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Abstract

We say that there is a community structure in a graph
when the nodes of the graph can be partitioned into
groups (communities) such that each group is inter-
nally more densely connected than with the rest of
the graph. However, the challenge is to specify what
is to be dense, and what is relatively more connected
(there seems to exist an analogous situation to what is
a cluster in unsupervized learning). Recently, Olsen
(2012) provided a general definition that seemed to be
significantly more generic that others. We make two
observations regarding such definition. (1) First, we
show that finding a community structure with two
equal size communities is NP -complete (Uniform
2-Communities). The first implication of this is that
finding a large community seems intractable. The sec-
ond implication is that, since this is a hardness result
for k = 2, the Uniform k-Communities problem is
not fixed-parameter tractable when k is the parame-
ter. (2) The second observation is that communities
are not required to be connected in Olsen (2012)’s
definition. However, we indicate that our result holds
as well as the results by Olsen (2012) when we require
communities to be connected, and we show examples
where using connected communities seems more nat-
ural.

Keywords: Community detection, graph partitioning,
complexity, parameterized complexity

1 Introduction

Researchers are now focusing on analyzing the com-
munity structure (Boccaletti et al. 2006, Lancichinetti
et al. 2010) of graphs and finding so called communi-
ties or modules (intuitively these are groups of nodes
that are more densely connected to each other than
with the rest of the graph). Exploring communities
in graphs is important (Lancichinetti et al. 2010) be-
cause 1) communities uncover the graph at a coarse
level, for example, formulating realistic mechanisms
for its genesis and evolution 2) communities provide a
new aspect for understanding dynamic processes oc-
curring in the graph and 3) communities reveal re-
lationships among the nodes that are not apparent
when inspecting the graph as a whole.

Recently, there has been a large research focus
on community structures in graphs (Condon & Karp
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2001, Fortunato 2010, Gargi et al. 2011, Kevin J. Lang
et al. 2009). However, the main problem is how
to define communities in the first place. This is
the essential issue tackled by most papers on the
topic which have appeared in the literature (Fortu-
nato 2010, references therein). Here we consider the
most recent definition of community structure intro-
duced by Olsen (2012). This definition is inspired
by the planted l-partition model, and the hierarchical
random graph model introduced by Condon & Karp
(2001). Olsen (2012) was able to justify why this
becomes a more suitable (and formal) definition of
community and initiated the study of the complex-
ity of finding communities by showing that it is NP -
complete to decide if a group of nodes can be extended
to a community in some community structure.

We introduce this generic notion of community
using the following notation. Let Π be a partition
of the vertices V of a graph G = (V,E) (Π =
{C1, C2, . . . , Ck}, with ∅ 6= Cj ⊂ V for j = 1, . . . , k

and
⋃k

j=1 Cj = V , and Cj ∩ Cj′ = ∅ for j 6= j′ ). If
i ∈ V , then we denote the part vertex i belongs to by
Πi. Let i ∈ V be a vertex and S ⊂ V , then Ni(S) is
the number of vertices in S that are neighbors (ad-
jacent) to the vertex i (a vertex is never considered
adjacent to itself).

Definition 1.1 A community structure for an undi-
rected connected graph G = (V,E) is a partition Π of
V such that

1. |Π| ≥ 2 (we have at least 2 communities),

2. |C| ≥ 2 for all C ∈ Π (every community has at
least 2 members) and

3. ∀i ∈ V, ∀C ∈ Π the following holds

Ni(Πi)

|Πi| − 1
≥ Ni(C)

|C|
. (1)

Each set of the partition is called a community.

Olsen (2012) also showed that finding a commu-
nity structure in a graph that does not contain Sn
(the stars of n vertices), for n ≥ 3 can be done in
polynomial time. However, nothing could be said
about the community structure, like if large commu-
nities could be found. Also, it was left open any claim
whether finding community structures with few com-
munities is tractable or not. Thus, we investigate
here the question of finding a community structure
with two communities. That ensures one community
is large as it must include at least half of the ver-
tices. It turns out that this investigation reveals one
more aspect regarding Definition 1.1. We direct the
reader to the observation that communities are not
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required to be connected. That is, each part C is not
required to be connected. Why we suggest communi-
ties be connected? Because it is hard not to consider
the connected components of a disconnected “commu-
nity” more naturally as communities in themselves.
In fact, the lack of links (vs links to other parts of the
graph) suggest the connected components are not to
be placed together. We also consider uniform commu-
nity structure, that is, all communities have the same
size. The uniform community structure has gained
importance due to its application for clustering and
detection of cliques in social, pathological and biolog-
ical networks (Patkar & Narayanan 2003).

