature consists of four elements (instead of 

five). This is further discussed in the next section. 

3.3 Construction of the Scheme 

Through the rest of this paper, it is assumed that the 

output of hash functions are from    for some prime 

number  . Wherever the output of a hash function is 

treated as the input/output of the homomorphism 

                                                           
1 The computation of        is omitted since it can be computed 

once and stored for the rest of transactions. 

(elements from   or  ), it is implicitly assumed that a 

suitable mapping        or         is used. 

Here is the description of our signature scheme: 

- Key Generation: According to the security parameter 

 , the key generation function generates a master 

secret key    and its corresponding master public key 

    ,  -. 

- Key Extraction: Taking as input the master secret key 

  , the master public key     and the identity of the 

signer     (verifier    ), the key extraction function 

outputs a commitment ,  - (respectively ,  -) and a 

challenge response       (     ) (respectively 

      (     )). 

- Signing: To sign a message   for a designated 

verifier    , the signer     uses her secret key    and 

the master public key     and performs as follows: 

first, to simulate a ZKPK of the verifier’s secret key 

(cf. I1 in section 3.2),   chooses a random challenge 

  , a random challenge response       (     ) 

and computes the corresponding simulated 

commitment ,  -  ,  -  ,  -
  . Next, in order to 

present a ZKPK of her owns secret key, she commits 

to a random   , computes her challenge    
  (            )    , and produces the challenge 

response       (     ). Finally,   outputs the 

signature which contains: PKG’s commitment on her 

identity ,  -, her commitment ,  - and challenge 

response   , the simulated challenge response    and 

an encryption of    with the verifier’s public key. 

- Verification: To verify a signature   on a message   

from a signer    , the verifier     uses his secret key 

   and the master public key     and performs as 

follows: first,   decrypts    using his secret key 

together with    to obtain   . Next, from   ,    and    

he computes    to obtain the required inputs for the 

hash function, evaluate it and consequently obtain   . 

Finally, he simultaneously checks the validity of the 

signer’s challenge response with respect to her 

commitment and the validity of the PKG’s signature 

on the identity of the signer. 

The scheme is depicted in figure 2. As was discussed 

in section 3.1, ,  - and ,  - are publicly known. If this is 

not the case a priori,   can ask either PKG or   for ,  -. 
Since ,  - contains no secret information, its release 

causes no harm. A concrete construction can be obtained 

for this model by using a Schnorr-like homomorphism; 

i.e. letting        , ,  -     ,       ,        
(   )   ,   *,  -    +         and so on. 

As was mentioned in the previous section, our 

modification to the SDVS2 in (Huang, Yang, Wong, and 

Susilo 2011a) makes its output length shorter, without 

increasing the computational complexity. To be concise, 

our modification to the Huang et al.’s SDVS2 is twofold: 

1) To prevent the verifier from delegating his 

capability in (Huang, Yang, Wong, and Susilo 

2011a), for some  
 
←   ,    

       is included 
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Figure 2 Non-Delegatable SDVS using trusted third party 

 

in the input of the hash function, while the signature 

contains   . Therefore, only with the knowledge of 

   one can obtain the output of the hash function 

and verify the signature. In the modified scheme, 

however, this role is played by    which, together 

with the   , constitute an ElGamal encryption of    

using the public key of  . As a consequence,    is 

removed from the signature and the signature size is 

reduced from five elements to four elements. This 

idea in which an element is saved by sharing the 

random element      ,  - between the ElGamal 

encryption    and the Schnorr signature component 

was used previously in Zheng's signcryption scheme 

(Zheng 1997). 

2) The signature in (Huang, Yang, Wong, and Susilo 

2011a) contains both the    and    and the 

verification is carried out by checking the equality 

of       to the output of the hash function. 

Verifying the signature in the modified scheme is 

somehow different. With the    included in the 

signature, the verification is carried out much like 

the ZKPs. This introduces two extra exponentiations 

to the verification which, together with an 

exponentiation for decrypting   , results in three 

more exponentiations compared to the verification 

of the original scheme. However, the original 

scheme requires two exponentiations for evaluating 

   and one for     . Since these three computations 

are omitted in the modified scheme, the efficiency 

of the verification remains the same to the original 

one. 

