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Abstract

This paper proposes a new approach to shape classi-
�cation that is well suited to the speci�c challenges of
vision-based hand posture recognition in a multi-user
tabletop collaboration scenario. We use a representa-
tion of the 2-D hand silhouette where in-plane rota-
tion and mirror symmetry appear as particular cases
of permutations, and then show how to take advan-
tage of this pattern to develop an e�cient version of
the permutation invariant SVM. Invariance to these
transformations is very important because the users
stand around the table, and a video camera captures
the scene from the top. We also report experimen-
tal results that compare this approach favorably over
common classi�cation approaches, under the stated
requirements.

Keywords: tabletop interaction, vision-based gesture
recognition, support vector machines

1 Introduction

Tabletop displays have been a subject of considerable
interest by the Human Computer Interaction com-
munity over the last �fteen years, as they present a
natural medium for computer-assisted local collabo-
ration between people. Computer Vision could be an
important sensing technology for these systems, once
it gets more stable: many users already have web-
cams which are cheap, easily deployable, and could
be used to capture hand gestures at high frequen-
cies. Also, LCD and Plasma displays are becoming
larger and more economic, and cameras can adapt
seamlessly to capture di�erent screen areas. Table-
top systems present, however, very characteristic re-
quirements to a gesture recognition software: full ro-
tation invariance, because the users are around the ta-
ble, and mirror symmetry invariance, to equally rec-
ognize left and right hand gestures. It should also
be computationally cheap enough to cope with cap-
turing multiple users' gestures simultaneously in real
time and still allow the computer to run its appli-
cations. To understand these requirements consider
the setups of the applications �Room Planner� (Wu

Copyright c©2006, Australian Computer Society, Inc. This pa-
per appeared at HCSNet Workshop on the Use of Vision in
HCI (VisHCI 2006), Canberra, Australia. Conferences in Re-
search and Practice in Information Technology (CRPIT), Vol.
56. R. Goecke, A. Robles-Kelly & T. Caelli, Ed. Reproduction
for academic, not-for pro�t purposes permitted provided this
text is included.

Research described in the paper was �nancially supported by
FCT under grant No. POSC/EEA-SRI/61451/2004. The
�rst author was �nancially supported by FCT PhD grant
SFRH/BD/24295/2005.

& Balakrishnan 2003), and �CollabDraw� (Morris &
Winograd 2006), illustrated in �gure 1. These and
other recent multi-user applications rely on newly
developed multi touch sensitive tables, as Diamond
Touch (Dietz & Leigh 2003), and use video projectors
to provide the image. Although these sensors make a
robust and dependable interface they're not without
limitations, namely they're very expensive and can
only directly capture information about the shape of
the pressing areas of the hand against the table.

The focus of this paper is a mid-level vision prob-
lem: shape classi�cation. We present a simple adap-
tation of a recent machine learning algorithm, the
permutation invariant Support Vector Machine, or pi-
SVM, (Shivaswamy & Jebara 2006), that combined
with a properly coded representation of the silhouette
of the hand, turns out to be an approach well suited to
the speci�c problems of hand posture recognition in
vision-based tabletop interfaces. In particular, it only
distinguishes hand postures which di�er intrinsically
in shape, ignoring what we consider nuisance param-
eters: in-plane rotation and mirror symmetry. The
approach doesn't require manual annotation of land-
marks, although it requires labeled training data. The
general idea of the pi-SVM is to, during training time,
to transform the data in a way that both minimizes
the radius of the hypersphere enclosing the points,
and maximizes the margin between the points of the
di�erent classes, so that the nuisances get optimized
away. Then, at test time, the transformation that
best discriminates a pattern is �rst applied, followed
by classi�cation using a SVM. We show that in the
desired tabletop setup, the nuisance parameters, to
which the classi�cation should be invariant, come up
as restricted kinds of permutations, that can be han-
dled by a less ambitious version of the pi-SVM. One
that is also much more e�cient than the original.