We start with a discussion on the complexity of
finding 2-Communities. Why we look at the prob-
lem of two communities rather than the problem
with k communities? Because by showing the prob-
lem with 2 communities is hard, we are showing the
problem with k communities is also hard. Why we
look at equal size communities? Because this forces
the communities to be large. It seems in practice,
the larger a community, the more interesting. We
prove that when we require the communities to have
equal size the problem is NP -complete. This re-
sult suggests that other lines of attack may be re-
quired. For example, a very successful avenue of at-
tack has recently been the application of parameter-
ized complexity theory. Such approach can lead to
polynomial-time algorithms on the size of the input
(at the cost of exponential-time complexity on the
parameter, which can be small in practical settings).
A first natural parameter is the number k of com-
munities. That is, to consider the question whether,
for a given graph G, there exists a community struc-
ture with exactly k communities. We call this prob-
lem k-Communities. Because we will show that
for k = 2, the problem Uniform k-Communities
(where communities are all of the same size) is NP -
complete, the problem Uniform k-Communities is
not fixed-parameter tractable when k is the parame-
ter. In other words, it is unlikely to have an algorithm
for this problem with f(k) · poly(|G|) time require-
ments, for some computable function f .

2 Uniform Two-Communities is hard

In this section, we formally define our problem and
then show our main hardness result (Theorem 2.1).
Our proof is inspired by a hardness result for a graph
partitioning problem (Bazgan et al. 2010). We prove
this results in several steps.

Uniform k-Communities
Instance : A graph G = (V,E).
Parameter : An integer k > 1.
Question : Does a community structure Π =
{C1, C2, . . . , Ck} exist such that |Ci| = |Cj | for
i, j = 1, . . . , k?

Theorem 2.1 Uniform 2-Communities is NP-
complete.

Uniform 2-Communities belongs to the class
NP. Because, we can verify, in polynomial time,
whether a partition of size two constitutes (with equal
parts) a community structure. For the hardness part
of the theorem, we give a polynomial reduction from
a variant of the Clique problem to the Uniform
2-Communities problem. The version of the Clique
problem that asks, for a given non-complete graph
G of size n (n is even), whether there exists a com-
plete subgraph of size at least n/2. This version of
the Clique problem is also NP -complete (Garey &

Johnson 1979), and it is not hard to see that the ver-
sion we will use (whether a graph has a clique of size
n/2) is also NP -complete. Now we construct our re-
duction and we will show that every Yes-instance of
the Clique problem maps to a Yes-instance of the
Uniform 2-Communities problem and vice versa.

Construction 1 Let G= (V , E) be an instance of
the Clique problem with V = {v1, v2, . . . , vn} and
E = {e1, e2, . . . em} (with |E| = m > 0). Let p be
the number of non-edges in G, that is p = n × (n −
1)/2−m. The value of p is at least one, as the graph
G is a non-complete graph. Suppose we label the non-
edges in G by ne1, . . . , nep. We construct an instance
G′′ = (V ′′, E′′) of the 2-Communities problem as fol-
lows. The vertex set V ′′ consists of four disjoint sets,
F , T , V and V ′. That is, V ′′ = F ∪ T ∪ V ∪ V ′. The
set V is the original set of vertices in the instance
of the Clique problem; the set V ′ = {v′1, . . . , v′n}
consists of as many mirror vertices as in the origi-
nal set V of vertices. The set F = {f1, . . . , f2p+1},
has two vertices f2l, f2l+1 for each non-edge nel with
l = 1, . . . , p and f1 is an additional vertex. The set
T = {t1, . . . , t2p+1} also has two vertices t2l, t2l+1 for
each non-edge in the original instance of the Clique
problem, and also t1 is an additional vertex.

We now describe the set of edges E′′. The set E
of original edges among vertices in V is in E′′; that
is E ⊂ E′′. In the new instance, F and T are two
cliques of size 2p+ 1 (that is, in E′′, all vertices of F
are connected among themselves and also in E′′, all
vertices of T are connected among themselves). For
j = 1, . . . , n, (v′j, vj) is in E′′. The edge set E′′

contains some additional edges as follows:

- Each vertex t ∈ T connects to all vertices of V .

- Each vertex f ∈ F connects to all vertices of V ,
unless

– f is of the form f2l or f2l+1

– and nel = (vi, vj) is the missing edge (with
i < j) in G corresponding to the pair
(f2l,f2l+1).

In this case, the vertex f2l connects to every ver-
tex in V \{vj}, and f2l+1 connects to every vertex
in V \ {vi}.

Finally, the edge (f1, t1) is in E′′.