Remark. The term      plays no role in the security 

proofs of Huang et al.’s SDVS2. Similarly, our scheme 

which replaces      with         
*     +, does not 

depend on its security. The question is: ―why this element 

which is supposed to prevent   from delegating her 

ability, does not appear in the security proof of non-

delegatability (Theorem 3 in this paper and Theorem 6 in 

(Huang, Yang, Wong, and Susilo 2011a))?‖ This is 

because: 

- Simulating a valid signature by  , requires not only 

the shared key (    *,  -    +), but also the 

private key of   (in order to compute the       

(  
    )). Therefore, if someone other than   

generates a valid signature, showing that she knew 

   does not require the decryption of   ; i.e. anyone 

who can compute    must have known    (and the 

knowledge of   alone does not suffice). In this case, 

as appears in the security proofs, inclusion of    

instead of    in the signature has no impact in the 

security. 

- Verifying a signature, on the other hand, can 

perfectly be accomplished using the knowledge of   

alone, if    is known. Therefore, an encryption of    

(which is   ) is included in the signature. From this 

point of view, the role of      in the SDVS2 of 

(Huang, Yang, Wong, and Susilo 2011a) and 

        
*     + in our scheme is exactly the 

same; i.e. they both prevent a third party to verify 

the signature without knowing   . 

3.4 Security Analysis 

The security of our scheme follows immediately from the 

security of its two components: the lightweight IBS 

(section 3.1) and the modified non-delegatable SDVS 

(section 3.2). However, for the sake of concreteness, we 

provide the security proofs of our model for the signature 

scheme. Our scheme is proved to have the desired 

properties in the random oracle model, provided that the 

one-wayness and the GDH assumptions hold. 

Our scheme uses two hash functions    and    which 

are modeled as random oracles during the security proofs. 

As usual, these random oracles are simulated by keeping 

two separate lists    and    containing the queried values 

together with their corresponding answers. There are four 

other oracles involved in the security proofs of our 

scheme, as follows: 
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 Key Extraction Oracle (    ) which takes in an 

identity    and gives out    (           ). 

 Signing Oracle (    ) which  takes in the three-

tuple (         ) and generates 

      (                    ) 

 Simulation Oracle (    ) which simulates the     , 

using    instead of   . 

 Verification Oracle (    ) which on the input of 
(              ), determines whether or not   is a 

valid SDVS of   from     to    . 

Since the scheme is perfectly non-transferable (Theorem 

2), the queries to      need not be dealt with. The 

following four theorems formally prove the security of 

the signature scheme of figure 2 in the random oracle 

model. In what follows the scheme described in figure 2 

is called IBSDVS and the homomorphic function which 

is used in the scheme is represented by  .  

Theorem 1 (Unforgeability) – If one-wayness 

assumption (       ) –holds for  , IBSDVS is 

(             ) –strongly unforgeable in the random 

oracle model, where         and either     
   

   
(     

 ⁄     ⁄ ) (unforgeability of the signing part) 

or        (   
 (    )

 ⁄     ⁄ ) (unforgeability of 

the key extraction part), where   is the security 

parameter. 

Proof As for all the IBS schemes, the unforgeability of 

our signature scheme is twofold: (I) the unforgeability of 

the Signing part; and (II) the unforgeability of the Key 

Extraction part. Assume   forges a valid signature 

(     ) on behalf of     with probability at most    , in 

time at most    , making   ,    queries to    and   . 

Based on the     two cases are distinguishable: 

1)   forged a valid signature on behalf of     after 

querying      for at least one signature with     

either as the signer or the verifier. In this case, the 

signing part is forged. 

2) Querying no signatures from/to     from     ,   

was successful at forging a valid signature on her 

behalf. This is the case where the key extraction part 

is forged. 

To each case we will associate an adversary who, using   

as a subroutine, can contradict the one-wayness 

assumption. 

Case 1: In this case we will build    who finds a 

preimage of   with probability at least    
 . With      

being forged by  ,    tries to extract the secret key of 

   . Note that in this case the signature from/to     on 

some message   is queried by  , which means     is 

queried from    at least once. Let    represent the index 

of  ’s call to the random oracle    with the target 

identity    . Given a one-way homomorphism       

(represented by , -) and an image   , - for some 

unknown preimage    ,    flips a fair coin to decide 

whether     is the identity of the forged signer, or the 

verifier. Here we assume the case where     corresponds 

to the forged signer. The simulation in the other case can 

be done similarly.    picks  
 
←    

, having a chance of 

   ⁄  at correctly guessing the target identity (i.e.     ), 
and simulates the environment of   as follows: 

Master Key Generation    chooses   

 
← , sets 

    ,  -, and uses (      ) as the master key pair 

for the      queries. 

