
Object Oriented Parallelisation of Graph Algorithms using Parallel

Iterator

Lama Akeila1 , Oliver Sinnen2 and Wafaa Humadi3

The Department of Electrical and Computer Engineering
The University of Auckland, New Zealand.

1 lake003@aucklanduni.ac.nz, 2 o.sinnen@auckland.ac.nz, 3 whum003@aucklanduni.ac.nz

Abstract

Multi-core machines are becoming widely used which,
as a consequence, forces parallel computing to move
from research labs to being adopted everywhere. Due
to the fact that developing parallel code is a signi�-
cantly complex process, the main focus of today's re-
search is to design tools which facilitate the process of
parallelising code. The Parallel Iterator (PI) is a tool
which was developed to automate the process of par-
allelising loops in OO applications. Graph algorithms
can be represented using objects and hence they are
excellent use cases for the PI. This paper discusses
using the PI to parallelising graph algorithms such as
breadth-�rst search (BFS), depth-�rst search (DFS)
and minimum spanning tree (MST). Using the PI
to parallelise such graph algorithms required adding
some adaptations to the current concept of the PI
to handle certain graph algorithms. The PI facili-
tates the process of parallelising graph algorithms in a
way which keeps the parallel code readable and main-
tainable while exhibiting speedup. Java was used as
the implementation language since it is one of the
most commonly used object oriented languages. The
parallelised graph algorithms were tested on di�erent
graphs and trees with di�erent densities, granular-
ity and structures. The experimental results show
that the parallelised graph algorithms exhibit good
speedups.

Keywords: parallel computing, object oriented paral-
lelisation, Parallel Iterator, graph algorithms.

1 Introduction

With the introduction of multi-core processors, the
importance of parallel computing has accelerated into
the mainstream and hence, parallel computing tech-
nologies have been adopted everywhere (Reinders
2007). The expected performance speedup gained by
increasing the number of processors depends on the
problem to be solved and the algorithm which is used
(Rajasekaran & Reif 2007). This signi�es that the
software has to be designed in a way which takes ad-
vantage of the increased number of processors and
hence parallelising software applications becomes a
necessity. The process of parallelising software appli-
cations is not straight forward since the developers are
forced to deal with parallelisation details such as syn-
chronisation between processors, locking of shared re-
sources, race conditions and so on. As a consequence,

Copyright c©2010, Australian Computer Society, Inc. This pa-
per appeared at the 8th Australasian Symposium on Parallel
and Distributed Computing (AusPDC 2010), Brisbane, Aus-
tralia. Conferences in Research and Practice in Information
Technology (CRPIT), Vol. 107, Jinjun Chen and Rajiv Ran-
jan, Ed. Reproduction for academic, not-for pro�t purposes
permitted provided this text is included.

the main focus of today's research is to develop tools
which facilitate the development of parallel applica-
tions. Most software applications rely heavily on iter-
ative computations (N.Giacaman & O.Sinnen 2008)
(i.e. computations handled by loops). In OO lan-
guages loops are handled by Iterator objects. As a
consequence, tools for parallelising loops have very
signi�cant advantages when developing parallel ap-
plications. An example of such a tool is the PI which
has been developed and implemented in the ECE de-
partment at the University of Auckland (N.Giacaman
& O.Sinnen 2008, Akeila 2008).

The Parallel Iterator provides a thread-safe mech-
anism to iterate through a collection of elements con-
currently by multiple threads and hence it eases the
process of loop parallelisation in many OO applica-
tions. A graph library is an example of an OO ap-
plication which plays an important role in various
�elds. Many applications rely on graph algorithms
to solve common problems in computer science, chem-
istry and business (Buckley & Lewinter 2003). Graph
libraries can be well implemented with objects. To
maintain high productivity, readability and maintain-
ability, the parallelisation should be done in an OO
way. As a consequence, an OO tool such as the PI is
powerful in terms of producing an OO parallel version
of graph algorithms with a readalbe and maintainable
code which exhibits speedup. Graphs are excellent
use cases for the PI. Given their special structures,
some graph algorithms might need adaptations and
improvements to the PI, which is investigated in this
paper. These adaptations are encapsulated by the PI
(i.e. all the parallelisation details and the new adap-
tations are implemented internally by the PI) which,
as a consequence, requires little or no code restructur-
ing when using the PI to parallelise graph algorithms.

Parallelising three main graph algorithms using
the PI is discussd in this paper: Breadth-First
Search (BFS), Depth-First Search (DFS) and Mini-
mum Spanning tree (MST). Section 2 introduces the
PI. An overview about graph theory is included in
section 3. Section 4 discusses the BFS and its par-
allelised versions while sections 5 and 6 discuss DFS
and MST respectively.

2 The Parallel Iterator

Object oriented programming is widely used by soft-
ware engineers. It allows software designers to de-
velop high quality software solutions that are reusable
and easy to implement and maintain (Craig 2001).
Most applications heavily rely on iterative computa-
tions which are normally encapsulated inside loops
(N.Giacaman & O.Sinnen 2008). As a consequence,
the main approach in parallelising OO applications
is parallelising loops. In object-oriented languages it-
erative computations such as loops are handled us-
ing iterators. Iterators are objects which allow the

Proc. 8th Australasian Symposium on Parallel and Distributed Computing (AusPDC 2010), Brisbane, Australia

41

developer to traverse collections of elements by call-
ing two main methods: 1) hasNext which returns a
boolean value indicating whether there is any remain-
ing element in the collection. 2) next which returns
the actual element. However, con�icts occur if mul-
tiple threads are accessing the collection of elements
concurrently when one element is remaining in the
collection and at least two threads call the hasNext
method simultaneously. Only one thread gets the
next element while the other throws an exception.
In addition to that, further parallelisation issues need
to be taken into account when traversing a collection
of elements concurrently such as load balancing and
supporting di�erent scheduling mechanism. Due to
the insu�ciency of using the normal iterator for par-
allel systems, the need for a mechanism to traverse
collections in a thread-safe and parallel appropriate
fashion became evident.