We assume there's some segmentation process that
provides us with a closed contour of the hands. In our
case we have been using skin color detection, which
albeit improper for general situations, in the particu-
lar scenario where we're controlling the image in the
LCD display it's a feasible solution.

The structure of this paper is as follows: we dis-
cuss related work in section 2, then the feature used
is introduced in section 3, and customizations of the
permutation invariant SVM are proposed in Section
4. Experimental results are shown, and discussed in
section 5 and �nally conclusions are presented in sec-
tion 6.

2 Related Work

Most vision-based interfaces over a table have relied
solely on �ngertip tracking. For example, Letessier
& Bérard (2004) matched a circular template to bi-
narized images in order to detect �ngertips indepen-
dently of the orientation of the hand. Baraldi, Bimbo,



(a) Room Planner

(b) CollabDraw

Figure 1: Examples of multi-user tabletop interaction
setups.

Landucci & Valli (2006) used the same method, and
built a simple rule-based classi�er that can discrimi-
nate between three postures, based on the number of
stretched �ngers. Sato, Kobayashi & Koike (2000) use
an infrared camera tuned to the human temperature
to segment the forearm, and then uses the principal
axe of the resulting blob to guide a normalized cor-
relation search for the �ngertips. This simplicity is a
result of pragmatic thinking, as ambitious approaches
from more traditional vision-based gesture recogni-
tion research don't work reliably and fast enough. A
good review of these can be found in work by Derpanis
(2004), which divides existing approaches as model-
based, appearance-based and feature-based.

The types of invariances we seek have been mostly
tackled using feature-based approaches, by pursuing
representations of the features that directly incorpo-
rate them. A popular feature is the boundary of sil-
houettes, which has no internal holes or markings,
making it easily representable in 1-D, parameterized
by arc length. This kind of feature is incorporated in
the MPEG-7 standard, and there's a large pool of so-
lutions developed. There are representations of this
feature that present some kinds of invariances, like
Fourier Descriptors with respect to rotation. A more
�exible feature is the Shape Context (Belongie, Malik
& Puzicha 2002), which can represent a shape with
inner markings, making it possible to use directly the
output of edge extractors. The authors describe a
way to achieve rotation invariance using this feature,
but point out that it relies on contour tangents, which
are highly sensitive to noise. Other �exible approach
is the use of local invariant features that represent
shape key points, as the SIFT feature (Lowe 2004),
which can be directly calculated from the output of a
low level interest point detector. The problem of this
approach, as pointed out by Belongie et al. is that it
sacri�ces the shape information available in smooth
portions of object contour, and that some objects -
e.g. circles - don't even have any key points.

There's also work done on incorporating in-
variances directly into classi�cation algorithms.
Scholkopf & Smola (2002) identify three di�erent ap-
proaches in the context of kernel methods: generat-
ing virtual support vectors, constructing invariance
kernels and jittering support vectors. The �rst con-

sists in generating virtual examples from the support
vectors - informally speaking, the examples that are
most di�cult to classify - and then retraining using
the new data. The virtual examples result from the
application of transformations which we know a pri-
ori that shouldn't change the label of the example -
the invariances. Invariance kernels work by directly
regularizing the hyperplane in a way that trades o�
margin for parallelism to the directions of invariance.
Finally, jittering support vectors works by transform-
ing the example vectors in a way that the euclidean
distances between them in feature space are minimal.

The problem with invariance kernels is that they
can only be applied to smooth transformations. The
virtual examples approach can become slow during
classi�cation time because of the increase in support
vectors, and jittering can generate kernels that aren't
positive de�nite, and so, the algorithms may not con-
verge. A recently proposed method consists in clean-
ing up and reconstructing the data before training the
classi�er. This is the subject of the works by Bi &
Zhang (2004) and Shivaswamy & Jebara (2006), with
the latter resulting in the permutation invariant SVM.
In order to make this paper more self-contained we in-
troduce this algorithm in the next section, following
the original presentation from Shivaswamy & Jebara
(2006), while adding some additional comments from
our analysis.