Note the following about this construction. First,
the degree of all vertices in V ′ is one, as these vertices
are only connected to their mirror vertices. Second,
the degree of every vertex t 6= t1 in T is |V |+|T |−1 =
n+ 2p, and the degree of t1 is |V |+ |T | = n+ 2p+ 1.
This is because t is in clique T (degree |T |−1) and it is
connected to each vertex in V and t1 is additionally
connected to f1. Third, the degree of every vertex
f ∈ F is at least |F | − 1 as it belongs to the clique
F . The vertex f1 has degree |F |+ |V |, but the other
vertices in F have degree |F | + |V | − 2, as each of
these vertices looses one connection to one vertex in
V that is an endpoint of a non-edge.

Figure 1 provides a more specific example of the re-
duction. Clearly, this construction can be performed
in polynomial time. We only need to show that a Yes-
instance of the first problem maps to a Yes-instance
of the second problem and vice versa.

Proposition 2.2 A Yes-instance of the Clique
problem maps to a Yes-instance of the Uniform
2-Communities problem.
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Figure 1: The dotted lines mean that there is no edge between the two end points of the line. A branch of four
edges at f1 and each vertex of T mean those vertices connect to all vertices of V .

Proof: First, assume that the graph G has a clique
C of size n/2. We define a partition of size two of
the graph G′′ by considering the first set as Π1 =
F ∪ C ∪ C ′ where C ′ = {v′i : vi ∈ C} and the second
set as Π2 = T ∪ C̄ ∪ C̄ ′, where C̄ = V − C and C̄ ′ =
{v′i : vi ∈ C̄} . We show these two sets constitute a
community structure of size two.

We must verify Inequality (1) for the three types
of vertices that appear in Π1 = F ∪ C ∪ C ′ and also
for the three types of vertices in Π2 = T ∪ C̄∪ C̄ ′. We
start with Π1, and in particular with vertices in C.
Then, vertices in F (this will require three cases) and
then C ′. When dealing with Π2, we sill start with C̄,
then T and finally C̄ ′.

Let c be a vertex in the clique C. We consider
xc = n− 1−Nc(V ), that is the number of non-edges
in the graph G with one end-point in the vertex c.
Then, by construction, the vertex c is not linked to
xc vertices of the clique F . Since C is a clique of
size n/2 in V , then it involves at least half of the
vertices of V , that is |C| ≥ |C̄|. Also, by construction
we have |F | = |T |. We can then see that Nc(Π1)
equals |F | + |C| − xc, because the vertex c connects
to |C| − 1 vertices of the clique C, its mirror c′ and
|F | − xc vertices in F . Therefore, we have

Nc(Π1)

|Π1| − 1
=
|F |+ |C| − xc

|Π1| − 1

≥ |T |+ |C̄| − xc

|Π1| − 1

>
|T |+ |C̄| − xc

|Π1|
=
|T |+ |C̄| − xc

|Π2|
.

Now, we compute Nc(Π2). The vertex c in the clique
C connects to every vertex in T and to every vertex
v on C̄ unless (c, v) is a non edge. Moreover, all non-
edges with an endpoint in c must have an endpoint
in C̄ as C is a clique. Therefore, we have

Nc(Π2)

|Π2|
=
|T |+ |C̄| − xc

|Π2|
.

This implies that the vertex c satisfies Inequality (1).
Now we need to show that every vertex in F also

satisfies Inequality (1) since the second type of vertex
in Π1 are the vertices in F .

Consider f ∈ F . According to our construction
the size of the clique F is at least three (|F | ≥ 3) and
we will face the following cases.

Case 1: f 6= f1, and f connects to every vertex in
C.

In this case Nf (Π1) equals |F | − 1 + |C|, since
the vertex f connects to every vertex in C. Also,
we have |C̄| ≥ Nf (Π2), therefore

Nf (Π1)

|Π1| − 1
=
|F | − 1 + |C|
|Π1| − 1

≥ |F | − 1 + |C̄|
|Π1| − 1

>
|F | − 1 + |C̄|
|Π1|

=
|F | − 1 + |C̄|
|Π2|

>
|C̄|
|Π2|

≥ Nf (Π2)

|Π2|
.

Case 2: The vertex f connects to every vertex in C
except one.

We recall that the degree of every vertex in F
that is not f1 is |F |+ |V |−2. Since |F | ≥ 3, then
we have

Nf (Π1)

|Π1| − 1
=
|F | − 1 + |C| − 1

|Π1| − 1

≥ |F | − 1 + |C̄| − 1

|Π1| − 1

>
|F | − 2 + |C̄|
|Π1|

=
|F | − 2 + |C̄|
|Π2|

≥ |C̄|
|Π2|

=
Nf (Π2)

|Π2|
.

Case 3: f = f1.