The PI concept has been developed and imple-
mented in the ECE department at the University of
Auckland. It allows for an e�cient parallel traver-
sal of a collection of elements without resulting in
any con�icts between the threads which are access-
ing the collection simultaneously (N.Giacaman &
O.Sinnen 2008). Iterations are distributed among the
threads according to the speci�ed scheduling policy.
Once the thread �nishes its allocated iterations, it ex-
its and waits for the other threads to complete their
iterations. Such synchronisation between threads is
warranted and the program follows sequential seman-
tics.

The PI has two main methods identical to the con-
ventional sequential iterator, hasNext and next. It
follows the typical semantics of an iterator in that
the hasNext method is always called before calling
the next method (i.e. it always checks whether there
are still elements remaining in the collection before
retrieval). The PI supports both random access col-
lections (i.e. elements can be accessed directly in a
constant time O(1)) and inherently sequential collec-
tions (i.e. elements' access time is proportional to
the number of elements in the collection O(n)). The
PI can be used with di�erent scheduling policies and
allows for specifying a chunksize as a method param-
eter. It supports three main scheduling polices as
shown below in Figure 1: static (block and cyclic),
dynamic and guided scheduling. Figure 1 shows the
three di�erent scheduling policies and how the ele-
ments are distributed among the threads in each pol-
icy with a collection of 9 elements when 3 threads
access it simultaneously.

Figure 1: The implemented scheduling policies

The PI simply subsitutes the sequential iterator.
Little or no code restructuring is required to be added
to the application which is being parallelised by the
PI. It also can handle breaks and exceptions and it
implements important features such as reductions.

3 Graph Theory

A graph can be de�ned as a mathematical represen-
tation of a relationship or set of relationships be-
tween elements (Buckley & Lewinter 2003). Any

graph G consists of a nonempty �nite list of ver-
tices V and a �nite set of edges E that relates the
vertices in V . Each edge in the set E consists
of two vertices that are related. For example, if
V = {v1, v2, v3, v4,, vn} is the total number of ver-
tices in G and E = {e1, e2, e3, e4,.....,en} is the list of
edges in the graph, each edge in E is of the form
{vi, vj} (Buckley & Lewinter 2003). Some graphs
have weights w(vi, vj) on each edge where w repre-
sents the cost of connecting the two vertices, vi and
vj together.

A path from vertex v1 to vertex v4 is the sequence
of vertices {v1, v2, v3, v4} which connects vertex v1 to
vertex v4. If the starting point vertex of the path is
the same as the end point vertex, this path is said
to produce a cycle and the graph is said to be cyclic
graph. If no such cycles occur in the graph it is called
acyclic. A graph is called connected if every pair of
vertices is connected by a path

Some of the most commonly used graph algorithms
are Breadth-First Search (BFS), Depth-First Search
(DFS) and Minimum Spanning Tree (MST).

4 Breadth-First search (BFS)

BFS is one of the simplest algorithms for searching
graphs and the idea is used by many other algo-
rithms such as Prim's minimum spanning tree algo-
rithm (Cormen, Leiserson, Rivest & Stein 2001). It is
also used in other applications in various �elds such
as image processing (Silvela & Portillo 2001, Cormen
et al. 2001). Given a graph G and a source vertex s,
the BFS algorithm explores all the vertices reachable
from the source vertex s in stages (i.e. the algorithm
discovers the vertices reachable from s at distance k
before discovering the vertices reachable from s at
distance (k + 1) (Cormen et al. 2001). A vertex in
level k indicates that the distance from that vertex
to the root is k (Buckley & Lewinter 2003). Figure 2
illustrates the di�erent BFS levels of an example tree.

Figure 2: Breadth-First Search Levels

The next section presents the sequential algorithm
of BFS and some previous work which was done to
parallelise BFS followed by the various approaches
which were taken to parallelise the graph algorithm
using the PI. The proposed parallel approaches work
for any graph. One of those parallel approaches uses
the PI directly by passing each level of the tree at a
time directly to the PI until no more levels exist. The
other parallel approaches are implemented as an ex-
tension to the PI concept where the parallel iterator's
hasNext and next methods return the nodes on the
�y to the calling processors in a breadth-�rst order.

4.1 Sequential BFS

The sequential implementation of the BFS relies on
processing each level of the tree at a time. It can
be implemented using one queue. The following al-
gorithm illustrates the concept where successors is

CRPIT Volume 107 - Parallel and Distributed Computing 2010

42

a queue which stores the nodes of the tree or graph.
Initially the successors queue contains the starting
vertex of the graph (i.e. the root in the tree case).

Algorithm 1 Sequential BFS.

1 : whi le (s u c c e s s o r s i s not empty){
2 : f o r (every node n in su c c e s s o r s){
3 : p roce s s n i f i t i s not proces sed
4 : add su c c e s s o r s o f n to su c c e s s o r queue end
5 : }
6 : }
7 : e x i t

As illustrated in Algorithm 1 , the algorithm exits
when the successors queue is empty (i.e. all nodes
have been processed). Processing the nodes level by
level ensures the breadth-�rst order. When BFS is
run on trees, node n which is retrieved in line 3 is
always processed since every node in a tree has one
parent. However in graphs, a node can have more
than one parent hence line 3 only processes the node
if it was not processed previously.

4.2 Previous Parallel BFS Approaches

Most existing parallel BFS algorithms rely on process-
ing nodes level by level (Yooy, Chowx, Hendersony,
McLendonz, Hendrickson & Catalyurek 2005, Zhang
& Hansen 2006, Rajasekaran & Reif 2007). All the
nodes at a given level can be processed in parallel. A
level is usually represented by a certain data struc-
tures such as Queue which is in turn accessed simul-
taneously by the di�erent processors (Rajasekaran &
Reif 2007). Every time a read or write operations
are performed, the queue has to be locked and un-
locked to ensure thread-safe behaviour (Rajasekaran
& Reif 2007). The parallel algorithm exits when there
are no more levels to process and all nodes have been
visited.