Hash Queries Given a query to    or   , if there is a 

tuple in    or    with the same input,    returns the 

corresponding answer; otherwise, it selects a fresh 

 
 
←  , stores the new tuple in the appropriate list and 

returns  . 

     Queries Every time   queries      for user   ,    

chooses  
 
←     

 
← , sets   ,  -     

   and adds 

((    )  ) to the   . Then it returns (    ) to    

     Queries On input a message  , when the signer’s 

identity differs from    ,    simply computes the private 

key of   and  as described in the      Queries and 

returns the output of the signing algorithm to  . When 

    is the signer’s identity,    chooses   
 
←  , sets 

        
   

, adds ((      )  
 ) to the   , and 

computes the private key of  as described in the      

Queries. It chooses      
 
←  and     

 
←  , computes 

   ,  -,    ,  -      ,        ,       
(     ) and adds ((                  *    +)  ) to 

the   . Then from    and    ,  -, it computes    
     

*     + and returns   (              ) to  . 

Finally,   outputs its forgery (     ) on behalf of     to 

   . If    (  
    

    
    

    
 ) is not valid,    aborts. 

Otherwise,    computes   
       

*  
     

 + and 

  
  ,  -  ,  -

   
 
. Let    be the corresponding answer 

to the query (         
    

    
    *    +) which is 

stored in the   .    computes   
       

  and rewinds 

  to the status where it queried    for 
(         

    
    

    *    +) and this time feeds   

with  ̅    . The subsequent queries are answered as 

above. At this stage, we assume   outputs (    ̅ ) 

which is another valid forgery on the same message. 

From the new signature  ̅  (  
    

   ̅ 
    ̅

    ̅
 ),    

computes   ̅
       

* ̅ 
     

 + and   ̅
   ̅    ̅

 . If 

  ̅
    

 ,    aborts. Otherwise, it outputs the preimage of 

  as follows: 

,  
 -      

 
   

  ,  ̅
 -      ̅

 
     ,  

    ̅
 -

 , -  
    ̅

 
 ,(  

    ̅
 )   - 

  (  
    ̅

 ) (  
    ̅

 )⁄  (13) 

Probability Analysis    has to make two guesses before 

using the forgeries of   for computing the preimage of  . 

First it guesses the     was queried at the  th call to the 

   with a probability of     . Secondly, it guesses with a 

    probability that     belongs to the signer or the 

verifier of the forged signature. Conditioned on these two 

guesses, by an analysis similar to that in (Galindo, and 

Garcia 2009), the success probability of    can be 
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obtained by the Forking Lemma (Pointcheval, and Stern 

2000) to be greater than: 

   (
   

  
 

 
 

  
) (14) 

where   is the security parameter. Therefore, we have 

that: 

   
  

   

   

(
   

  
 

 
 

  
) (15) 

Case 2: In this case we will build    who finds a 

preimage of   with probability at least    
  . As was 

mentioned earlier, in this case the      is forged by  . 

Consequently,    exploits this forgery to extract   from 
, -. Given a one-way homomorphism       

(represented by , -) and an image   , - for some 

unknown preimage    ,    sets       and tries to 

obtain      by simulating the environment of   as 

follows: 

   acts just the same as    did in Case 1 until it obtains 

two valid forgeries (     ) and (    ̅ ) on behalf of 

    to     whose identities were never queried from    

by  . However, the following relation should be satisfied: 

 

,  -    
                  

   (      
 ) 

(16) 

   repeats the above process to obtain two more valid 

forgeries (     ) and (    ̅ ) on behalf of     to    ; 

but this time it defines   
    (      

 ) with   
    . 

Ultimately,    is left with the following two equations: 

 

{
 
 

 
             ,  

 -    
   

 

   
  ,  ̅

 -    
   ̅

 

  

      (  
    ̅

 ) (  
    ̅

 )⁄

   ,  
 -  (  

 )   
 
   

  ,  ̅
 -  (  

 )   ̅
 
  

     
  (  

    ̅
 ) (  

    ̅
 )⁄

 (17) 

 

and from the    and   
 , the unknown preimage   is 

obtained as follows (note that   
  remains unchanged in 

all of the four forged signatures): 

 

     
  (    )  (  

   )       
 (     

 ) (     
 )⁄  

(18) 

 

Probability Analysis In this case, no guesses are made 

by    and by an analysis similar to that of (Galindo, and 

Garcia 2009), using the Multiple-Forking Lemma 

[BPW03, BN06] the success probability of    at finding 

a preimage of   is obtained as follows: 

 

   
      (

   
 

(    )
 
 

 

  
) (19) 

 

This completes the proof.       ■ 

Theorem 2 (Non-Transferability) – IBSDVS is 

perfectly non-transferable. 