2.1 Permutation Invariant SVMs

The permutation invariant SVM is a binary classi�ca-
tion algorithm, motivated by an important result in
statistical learning theory (Vapnik 1995), which states
that the expectation of the classi�cation error prob-
ability is bounded by the ratio of the squared radius
of the minimum hypersphere that encloses the data,
to the square of the margin that separates the data
points from both classes. This suggests a strategy to
reduce the in�uence of unknown nuisance parameters
in the data, by transforming the data along the de-
sired invariances, and selecting the transformations
that make the di�erent classes most well separated,
while being enclosed in a hypersphere with small ra-
dius.

In Shivaswamy & Jebara (2006) the targeted in-
variance was general permutation of the feature vec-
tor elements, and to this end the authors proposed
calculating the radius and center of the minimal
hypersphere enclosing the data, the maximal mar-
gin of the optimal separating hyperplane, and then,
for each input sample, setting up a matrix of costs
that indicates how favorable each di�erent permu-
tation is. The best permutation for each sample is
then chosen by solving a Linear Assignment Problem
(Papadimitriou 1982), or LAP, which can be done
e�ciently using the Kuhn-Munkres algorithm, also
known as the Hungarian algorithm. After transform-
ing all samples, the radius and center of the mini-
mal hypersphere and the margin of the new optimal
hyperplane are calculated again, and the rest of the
process is repeated. After a number of iterations, the
classi�er corresponding to the optimal hyperplane of
the transformed data is stored, in order to be used
during test time. The training algorithm is described
in Algorithm 1.

Computing the hyperplanes and hyperspheres can
be done by solving the following optimization prob-
lems, present in most textbooks about kernel methods
(Scholkopf & Smola 2002, Shawe-Taylor & Cristianini
2004). Let w be the vector of parameters of the
hyperplane that separates two classes of data sam-
ples xi, with labels yi, and ξi be slack variables for
accounting noise, or non-separability of the classes.



Then the maximal margin hyperplane can be esti-
mated from the solution of the following quadratically
constrained quadratic program formulation:

min
w,b,ξ

1
2
||w||2 + C

n∑
i=1

ξi (1)

subject to

yiw′xi + b ≥ 1− ξi, ξi ≥ 0 ∀1 ≤ i ≤ n (2)

Similarly, the centroid and radius of the smallest
hypersphere enclosing the data points can be esti-
mated from:

min
c,R,ξ

R2 + C
n∑

i=1

ξi (3)

subject to

||c− xi||2 ≤ R2 + ξi, ξi ≥ 0 ∀1 ≤ i ≤ n (4)

In both cases the parameter C controls how ac-
ceptable it is for the margin and hypersphere radius
to be violated, in order to account for noise. Large C
corresponds to a hard margin and to the hypersphere
containing all points.

For clarity's sake we believe it's useful to discuss
the less obvious step of Algorithm 1: step 3. The idea
is to �nd the permutation matrix that best transforms
the feature vector, both in terms of how close it gets
to the center of the hypersphere and to how far away
it gets from the separating hyperplane. Consider the
�rst term of the sum: if w is �xed, the dot product
w′x is proportional to the distance of x to the hy-
perplane, and that's what we want to maximize, by
an appropriate choice of the permutation matrix A.
If that was the only thing to optimize, the algorithm
would proceed to �nd A by solving the maximization
version of the LAP. Let x′ = [x1x2] and w′ = [w1w2].
Then the reward matrix is:

wx′ =
[

w1x1 w1x2
w2x1 w2x2

]
The LAP, with this reward matrix, amounts to

�nding the one to one assignment of elements of w
to elements of x such that the their sum is maximal.
This x e�ectively maximizes w′x.