4.3 Parallelising BFS with PI

In this section, three main approaches to parallelise
the BFS algorithm are discussed. The �rst two ap-
proaches are extensions to the current PI as they pro-
vide the hasNext and next method with mechanisms
to internally retrieve the next node on the �y in a BFS
order. In other words, All the parallelisation details
such as synchronizations and communication between
threads are encapsulated internally by the iterator's
hasNext and next methods. The third approach uses
the conventional PI which was discussed in section
2 directly to parallelise the levels of the tree in a
BFS fashion. The �rst approach uses one concurrent
queue, the second uses two sequential queues with a
locking mechanism to make the approach thread-safe
and the third uses two concurrent queues with the
parallel iterator as discussed below.

4.3.1 BFS with One Concurrent Queue

This approach uses one concurrent queue which con-
tains the nodes to be processed. The concurrent
queue is a thread-safe Java implementation of Queue
where all the queuing operations are performed atom-
ically (Sun n.d.) . Each node in this approach is asso-
ciated with a level attribute which indicates the level
at which the node is in the tree as shown in Figure 3.

Figure 3 illustrates when this approach is run on
the tree shown in �gure 2. The level attributes in-
dicate which level each node is in the tree. Threads
retrieve nodes to be processed from the head of the
queue and add the successors of the retrieved nodes
to the end of the queue as show in Figure 3. Nodes

Figure 3: BFS with One Queue

are processed according to their levels in an ascending
order. For example , nodes with a level attribute 3
are not processed until all the nodes with a level at-
tribute 2 are processed. To ensure this processing or-
der a global variable, currentLevel is shared between
all the threads which indicates the current tree level
which is currently being processed. It is initialized
to 1 (i.e the root level). When all the nodes with a
current level has been processed, the global variable
currentLevel gets incremented to the value of next
level. When threads get nodes with a level attribute
which is greater than the currentLevel, those threads
wait until currentLevel gets incremented. Algorithm
2 demonstrates the approach which is implemented
by the extended PI's hasNext and next methods.
queue represents the concurrent queue used in this ap-
proach, id is the id of each thread which varies from 0
to n where n is the number of processors, levelsArray
is a 2D array which stores which level is each thread
up to and UpdateCurrentLevel is a function which
updates the value of the global variable currentLevel
to the minimum positive value stored by levelsArray.
Every time a thread update its value in levelsArray,
the function UpdateCurrentLevel is called to update
the value of the global variable currentLevel.

Algorithm 2 Parallel BFS with 1 Queue.

1 : whi le (queue i s not empty) {
2 : get node d from head o f queue
3 : get l e v e l a t t r i bu t e , v o f node d
4 : add the su c c e s s o r s o f d to end o f queue
5 : l e v e l sAr ray [id] = v
6 : UpdateCurrentLevel
7 : whi l e (v > cur rentLeve l){
8 : wait u n t i l cu r r entLeve l g e t s

incremented
9 : }
10 : p roce s s d
11 :}
12 : l e v e l sAr ray [id] = −1
13 : UpdateCurrentLevel
14 : e x i t and wait f o r other threads

to e x i t

Algorithm 2 calles the UpdateCurrentLevel func-
tion in lines 6 and 13. This function updates the
value of the currentLevel by inspecting the level val-
ues stored in the levelsArray by each thread then
setting the global currentLevel variable to the min-
imum positive value. Every time a thread retrieves
a di�erent node, the thread records the level value of
that node and stores it in the levelsArray as shown in
Algorithm 2 line 5. When a thread �nishes (i.e. line
1 returned false), its recorded level value in the 2D
array is set to −1 as shown in line 12 and is ignored
by the UpdateCurrentLevel function and hence the
function will update currentLevel to the next posi-
tive minimum value when the function gets invoked in
line 13. This ensures that the nodes which are stored
in the concurrent queue are processed in a level by

Proc. 8th Australasian Symposium on Parallel and Distributed Computing (AusPDC 2010), Brisbane, Australia

43

level manner (i.e. in a breadth-�rst order).

4.3.2 BFS with Two Queues and Locking

This approach uses sequential queues (i.e. queues
which do not support concurrency) with a locking
mechanism to enforce a thread-safe access of elements
in the queues. One queue in this approach is pro-
cessed at a time. Each level of the tree is stored in
one queue, say queue 1 which gets processed in par-
allel while the other queue, queue 2 gets populated
with the nodes of the next level. The approach starts
by processing the root node from queue 1 and writ-
ing the next level (i.e. successors) to queue 2. In
the following iteration it processes nodes from queue
2 and stores successors in queue 1. This approach
continues to alternate between the two queues until
all the nodes have been traversed (i.e. both queues
are empty). Since the queues which are used in this
approach are not concurrent, threads lock the queues
before performing read or write operations then un-
lock the queues when done with the operations. This
approach supports speci�ying a certain chunksize as
a parameter (i.e. number of nodes to be retrieved at
once by the thread accessing the queue). Algorithm 3
illustrates the approach which is implemented by the
extended PI. readQ is the queue which is to be read
from, writeQ is the queue which is to be written to,
n is the chunksize and SwapIfEmpty is an atomic
function which swaps the two queues if the readQ is
empty.

Algorithm 3 Parallel BFS with 2 Queues and Locks.

1 : whi le (t rue) {
1 : SwapIfEmpty
2 : l ock readQ
3 : i f (readQ i s not empty) {
4 : get top n nodes from readQ
5 : unlock readQ
6 : lock writeQ
7 : add su c c e s s o r s o f n to writeQ
8 : unlock writeQ
9 : p roce s s the n nodes
10 : } e l s e {
11 : unlock readQ
12 : e x i t and wait f o r a l l other

threads to e x i t
13 : }
14 :}

4.3.3 BFS with Two Queues and Parallel It-
erator

This approach applies the same concept which was
discussed in section 4.3.2 , however it uses 2 concur-
rent queues and the PI which was discussed in section
2. Each level of the BFS is passed to the PI to be
processed concurrently by the threads until all nodes
have been processed. The approach is illustrated in
Algorithm 4.