Proof The subsequent steps can easily be followed by   

in order to simulate the signature of   on  : 

1. Compute:      (    ,  -)    ,  -  

   
    ,  - 

2. Choose:        
 
←   and   

 
←   

3. Compute:    ,  -     ,  -    
    

4. Compute: 

     (                       *      +)     

5. Using the knowledge of (      ,  -), compute: 

        
*      + 

6. Compute:       (  
    ) 

7. Output:   (,  -            ) 

It can be easily verified that the distribution of the ZKPK 

by   in the above steps is identical to the distribution of 

the ZKPK by  .          ■ 

Theorem 3 (Non-Delegatability) – IBSDVS is non-

delegatable with knowledge error     in the random 

oracle model. 

Proof Let   be the forger to whom the machine   has 

oracle access in order to produce either    or   . Let    

be   with   as input, who forges a valid signature (   ) 

with   (,  -            ) on behalf of     to    , 

with probability   after at most    queries from the    

oracle.   executes    to the point where it outputs its 

forgery on  . Then it rewinds    to the status of asking 

the    oracle for (                       *      +), 

replaces its answer   with a different value   ,̅ and 

continues the execution of    until it outputs another 

signature  ̅  (,  -     ̅    ̅   ̅) on  . Since (      ) 

are in the hash input, they remain the same in both runs. 

Furthermore, due to the following discussions, one of the 

pairs of (     ) or (     ) must remain unchanged: As 

was mentioned during I1 in section 3.2, it is impossible to 

generate a valid signature by selecting both    and    

after obtaining     (         ); the construction of 

the scheme is such that the chronological order for 

computing the three parameters (       ) is forced to be 

either (       ) or (       ). Here, as one of    or    was 

selected prior querying   , changing the answer of    

oracle only affects one of    or   . Therefore, either: 

     ̅     ̅       ̅ (20) 

or 

     ̅     ̅       ̅ (21) 

In the first case,   computes    (     ̅) (   )̅⁄ ; 

while the second case leads to    (     ̅) (   )̅⁄ . 

Note that the extractor   does not know the value of 

  *      + and it guesses in which hash query the last 

element is the correct value of   *      +. This imposes 

a factor of      to the extractor’s success probability. By 

a similar analysis to that in (Boneh, Boyen, and Shacham 

2004, and Pointcheval, and Stern 2000),   succeeds at 

extracting either    or    with a probability at least 
    ⁄

    
.    

Theorem 4 (PSI) – if GDH assumption (         )-

holds, IBSDVS is then (   )-PSI-secure in the random 

oracle model, where        and           . 
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Proof Let   be an adversary who can break the privacy 

of signer’s identity with probability 
 

 
   in time at most 

 . We build an algorithm   which uses   as a subroutine 

to solve the GDH problem. The idea is that   cannot 

distinguish between the signatures of    and    unless it 

had queried (or otherwise correctly guessed the output of) 

the random oracle    for   {      } or   {      }.   

monitors  ’s calls to    for the aforementioned query 

and succeeds in solving the GDH problem as soon as   

makes such a query. 

Assume   is given    ,  -,    ,  -,   , - and a 

DDH oracle and it wants to compute either   *    + or 

  *    +.   is successful if it outputs (   ) where 

    *    +. To do so, it sets       ,        

and      for   ,    and   with identities     ,     
  

and    . It also selects   

 
←   and sets     ,  - for 

the master public and private keys. It then selects 

          

 
←  , computes           

    , 

          

     and         
    and adds 

.(        )    /, .(        )    / and ((      )   ) 

to the   .   simulates the environment of   as follows: 

Hash Queries On the input (    
                   ), if 

this was queried before,   returns the corresponding 

answer. Otherwise, using the     oracle, it checks 

whether     {      
}. If this equation holds,   

successfully terminates the run by returning (   ); else it 

selects  
 
←    and appends the new tuple to the   . 