Conversely the aim of the second term is to mini-
mize the dot product c′x. This corresponds to �nd-
ing the permuted x which is closest to c. For this
to be true, x should be normalized to �xed length,
and have positive elements ( so that the minimal an-
gle with c corresponds to a minimal distance, because
c′x = ||c|| ||x||cosα ).

Finally, the λ parameter determines the trade o�
between optimizing the margin and the radius of the
data enclosing hypersphere.

During test time, in order to predict the label of
a test datum, the algorithm solves again the LAP
problem for two di�erent reward functions, λwx′ −
cx′ and −λwx′−cx′, getting in general two di�erent
permutations as solutions. The label corresponding
to the largest absolute reward is then selected.

3 The Feature

The silhouette (S) of a segmented hand region, like
the one depicted in 2, is a �nite set of Ni points on
the image, that de�ne the basic shape of the hand
(�gure 3):

Algorithm 1 Algorithmic description of the original
Permutation Invariant SVM
Input: Training data set - (xi, yi)n

i=1, Maximum It-
erations - max, Parameter - λ
Output: Hyperplane - (w, b) and Centroid - c
0. Set j ← 1
1. Solve (3) from (xi, yi)n

i=1 to �nd centroid cj and
the radius R.
2. Solve (1) from (xi, yi)n

i=1 to �nd (wj , bj) and mar-
gin M .
3. Solve Kuhn-Munkres Algorithm with reward ma-
trix λyiw

jx′i − cjx′i for each i, let the permutation

matrix obtained be A
ij

.
4. If j = max return (wj , bj , cj) else j ← j + 1

(a) A posture. (b) Result of the segmentation.

Figure 2: Contour extraction using color segmenta-
tion.

S = {sk = (xk, yk), k = 1, . . . , Ni} (5)

We assume that the silhouette S has the following
properties:

• S is closed, i.e. s1 is next to sNi
.

• S has a depth of one single point (it's one dimen-
sional).

• S is de�ned by accounting points in the clockwise
direction.

The starting point of the de�nition of the represen-
tation, that we shall call a signature, is the calculation
of the polar coordinates of each point sk belonging to
the contour of the segmented blob. The polar coordi-
nates are de�ned in such a way that the origin of the
coordinate system is the centroid C = (cx, cy)T of the
segmented region R, de�ned as:

cx =
∑

x

∑
y

f(x,y)x∑
x

∑
y

f(x,y)
, and cy =

∑
x

∑
y

f(x,y)y∑
x

∑
y

f(x,y)

with f(x, y)
{

1 if x, y ∈ R
0 otherwise

(6)
Given the silhouette S = (s1, s2, . . . , sNi)

T from
the segmented hand on frame i we can compute the
coordinates ρk, that corresponds to the Euclidean dis-
tance of each point to the centroid of the segmented
hand blob, and θk, the angle:

ρk = ||sk − C|| =
√

(xk − cx)2 + (yk − cy)2 (7)

θk = arctan
(yk − cy)
(xk − cx)

, with k = 1..Ni (8)

Having the polar coordinates, we split the silhou-
ette S into r radial segments of equal size, and for



Figure 3: The silhouette's signature is de�ned by
dividing the contour in �xed radial segments. The
largest magnitude point in every segment is chosen.
The center of the coordinate system is the centroid of
the hand's blob.

each one we select the largest magnitude ρ′k whose
corresponding θk belongs to the angle interval that
de�nes the segment. This way the signature has a
�xed length of r elements. This signature is intrinsi-
cally invariant to translation of the hand in the im-
age frame, since the silhouette is de�ned in relation
to a coordinate system with its origin at the centroid
of the hand's blob. The same is not true for scale:
di�erent distances from the camera to the hand will
imply di�erent silhouette amplitudes. A simple so-
lution is very e�ective nonetheless: we normalize the
ρ′k coordinates in order to have them in the range
0 ≤ ρ′k ≤ 1. This is accomplished by dividing each ρ′k
by ρ′max = max(ρ′k), with k = 1..r.