Algorithm 4 Parallel BFS with the Parallel Iterator.

1 : whi le (s u c c e s s o r s i s not empty) {
2 : nextLeve l = {}
3 : PI = g e t I t e r a t o r (s u c c e s s o r s)
4 : whi l e (PI . hasNext){
5 : node n = PI . next
5 : p roce s s n
6 : }
5 : s u c c e s s o r s = nextLeve l
6 : }
7 : e x i t

Algorithm 4 illustrates how the structure of the
parallel BFS approach is similar to any sequential
approach. The PI encapsulates the parallelisation
details such as synchronization between threads and
locking, hence little or no code restructuring is re-
quired to parallelise the sequential algorithm. The PI
implements a barrier at the end of the iterations loop,
hence it is guaranteed that any working thread gets to
line 5 of Algorithm 4 when all the other threads have
�nished executing their iterations (i.e. all nodes in
successors are processed). Since the PI supports dif-
ferent scheduling schemes and chunksizes, using it to
parallelise BFS allows for testing this approach with
the di�erent implemented schedule policies to deter-
mine which schedule produces the best performance.
Performance results are discussed in section 4.4.

4.4 Parallel BFS Performance

The performance of the three di�erent approaches
which were discussed in section 4.3 was evaluated and
compared with a large set of experiments using a 16-
core machine. The experiments were run on wide
trees with di�erent number of nodes and granular-
ity. The granularity was varied by changing the work
per node. The speedup of the parallel algorithm is de-
terminded by SequentialT ime

ParallelT ime , where SequentialT ime
is the time taken to run the BFS by the sequential
algorithm discussed in section 4.1 and ParallelT ime
is the time taken to run the parallel BFS algorithm.

Figure 4 shows the speedup results of the one
queue approach discussed in section 4.3.1 with granu-
larity 50 ms and 2 ms per node. The x-axis represents
the number of processors (threads) which run the al-
gorithm and the y-axis represents the speedup. A
value of 1 on the x-axis represents the parallel code
run on 1 processor (i.e. using 1 thread).

(a)

(b)

Figure 4: Speedup Results of BFS with One Queue.

The dashed line shown in Figure 4a represents the
ideal expected speedup. Figure 4 shows that the per-
formance of a coarse-grained parallel BFS is better
than the �ne-grained one as the speedup lines when
the granularity is 50 ms per node are closer to the
ideal speedup unlike the speedup lines when the gran-
ularity is 2ms which is shown in Figure 4b . Figure

CRPIT Volume 107 - Parallel and Distributed Computing 2010

44

4 also shows that the speedup of the parallel algo-
rithm gets better when the number of node increases.
However, the parallel BFS with one queue approach
produces �uctuating speedup lines when tested on
�ne-grained graphs as shown in Figure 4b. This is
due to the poor termination detection of the imple-
mented algorithm which causes some threads to exit
the algorithm early while some other threads are still
writing to the concurrent queue.

The speedup results of the parallel BFS approach
with two queues and locking discussed in section 4.3.2
are shown in Figure 5. Figure 5a shows the approach
when was tested with di�erent chunksizes on a wide
graph with 16,853 nodes and a granularity of 2 ms per
node. It shows how chunk size 3 produces a slightly
better speedup than chunk size 1 since increasing the
chunksize reduces the communication overhead be-
tween processors due to the locking and unlocking of
the queues. However, increasing the chunksize to 8
produces worse performance.

The approach was also tested on wide trees with
a varying number of nodes and granularity. Since
chunksize 3 produced good performance, the ap-
proach was tested with chunksize 3. Figures 5b and
5c show some speedup results.

Figures 5b and 5c show how the performance of
the parallel BFS gets better as the granularity gets
coarser since the speedup lines in Figure 5b are the
closest to the ideal speedup. The �gure also illustrates
that increasing the problem size (i.e. more nodes) en-
hances the performance of the algorithm. When com-
paring the 2 ms granularity speedup shown in Fig-
ure 5c of this approach with the one queue approach
shown in Figure 4b, we �nd that the �uctuations in
the speedup line shown in the one queue approach are
not present in this BFS approach hence, the paral-
lel BFS with two queues and locking performs better
than the one queue approach when the granularity is
small.

The speedup results of the parallel BFS approach
with two queues and PI which was discussed in section
4.3.3 are shown in Figure 6. It was tested with a static
schedule, dynamic schedule with chunksize 1, 3 and 8
on a wide graph with 16,853 nodes and a granularity
of 2 ms as shown in Figure 6a.

Figure 6a shows that the static schedule produces
the worst performance while the dynamic sched-
ule with chunksize 3 produces the best performance
which is even better than the results which were pro-
duced by the BFS approach with locking shown in
Figure 5a.

Similar to the previous approaches, the perfor-
mance of the parallel BFS which is parallelised by
the PI gets better as the granularity gets coarser and
increasing the number of nodes enhances the perfor-
mance of the algorithm. Figure 7 shows the three ap-
proaches when tested on a coarse-grained graph (50
ms per node) shown in 7a and a �ne-grained graph (2
ms per node) shown in 7b with 1109 nodes.

Figure 7 shows that the parallel BFS with two
queues and locks produces a slightly better perfor-
mance on coarse-grained graphs than the other two
approaches. However, the parallel BFS with two
queues and PI produces the best performance on
�ne-grained graphs. For example, the speedup of
a �ne-grained wide graph with 16,853 nodes using
the 2 queues approach with the PI shown in Figure
7b reaches around 2.8 whereas in the one queue ap-
proach and the two queues approach with locking, the
speedup reaches around 2.4 and 2.7 respectively.

(a)

(b)

Figure 7: Comparing the three parallel BFS ap-
proaches on �ne-grained graphs.

5 Depth-First Search (DFS)

The depth �rst search is another searching algo-
rithm which searches deeper in the graph (Buckley
& Lewinter 2003). Given a graph G and a source
vertex s, nodes are discovered as far as possible
along each branch of G before backtracking and dis-
covering the rest of the unvisited edges(Buckley &
Lewinter 2003, Cormen et al. 2001). DFS has many
applications such as �nding strongly connected com-
ponents, topological sort algorithms and solving puz-
zles (Cormen et al. 2001, Grama, Gupta, Karypis &
Kumar 2003). The order in which nodes are expanded
in DFS is illustrated in Figure 8.