     Queries Given a bit   and a message  ,   chooses 

     

 
← ,      

 
←  and returns (   

            ). 

Note that decrypting a random    only with the 

knowledge of    and    implies breaking the DH 

assumption. Furthermore, in order to obtain   , one 

should know the decryption of    together with  . 

Consequently, checking the distribution of a signature 

without knowing the private key of the signer of verifier 

(to decrypt   ), contradicts the DH assumption. This 

means   cannot distinguish between a real signature and 

the one which   provided. 

     Queries Given a bit  , a message   and an alleged 

signature  , if the signature was generated before,   

returns 1; otherwise, it returns 0. As there is a     

probability that   correctly guesses the answer of    

without querying it and successfully forges a valid 

signature, this behavior of   reduces the success 

probability of   at winning the game by    . 

When it is ready,   submits a challenge message   .   

then selects  
 
← *   + and runs the      as was discussed 

in the      Queries. Then   continues to simulate oracles 

for   and monitor the hash queries as above. Finally, if 

the run has not been terminated until now,   outputs a bit 

   and   aborts. 

Probability Analysis By a discussion like that of 

(Huang, Yang, Wong, and Susilo 2011a), there is at least 

a       probability that   wins the game without 

querying    for either   {      } or   {      },     

being the probability of correctly guessing the output of 

  . Furthermore, as was shown during the security 

analysis, there is a     difference in the simulation of the 

    . Therefore,   can be bounded by: 

     (  
 

 
) (  

 

 
)    

 

 
 (22) 

This completes the proof.        ■ 

3.5 Comparison to Previous Schemes 

A comparison between the efficiency of previous 

IB(S)DVS schemes and our proposal is shown in table 1. 

It should be noted that all of these schemes are provably 

secure in the random oracle model. In this table, the 

dominating computational signing and verification cost as 

well as the signature size are compared in the existing 

IB(S)DVS schemes. The table also contains two 

additional columns ND and PSI, respectively indicating 

whether the scheme supports non-delegatability and 

privacy of signer’s identity. 

4 Conclusions and Future Work 

We proposed a non-delegatable IBSDVS scheme without 

pairings and proved its security in the random oracle 

model. To the best of our knowledge, this is the first non-

delegatable IBSDVS which can be efficiently employed 

in the resource constraint applications since it has smaller 

signature size compared to previous non-delegatable 

IBSDVS and does not suffer the costly computations 

imposed by the use of pairings. 

 

Table 1.  Comparison between our scheme and the previous IB(S)DVS schemes 

Scheme Signing Cost 
Verification 

Cost 
Signature size ND PSI 

Huang, Susilo, Mu, and Zhang (2008)            X √ 
Kang, Boyd, and Dawson (2009)                      X √ 
Zhang, and Mao (2008)          X √ 
Huang, Susilo, and Wong (2009)                         √ X 
Huang, Yang, Wong, and Susilo (2011b)                                √ √ 
Chow (2008)             X X 
Rajabzadeh Asaar, Salmasizadeh (2012)           √ X 
Ours          √ √ 

CRPIT Volume 138 - Information Security 2013

22



 

The proposed scheme can be instantiated for any one-

way group homomorphism where GDH assumption is 

believed to be true. As a consequence, the literature can 

be investigated for one-way homomorphisms with a 

desired property in order to make the scheme more 

efficient or stronger than that which is implemented using 

a Schnorr-like homomorphism. A good example for such 

a case may be the use of lattice-based homomorphic 

functions in order to make the scheme a post-quantum 

signature. 
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Appendix A  Some Constructions for 

GQ-Like Homomorphism 

A function for   *,  -    +, in the case of a GQ-like 

homomorphism, can be achieved as follows: 

- The entity in charge of the key distribution (KD) 

chooses a secret     
  with order  ( ). In order 

to set  
 
←   

  in his transactions, KD randomly 

selects  
 
←   

  instead, and sets           . 

- At the end of the key generation procedure for the 

party  , KD sends to   the pair of (      

         ) as his secret key
1
. 

- In order to compute their common key,   and   can 

each do as follows: 

                                                           
1 Note that obtaining   from    means computing the   -   

roots which is believed to be infeasible. 

 

  *,  -    +  ,  -
          ,  -

  

   *,  -    + 

(23) 

 

The secrecy of   is required if the one-wayness is 

going to be independent of the discrete logarithm 

assumption. 

It should be noted that the above construction needs more 

analysis and evaluation. 
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