In this way we get the �nal signature

signature(S) = [
ρ′1

ρ′max

...
ρ′r

ρ′max

]′ (9)

This representation just lacks invariances to in-
plane rotation and to mirror symmetry. Fortunately,
these complex transformations in the image, translate
to very simple transformations of the signature vec-
tor. Namely rotation in the plane perpendicular to
the line that passes through the center of the camera
sensor is mapped to a permutation Pr of the signature
vector, up to orientation errors ( due to the sampling
from the silhouette ) of π

r radians. Mirror symmetry
in that same plane is mapped to a permutation Ps.

In particular a rotation by an angle of 2π
r corre-

sponds to the cyclic permutation:

Pr =



0 1 0 · · · 0
... 0 1

. . .
...

...
... 0

. . . 0

0
...

...
. . . 1

1 0 0 · · · 0

 (10)

Rotations by 2nπ
r map to Pn

r . For example, let
k = [k1 ... km]′ be a signature vector. Then Pn

r k =
[kn ... km k1 ... kn−1].

The mirror symmetry across the line that passes
through the centroid and the point whose magnitude
is the �rst element of the signature vector is given by
Psk, with

Ps =


1 0 . . . . . . 0
0 . . . . . . 0 1
... . . . 0 1 0
... . .

.
. .

.
. .

. ...
0 1 0 . . . 0

 (11)

In this case Psk = [k1 km km−1 ... k2].

4 The Classi�er

As the kinds of invariance we desire are mapped to
two speci�c permutations of the feature vector, our
problem gets easier than the general Linear Assign-
ment Problem. In fact, we go from m! di�erent pos-
sible assignments in the general permutation case, to
just m ·2, with m corresponding to the rotations, and
the 2 to the mirror symmetry. The most e�cient way
to solve the LAP problem under this constraints is the
evaluation of all hypothesis, which is O(n), while the
Kuhn-Munkres algorithm is O(n3).The only change
required to algorithm 1 is then step 3: we should in-
stead evaluate all the m · 2 valid transformations of
a signature, and choose the resulting permutation for
which the reward λyiw

jx′i + cjx′i, under an appro-
priate norm, is largest. The resulting situation can
be better understood by seeing it as having a ma-
trix of transportation prizes, from N factories to N
warehouses, with the constraint that once you assign
one factory to a warehouse, only two scenarios remain
possible, and in both all the assignments are uniquely
determined. For example, consider the following re-
ward matrix:

R =

 1 3 2 1
6 2 5 2
0 1 1 3
2 4 2 1

 (12)

The LAP problem refers to �nding the set of four
rij elements, with no i and no j repeated, whose sum
is maximal. This sum can be seen as an l1 norm.
The solution in this case is [r21 r42 r13r34] with total
reward 15. Using our restrictions on the possible as-
signments, the solution would be [r21 r12 r43 r34] with
total reward 14.

In order to illustrate the e�ect of the algorithm
on the input signatures, and the meaning of di�erent
values of λ, it's useful to observe �gure 4. In (a)
3 patterns from 7 di�erent classes are initially with
di�erent rotations and mirror symmetries. In (b) are
the same patterns after being transformed with a high
λ, and in (c) with low λ. The SVM was trained in
a one-vs-all scheme, with the one being the class of
the patterns in the �rst row. The e�ect of high λ
was to �encourage� a higher margin between the �rst
class and all the others, and that is easily visible: the
postures in the �rst class are oriented in a di�erent
direction than the others. In (c) they are all aligned,
they're enclosed by a smaller hypersphere.

5 Experimental Results

Due to the inexistence ( to the best of our knowl-
edge ) of specialized image databases , we collected
ourselves 50 samples from 7 di�erent postures, with
di�erent scales, orientations and mirror symmetries.
The samples represent hand gestures of 5 di�erent
adult male users, whose hand silhouettes were sam-
pled to 80 points, after a skin color segmentation pro-
cess. The postures considered are depicted in �gure
5.