Figure 8: The order in which nodes are expanded in
DFS.

The next section discusses the sequential imple-
mentation of DFS, some previous approaches which
were taken to parallelise the algorithm followed by the
various approaches which were taken to parallelise the
graph algorithm with the PI.

The sequential DFS is di�erent to the parallel DFS
in that a leaf node such as node 3 or 4 in Figure 8 is al-
ways discovered before node 5 in the sequential DFS,
however the parallel DFS allows node 5 to be discov-
ered before node 4 since multiple threads process the
di�erent sub-trees concurrently. In other words, the
parallel DFS returns the nodes in topological order.

Proc. 8th Australasian Symposium on Parallel and Distributed Computing (AusPDC 2010), Brisbane, Australia

45

(a) (b) (c)

Figure 5: Speedup Results of BFS with two Queues and Locks.

(a) (b) (c)

Figure 6: Speedup Results of BFS with Parallel Iterator.

5.1 Sequential DFS

The sequential algorithm uses a stack which is a Last-
In-First-Out (LIFO) data structure. The element
which is at the top of the stack is processed �rst.
The stack initially contains the root node. As the al-
gorithm proceeds, successors are added to the top of
the stack. The nodes in the stack are processed in
a LIFO manner until there are no more nodes to be
processed. Algorithm 5 illustrates the sequential DFS
where stack is the LIFO data structure .

Algorithm 5 Sequential DFS.

1 : whi le (s tack i s not empty) {
2 : Get node n from top o f s tack
3 : Push su c c e s s o r s o f n

to stack
4 : p roce s s n
5 : }
6 : e x i t

As illustrated by Algorithm 5 , the algorithm exits
when the stack becomes empty (i.e. all nodes are pro-
cessed). Processing the nodes in this fashion enforces
a depth-�rst order.

5.2 Previous Parallel DFS Approaches

Many research attempts have approached the prob-
lem of developing a parallel DFS algorithm. Ac-
cording to research studies, the most critical char-
acteristic which determines the performance of the
DFS is load balancing (i.e. the mechanism of split-
ting work between the di�erent processors) (Grama
et al. 2003). Several researchers have parallelised DFS
by dividing the search space into sub-trees (Reinefeld
& Schnecke 1994.). Those individual sub-trees are
distributed among the processors to search them in
depth-�rst fashion. To balance the load, a processor
which has �nished its work attempts to get unpro-

cessed sub-tree form another processor (Reinefeld &
Schnecke 1994.). This is called work-stealing. In or-
der to keep all processors busy all the time, a dynam-
ical stack-splitting method can be used (Reinefeld
& Schnecke 1994.). In such method, every proces-
sor works on the node in its own local stack. When
a stack is empty, the processor requests work from
other processors. The donor processor splits its local
stack to donate unprocessed sub-trees to the processor
which requested work (Reinefeld & Schnecke 1994.).
Determining the donor processor (i.e. the target pro-
cessors which will donate unprocessed nodes to the
idle processor) can be done by several load-balancing
schemes such as Asynchronous Round Robin (ARR),
Global Round Robin (GRR) or Random Polling (RP)
(Grama et al. 2003). In the ARR scheme, each pro-
cessor stores an independent variable, target, locally
which represents the donor processor. It gets incre-
mented by each processor each time work is requested.
In the GRR scheme, the value of target is stored glob-
ally and shared between all the processors. The RP
scheme is the simplest since it selects a donor proces-
sor randomly every time a processor gets idle. The
use of a Last In First Out (LIFO) data structure such
as Stack ensures that the nodes are processed in a
depth-�rst order.

5.3 Parallelising DFS with PI

The concept of the PI was enhanced to support the
implementation DFS. The iterator was extended with
a hasNext method which returns elements to the call-
ing threads in the DFS, i.e. topological, order on the
�y. All the parallelisation details such as synchroniza-
tions and communication between threads are encap-
sulated internally by the iterator's hasNext and next
methods. Two main parallel approaches were imple-
mented, one which uses one global stack and the other
uses a local stack for each thread and one global stack
shared by all threads. The load-balancing is achieved

CRPIT Volume 107 - Parallel and Distributed Computing 2010

46

by the �rst approach via sharing the nodes (i.e. sub-
trees) which are stored in the global stack dynami-
cally. In the second approach, the load-balancing is
achieved in two ways: 1) by sharing the node which
are stored in the global stack similar to the �rst ap-
proach. 2) by explicitly stealing work from the local
stacks of the other working threads when both the
global stack and the thread's local stack are empty.
The target donor to steal work from is determined
randomly as explained in the Random Polling (RP)
scheme in section 5.2. The two approaches are ex-
plained in the following sections.

5.3.1 Parallel DFS with One Stack Approach

This approach uses one LIFO data structure, a con-
current stack. Threads poll the stack to get a node to
process then push successor to the top of the stack.
The stack stores nodes which are yet to be processed.
The nodes which are stored in the stack are processed
dynamically. Once a thread gets idle, it retrieves a
new node from the stack. The use of a stack ensures
that the nodes are processed in a topological order.
Algorithm 6 illustrates the approach where stack is
the concurrent global stack which is shared between
the threads.

Algorithm 6 Parallel DFS with One Stack.

1 : whi le (s tack i s not empty) {
2 : Get node n from top o f s tack
3 : Push su c c e s s o r s o f n to stack
4 : p roce s s n
5 : }
6 : e x i t and wait f o r a l l other

threads to e x i t

Algorithm 6 shows that no explicit locking is per-
formed in this approach since a concurrent stack im-
plementation is used. However, all the locking and
unlocking actions are implemented internally by the
concurrent stack every time a read or write requests
are performed.

5.3.2 Parallel DFS with Local Stacks and
Work Stealing

This approach uses one global stack which is shared
by all the threads and n local stacks where n is the
number of threads. Each thread stores the nodes of
its sub-tree in its local stack. Initially the global stack
contains the root of the tree and only one thread gets
access to it while the other threads are waiting to be
woken up by the working thread. The working thread
retrieves and processes the root from the global stack,
adds one successor to its local stack then pushes the
rest of the successors, if they exist, to the global stack
to be processed by other threads and wakes up all the
waiting threads. Storing only part of successors in
the local stack is better than storing all successors at
once since it produces better load balancing between
threads. It avoids the case where big sub-trees get
stored in the local stack of one thread. From this
point on, the thread reads from and writes to its local
stack until it becomes empty. All the other threads
follow the same approach (i.e. when threads get a
node from the global stack they push one successor
to their local stack and the rest to the global stack
then start accessing their local stack until it becomes
empty). When the local stack of a thread is empty,
the thread retrieves a new node from the global stack.
If the global stack is empty, the idle thread tries to get
unprocessed nodes from the bottom of a neighboring
local stack (i.e. the oldest nodes) using a random

polling scheme and stores them in its local stack. If no
extra work is available in the neighboring local stacks,
the thread exits and waits for the other threads to
exit.

5.4 Parallel DFS Performance

The performance of the two di�erent approaches was
evaluated and compared with a large set of experi-
ments using the same 16-core machine as before. The
experiments were run on wide trees with di�erent
number of nodes and granularity.

Experimental results show that the performance of
the two approaches is similar when tested on coarse-
grained graphs. Figure 9 shows the speedup results
of the approachs when tested on a graph with 5003
nodes with a granularity of 40 ms. increasing the
granularity and number of nodes produces better per-
formance.

Figure 9: Comparing the two parallel DFS ap-
proaches on coarse-grained graph.

Figure 10: Comparing the 2 parallel DFS approaches
on �ne-grained graph.

Figure 10 shows a comparison between the two ap-
proaches when tested on a �ne-grained graphs with
41,001 nodes. The result shows that the local stacks
approach performs better than the one stack ap-
proach when the granularity is small. This is due
to the fact that the overhead produced by the locking
and unlocking actions in the local stacks approach is
less than the overhead present in the one stack. In
the local stacks approach, locking is performed only
when threads �nish all the nodes in their local stack
and attempts to get more nodes from the global stack
whereas in the one stack approach locking is always
performed when getting nodes since all threads share
one global stack.

6 Minimum Spanning Tree (MST)

The Minimum Spanning Tree (MST) is one of the
most studied algorithms which has many practical
applications in wireless communication, distributed
networks (S.Meguerdichian, Koushanfar, Potkonjak
& Srivastava 2001) and medical imaging (An, Xiang

Proc. 8th Australasian Symposium on Parallel and Distributed Computing (AusPDC 2010), Brisbane, Australia

47

& Chavez 2000.). The MST problem determines the
minimum-weight path which connects all of the ver-
tices of a given graph G without producing any cycles.
The sum of the weights of edges in the path should
be the smallest sum possible in the graph G (Cormen
et al. 2001). Figure 11 shows the �nal MST path
(in gray) when the algorithm is run on an undirected
weighted graph.

Figure 11: Final MST Path.

6.1 Sequential MST

One of the main algorithms for computing the MST
is called Prim's algorithm. It contains a set A that
forms the resultant minimum spanning tree. All the
edges added to the set A always form a single tree.
The safe edge added to A is described as the edge with
the minimum weight that is connecting the tree in A
to a vertex that is not in the tree (Cormen et al. 2001).
The algorithm starts from an arbitrary starting ver-
tex and grows by adding safe edges to the set A until
the tree spans all vertices. When the algorithm ter-
minates, set A contains all safe edges that form the
minimum spanning tree of graph G. The sequential
MST is illustrated in Algorithm 7 where n is the num-
ber of vertices in G.

Algorithm 7 Sequential MST.

1 : S e l e c t a ver tex v and l e t V(T)={v}
and E(T)= {}

2 : whi l e (t rue){
2 : I t e r a t o r through edges o f v

and determine the edge e={v ,w} with
minimum weight which connects v
to another ver tex w where w i s
not in V(T)

3 : Add w to V(T) and e to E(T)
4 : I f (s i z e o f E(T) = n − 1)
5 : e x i t a lgor i thm
6 : e l s e
7 : v = w
8 : }
9 : }

6.2 Previous Parallel MST Approaches

One of the solutions to parallelise the MST algo-
rithm is the fast parallel implementation developed
by Bader and Cong (D.Bader & Cong 2004.). It al-
lows every processor to start from a di�erent start-
ing vertex and run Prim's algorithm simultaneously
(D.Bader & Cong 2004.). In this approach vertices
are coloured by the colour of the processor which
they were visited by. Every time an edge is to be
added to the MST by a particular processor, the pro-
cessor checks whether the vertex is coloured by its
own colour otherwise a collision with another proces-
sor occurs. In the case of collisions, the processor
stops growing the current sub-tree and exits otherwise
it continues until all vertices are visited (D.Bader &
Cong 2004.). The �nal sub trees produced in paral-
lel are merged sequentially in the end to produce the
�nal MST.

Another solution to parallelise the MST algorithm
with an adjacency-matrix is to partition the adja-
cency matrix among the p processors as shown in Fig-
ure 12 (Grama et al. 2003).

Figure 12: The partitioning of the adjacency matrix
and the distance array d .

An array d represents the distance array of length
n, where n is the number of vertices in the graph G.
Every vertex in the graph has an entry in the dis-
tance array d. This entry holds the weight value of
the most discovered minimum edge which connects
the vertex to another vertex in the graph (Grama
et al. 2003). Initially the array entries are initialized
to ∞. As a new vertex is discovered and the mini-
mum edge added to the MST, the distance array d
is updated with the weights of the incident edges of
the newly added vertex. If the weight of one of those
edges is smaller than the weight recorded in the ar-
ray, the entry value is updated to store the edge with
the minimum weight. Figure 12 shows how the dis-
tance array and the adjacency matrix are partitioned
between p processors.