In order to evaluate the performance of the per-
mutation invariant SVM on the data, we used it with
a linear kernel, and compared against a normal SVM
with a radial basis kernel applied on a regular feature
vector, and on another feature vector which employed
a popular heuristic to provide some invariance to ro-
tation: selecting as the �rst value of the signature the
one with largest magnitude and permuting cyclically
the other elements of the signature accordingly. Us-
ing an SVM with this feature can, loosely speaking, be
interpreted as an approximation to the permutation



−1 0 1
−1

0

1

−1 0 1
−1

0

1

−1 0 1
−1

0

1

−1 0 1
−1

0

1

−1 0 1
−1

0

1

−1 0 1
−1

0

1

−1 0 1
−1

0

1

−1 0 1
−1

0

1

−1 0 1
−1

0

1

−1 0 1
−1

0

1

−1 0 1
−1

0

1

−1 0 1
−1

0

1

−1 0 1
−1

0

1

−1 0 1
−1

0

1

−1 0 1
−1

0

1

−1 0 1
−1

0

1

−1 0 1
−1

0

1

−1 0 1
−1

0

1

−1 0 1
−1

0

1

−1 0 1
−1

0

1

−1 0 1
−1

0

1

(a)

−1 0 1
−1

0

1

−1 0 1
−1

0

1

−1 0 1
−1

0

1

−1 0 1
−1

0

1

−1 0 1
−1

0

1

−1 0 1
−1

0

1

−1 0 1
−1

0

1

−1 0 1
−1

0

1

−1 0 1
−1

0

1

−1 0 1
−1

0

1

−1 0 1
−1

0

1

−1 0 1
−1

0

1

−1 0 1
−1

0

1

−1 0 1
−1

0

1

−1 0 1
−1

0

1

−1 0 1
−1

0

1

−1 0 1
−1

0

1

−1 0 1
−1

0

1

−1 0 1
−1

0

1

−1 0 1
−1

0

1

−1 0 1
−1

0

1

(b)

−1 0 1
−1

0

1

−1 0 1
−1

0

1

−1 0 1
−1

0

1

−1 0 1
−1

0

1

−1 0 1
−1

0

1

−1 0 1
−1

0

1

−1 0 1
−1

0

1

−1 0 1
−1

0

1

−1 0 1
−1

0

1

−1 0 1
−1

0

1

−1 0 1
−1

0

1

−1 0 1
−1

0

1

−1 0 1
−1

0

1

−1 0 1
−1

0

1

−1 0 1
−1

0

1

−1 0 1
−1

0

1

−1 0 1
−1

0

1

−1 0 1
−1

0

1

−1 0 1
−1

0

1

−1 0 1
−1

0

1

−1 0 1
−1

0

1

(c)

Figure 4: The e�ect of λ in the resulting patterns. In
a) are the input patterns. In b) they are permuted
after training a SVM for the class in the �rst row
against the others, with high λ. In c) after training
with low λ.

Gun Open Two Hang Loose Closed Slap Grab

Figure 5: Prede�ned set of postures.

σ SVM SVM+heuristic pi-SVM( λ = 0.001)
0.005 62% 94% 95%
0.007 56% 83% 94%
0.01 46% 47% 70%

Table 1: Percentage of correct classi�cations with
gaussian noise, with zero mean and standard devi-
ation σ.

d SVM SVM+heuristic pi-SVM( λ = 0.001)
0.005 62% 86% 95%
0.01 56% 78% 88%
0.05 60% 68% 79%

Table 2: Percentage of correct classi�cations with salt
& pepper noise ( changes a d fraction of the signature
points to magnitude 0 or 1 ).

invariant SVM with the restriction to permutations
that rotate the feature, when solving the constrained
LAP problem using the l∞ norm. A C value of 2 was
used in all experiments, so that we could focus on fac-
tors more directly connected to the algorithm under
scrutiny.