The set of vertices V is partitioned to subsets with
n
p consecutive vertices subsets and each subset Vi is

assigned to each processor Pi (Grama et al. 2003).
Determining the minimum edge and updating the dis-
tance array with the newly added vertex are done in
parallel. Each Pi stores the part of the distance ar-
ray d which includes its set of assigned vertices Vi
as shown in Figure 12. Each processor computes the
edge with the minimum weight from its part of the
adjacency list and then the global minimum is com-
puted and stored in process P0 using an all-to-one
reduction process (Grama et al. 2003). The new ver-
tex that is now stored in P0 is broadcasted to all other
processes using one-to-all broadcast, the new edge is
added and then each processor updates its relevant
distance array portion with the incident edges of the
newly added vertex.

6.3 Parallelising MST with PI

The two approaches taken to parallelise MST are
based on the approaches discussed in section 6.2. In
the �rst approach processors start from a di�erent
starting vertex of the graph and run the MST algo-
rithm simultaneously. The di�erent produced sub-
trees are merged in the end sequentially. A book
keeping module, which keeps track of which nodes
have been traversed by which thread, was integrated
with the PI to implement this approach successfully.

The second approach uses a distance array and
reductions as discussed in section 6.2 to produce a
parallel version of MST. This approach uses the PI
directly by passing the distance array to the PI to
get updated in parallel and using the PI reductions
feature to extract the minimum edge.

6.3.1 Parallel MST with Book-Keeping Mod-
ule

In this approach, a list of the graph vertices is passed
to the extended PI. The extended PI issues only the

CRPIT Volume 107 - Parallel and Distributed Computing 2010

48

starting points (unvisited nodes) to threads by the
hasNext and next methods. The book-keeping mod-
ule has two main functionalities; it provides an atomic
mechanism which ensures that each node in the graph
is processed by only one thread and updates the PI
with the status of the nodes (i.e. visited or not) dur-
ing the run time of the MST algorithm as it keeps a
record of which nodes are processed by which threads
(i.e. colouring mechanism). Every time a vertex is
issued, the book-keeping module colours the vertex
by the colour of the processor which visited it. From
there, threads continue traversing the graph indepen-
dently by adding safe-edges to the �nal MST until
either the �nal MST becomes complete or collisions
occur between threads (i.e. more than one thread
attempts to access the same node). Collisions are de-
tected by the book-keeping module when more than
one thread attempt to access a node. When collisions
occur, one thread gets the unprocessed node while the
others go back to the PI to get a new unvisited start-
ing vertices. The hasNext method of the PI always
calls the book-keeping atomic methods to ensure that
the issued nodes are unvisited. When all nodes are
visited, all the sub-trees which are produced by the
di�erent threads in parallel are then merged sequen-
tially.

6.3.2 Parallel MST with Distance Array and
Reductions

This approach uses the PI presented in section 2, a
distance array d and reductions to produce a parallel
version of MST. The distance array d has an entry
for every vertex of the graph as explained in section
6.2. Each entry in d stores the edge with the minimum
weight encountered so far by the algorithm which con-
nects the corresponding vertex (i.e. the key of array
d) with some other vertex. Initially all the entries are
set to null. In this approach one edge is added to the
�nal MST edges list E(T) at a time after doing two
tasks in parallel in every iteration of the algorithm.
The �rst task is updating d after adding a new vertex
to the set of visited vertices V (T) and the second is
extracting the edge with the minimum weight from
d. At the start of the algorithm a starting vertex
is assigned and added to V (T). In every iteration
of the algorithm, an edge with the minimum weight
which connects a visited vertex in V (T) to an unvis-
ited vertex which is not in V (T) is added to E(T).
The unvisited vertex is then added to V (T).

Since two tasks are done in parallel, two instances
of the PI are created. One PI instance is used to
update d in parallel with the weights of the incident
edges of the last vertex v which was added to V (T).
This PI instance is initialized with the list of the in-
cident edges v. The second PI is used to extract the
minimum edge from d in parallel and is initialized
with a list of all vertices which are used as keys in
d. When extracting the minimum edge, every thread
stores the edge with the minimum weight from its cor-
responding part of d then the global minimum edge
is determined using the PI reductions. The algorithm
terminates when the number of added edges is equal
to n − 1 where n is the number of vertices as shown
in Algorithm 8.

Lines 4 and 11 of Algorithm 8 are executed in par-
allel using the PI. In line 18 the reduction feature
implemented by the PI is used to retrieve the global
minimum edge. Reductions in the PI are performed
in an OO fashion using a Reducible object shown in
line 10 which manages the di�erent copies of the vari-
able to be reduced(Giacaman, Sinnen & Akeila 2008).
PI implements reductions in a way which allows the
user to customize the type of reduction to be used
which makes the feature usable with any type of data

Algorithm 8 Parallel MST with Distance Array and
Reductions.

1 : S e l e c t a ver tex v and l e t
V(T)={v} and E(T)= {}

2 : whi le (t rue)
3 : PI = g e t I t e r a t o r (i n c i d en t edges o f v)
4 : whi le (PI . hasNext){
5 : edge i = PI . next
6 : update d with i i f i has weight l e s s

than what i s s to r ed in d
7 : }
8 : PI = g e t I t e r a t o r (l i s t o f a l l nodes)
9 : minimumEdge = {}
10 : Reducible globalMinEdge = {}
11 : whi le (PI . hasNext){
12 : node v = PI . next
13 : edge = d [v]
14 : i f (weight o f edge < minimumEdge){
15 : minimumEdge = edge
16 : }
17 : }
18 : FinalMinimumEdge = globalMinEdge . reduce
19 : w = vertex o f FinalMinimumEdge which i s

not v i s i t e d
20 : Add w to V(T) and FinalMinimumEdge to E(T)
21 : I f (s i z e o f E(T)=n−1) {
22 : e x i t the a lgor i thm
23 : e l s e
24 : v = w
25 : }
26 :}

and any kind of reduction (Giacaman et al. 2008). In
this approach, the PI reduction was customized in a
way which returns an edge with the minimum weight.

6.4 MST Performance Results

The performance of the two parallel MST approaches
which were discussed in sections 6.3.1 and 6.3.2 was
evaluated and compared with a large set of experi-
ments on an 8-core machine. The experiments were
run on di�erent graphs with number of nodes and
densities.

Figure 13 shows the speedup of the parallel MST
with the book-keeping approach discussed in section
6.3.1 when tested on sparse and dense graphs.

(a)

(b)

Figure 13: Speedup of MST with Book-keeping.

Figure 13a shows that the performance of the par-

Proc. 8th Australasian Symposium on Parallel and Distributed Computing (AusPDC 2010), Brisbane, Australia

49

(a) (b) (c)

Figure 14: Speedup of MST with Distance Array and Reductions.

allel MST gets better as the number of nodes in the
sparse graph increases. However, since the graph is
sparse, the produced speedup is not that signi�cant
(i.e. around 1.6 max). When the approach is tested
on dense graphs as shown in Figure 13b , a slightly
better performance is produced (i.e. reaches up to
around 2.1). However, Figure 13b shows that as the
number of nodes increases, the speedup gets worse
when the approach is tested on dense graphs. This
is the main limitation of this approach since running
the sequential algorithm which connects the sub-trees
produced in parallel slows down the run-time of the
algorithm and produces bad performance on dense
graphs as the number of nodes increases. This is be-
cause in dense graphs, the number of edges is equal
to V 2, where V is the number of nodes in the graph.
More edges result in more collisions and hence, more
sub-trees to be merged sequentially.

Figure 14 shows the speedup results of the paral-
lel MST approach with distance array and reductions
discussed in section 6.3.2 when tested on graphs with
low density (i.e. Sparse), medium density and high
density.

The results in Figure 14 shows that the second
parallel MST approach performs signi�cantly better
on dense graphs than the �rst approach illustrated
in Figure 13. The approach produces the best per-
formance when was tested on graphs with medium
densities as the speedup reaches up to around 4.5.

7 Conclusions

Desktop applications must be parallelised to bene�t
from the introduction of multi-core processors. How-
ever, parallelising applications is considered to be a
signi�cantly challenging task. The PI is an OO tool
which automates the process of parallelising loops in
OO applications. Graphs are excellent use cases for
the PI since they are naturally represented by ob-
jects. To maintain high productivity, readability and
maintainability of OO graph algorithms, the paral-
lelisation should be done in an OO way. Using the PI
to parallelise graph algorithms is powerful in terms
of producing a readable and maintainable code which
exhibits speedup. Three main algorithms were par-
allelised using the PI: BFS, DFS and MST. Some
parallel approaches of those algorithms required some
adaptations and improvements to be added to the PI.
The improvements include integrating a book-keeping
module with the PI to perform concurrent colouring
when running the MST and extending the hasNext
and next methods of the PI to return nodes on the
�y in breadth-�rst or depth-�rst order. Experimental
results show that the algorithms which were paral-
lelised by the PI exhibit good speedup while keeping
the readability and maintainability of an OO code.

References

Akeila, L. (2008), Parallel iterator, Technical report, ECE de-
partment, University of Auckland.

An, L., Xiang, Q. & Chavez, S. (2000.), A fast implementation
of the minimum spanning tree method for phase unwrap-
ping, in `Med. Imaging'.

Buckley, F. & Lewinter, M. (2003), A Friendly Introduction to
Graph Theory, Prentice Hall/Pearson Ed.

Cormen, T. H., Leiserson, C. E., Rivest, R. L. & Stein, C.
(2001), Introduction to Algorithms, McGraw-Hill.

Craig, I. (2001), The Interpretation of Object-oriented Pro-
gramming Languages, Springer.

D.Bader & Cong, G. (2004.), Fast shared-memory algorithms
for computing the minimum spanning forest of sparse
graphs, in `Parallel and Distributed Processing Sympo-
sium'.

Giacaman, N., Sinnen, O. & Akeila, L. (2008), Object-oriented
parallelisation: Improved and extended parallel iterator,
in `14th IEEE International Conference on Parallel and
Distributed Systems'.

Grama, A., Gupta, A., Karypis, G. & Kumar, V. (2003), In-
troduction to Parallel Computing 2nd edition, Addison-
Wesley.

N.Giacaman & O.Sinnen (2008), Parallel iterator for parallelis-
ing object oriented applications, in `7th WSEAS Interna-
tional Conference on Software Engineering, Parallel and
Distributed Systems (SEPADS'08)'.

Rajasekaran, S. & Reif, J. (2007), Handbook of Parallel Com-
puting, Models, Algorithms and Applications, CHAP-
MAN & HALL.

Reinders, J. (2007), Intel Threading Building Blocks: Out�t-
ting C++ for Multi-Core, O'Reilly.

Reinefeld, A. & Schnecke, V. (1994.), Work-load balancing in
highly parallel depth-�rst search, in `Scalable High- Per-
formance Computing Conference'.

Silvela, J. & Portillo, J. (2001), Breadth-�rst search and its
application to image processing problems, in `Image Pro-
cessing', Vol. 10, pp. 1194�1199.

S.Meguerdichian, Koushanfar, F., Potkonjak, M. & Srivastava,
M. (2001), Coverage problems in wireless ad-hoc sensor
networks, in `Proc. INFOCOM'01'.

Sun, J. (n.d.), `Java concurrent queue, retrieved from
http://java.sun.com/javase/6/docs/api/'.

Yooy, A., Chowx, E., Hendersony, K., McLendonz, W., Hen-
drickson, B. & Catalyurek, U. (2005), A scalable dis-
tributed parallel breadth-�rst search algorithm on blue-
gene/l.

Zhang, Y. & Hansen, E. A. (2006), Parallel breadth-�rst heuris-
tic search on a shared-memory architecture, in `Workshop
on Heuristic Search, Memory-Based Heuristics and Their
Applications'.

CRPIT Volume 107 - Parallel and Distributed Computing 2010

50