We chose the number of iterations of the algo-
rithm to be 4, because we observed that usually it
was enough for convergence. The number of samples
used in training was 10 from each class; the rest was
used for testing. In order to to test the robustness of
the di�erent solutions we applied two kinds of noise,
gaussian and salt and pepper ( also known as on-o�
), and averaged the results over 5 sessions. In general
terms, gaussian noise changes all the components of
the feature vector by small amounts, while salt and
pepper turns a few components to zero or one. The
results are shown in tables 1 and 2, and the aspect of
noisy examples is shown in �gure 6.

Finally, we also tried di�erent norms for solving
the LAP problem - table 3. The measure of quality
used in all experiments was the percentage of correct
classi�cations in the test set.

5.1 Discussion of the Results

One curious observation was that for large λ the per-
mutation invariant SVM performed very poorly. This
was only veri�ed in the multi-class scenario. Prelim-
inary tests on two class discrimination didn't show
this phenomenon, quite the opposite. This may be
explained by a poor �t of the one-versus-all way of
combining binary classi�ers, which we employed.

For small λ the method performed better than the
other solutions, specially when the data was noisy. In
these cases it greatly outperformed the other meth-
ods.

We used a permutation invariant SVM with a lin-
ear kernel, and we think that using a kernel that cre-
ates a non-linear decision function can improve the
performance of the method - especially if we can't
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Figure 6: An example of the posture �two� is depicted
on the left. In the center it's the same example, but
with gaussian noise with mean 0 and standard devi-
ation 0.005. On the right it's with salt and pepper
noise, with 10 % of the components changed.



λ pi-SVM(l1) pi-SVM(l2) pi-SVM( l∞)

0.001 95% 99% 93%
0.1 90% 96% 88%
10 60% 74% 63%

Table 3: The e�ect of λ and the norm employed in
solving the constrained LAP on the percentage of cor-
rect classi�cations.

solve the problem of transforming the data to have
large margin - but this improvement comes with a
performance price.

Of the norms employed in solving the constrained
LAP problem, the one that behaved the best was the
l2 norm.

6 Conclusion

We presented a specialization of the permutation in-
variant SVM for classi�cation of silhouette signature
features. While the features used are too limited for
general shape classi�cation, because they are di�-
cult to extract from images and cannot represent rich
shapes - in particular those having important internal
traits - they make a good �t for posture recognition
over tabletops:

- They're cheap to compute, which is important in
an input device ( the mouse doesn't steal many cpu
cycles ).

- Certain interesting invariances appear as simple
permutations of the feature vector, and this enables
the use of the permutation invariant SVM e�ciently.

- In tabletops powered by LCD displays, we can
control the hand's background so that it is more easily
segmentable.

The proposed method was shown to produce bet-
ter results than other approaches, namely simple
SVM classi�cation with and without some common
heuristics, using our data set of hand postures from
�ve individuals. We have yet to evaluate the ro-
bustness of the approach to hand morphologies that
are not in the database, like from children, but our
preliminary results with synthetic noise looked quite
promising.

Something that the proposed method apparently
precludes is linear dimensionality reduction of the fea-
ture vectors ( for example with PCA ). The problem
is that it's not possible to explore permutations of
the features in a reduced linear space. We would
have to transform the features back to the original
space, perform the permutations and then transform
the features back to the reduced dimensionality space.
Maybe using nonlinear methods would work, like ker-
nel PCA or spectral methods, but that would come
with performance penalties.

Future work includes exploring di�erent
paradigms for combining the binary classi�ers.
One versus the rest doesn't appear to work well with
the permutations of the data. A possibility is to
experiment using the multi-class SVM(Weston 1999).
We're also considering ways to extend the silhouette
feature to include information about the internal
traits of the shape.
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