According to the construction, f connects to
every vertex in C and also connects to t1.
Hence, we have

Nf (Π1)

|Π1| − 1
=
|F | − 1 + |C|
|Π1| − 1

≥ |F | − 1 + |C̄|
|Π1| − 1

>
|F | − 1 + |C̄|
|Π1|

=
|F | − 1 + |C̄|
|Π2|

≥ 1 + |C̄|
|Π2|

≥ Nf (Π2)

|Π2|
.
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The last type of vertex in Π1 that we check for In-
equality (1) belongs to C ′, but these vertices have
degree 1 in Π1 and degree zero in Π2, so this is im-
mediate.

To complete the proof that we have a YES-
instance of 2-Communities we need to establish In-
equality (1) for the vertices in Π2. We start by show-
ing that Inequality (1) holds for every vertex c in C̄.

First, Nc(Π2) = |T |+ 1 + Nc(C̄), since c connects
to all vertices in T , all its neighbors in C̄ and also
connects to its mirror c′. Second, assume xc is the
number of non-edges in C̄ with endpoint in c, then we
have Nc(Π2) = |T |+ 1 + |C̄|− 1−xc = |T |+ |C̄|−xc.
Third, if there exists a missing edge (e, v) with v ∈
C̄, corresponding to this missing edge, there exists
exactly a missing edge between c and a vertex f ∈ F .
Therefore, Nc(Π1) equals |F | − xc + Nc(C). Since
|C̄| = |C| and |C̄| ≥ Nc(C), then we have

Nc(Π2)

|Π2| − 1
=
|T |+ |C̄| − xc

|Π2| − 1

≥ |F |+ Nc(C)− xc

|Π1| − 1

>
|F |+ |C| − xc

|Π1|

=
Nc(Π1)

|Π1|
.

We now argue for the second type of vertices in
Π2. We show that every vertex t in T satisfies In-
equality (1). Since |Π1| = |Π2|, |T | ≥ 3 and |C| = |C̄|
we have for every t 6= t1

Nt(Π2)

|Π2| − 1
=
|T |+ |C̄| − 1

|Π2| − 1

=
|T |+ |C| − 1

|Π1| − 1

>
|T |+ |C| − 1

|Π1|

>
|C|
|Π1|

≥ Nt(Π1)

|Π1|
.

Similarly, for t = t1 we have

Nt(Π2)

|Π2| − 1
=
|T |+ |C̄| − 1

|Π2| − 1

=
|T |+ |C| − 1

|Π1| − 1

>
|T |+ |C| − 1

|Π1|

≥ |C|+ 1

|Π1|

≥ Nt(Π1)

|Π1|
.

And to complete all vertices of Π2 we consider the
mirror vertices in C̄ ′, but again these vertices have
degree one to their community Π2 and zero to the
other part Π1, so trivially they satisfy Inequality (1).

Therefore, a Yes-instance of the Clique prob-
lem maps to a Yes-instance of the Uniform

2-Communities problem. �

Now we show that the reverse is true.

Proposition 2.3 A Yes-instance of the Uniform
2-Communities problem maps to a Yes-instance of
the Clique problem.

Suppose I = (G′′,Π1,Π2) is a Yes-instance of the
Uniform 2-Communities problem. We justify the
following observations to show the pre-image of I is
a Yes-instance of the Clique problem.

Observation 2.4 (about mirror vertices): In each
Yes-instance of 2-Communities, the mirror ver-
tices v′j must be in the same community as vj, with
j = 1, . . . , n.

Proof: If a mirror vertex v′ is in community Π1,
and its corresponding vertex v is in community
Π2 6= Π1, then Nv′(Π1) = 0, while Nv′(Π2) > 0.
This contradicts that the vertex v′ must satisfy
Inequality (1). �

Observation 2.5 The set T can not be cut by the
community structure.

Proof: (by contradiction) Suppose T is divided in
(T1, T2) with Ti ⊆ Πi and i = 1, 2. Also assume that
the set V is cut in (V1, V2) with with Vi ⊆ Πi and
i = 1, 2, where V1 and V2 could be empty. Moreover,
assume that F is divided in (F1, F2) with Fi ⊆ Πi
and i = 1, 2. We will face the following cases where
each one leads to a contradiction.

Case 1: T1 = {t1} and F1 = {f1}.
In this case |T2| is |T | − 1 and |F2| = |F | − 1.
Therefore, |T2| is equal to |F2| and both are equal
to |T | − 1 because |T | = |F |. Since Π is a com-
munity structure, then every t ∈ T2 must satisfy
Inequality (1). But,

Nt(Π2)

|Π2| − 1
=

|T2| − 1 + |V2|
|F2|+ 2|V2|+ |T2| − 1

=
(|T | − 1)− 1 + |V2|

(|F | − 1) + 2|V2|+ (|T | − 1)− 1

=
|T |+ |V2| − 2

2|T |+ 2|V2| − 3
<

1

2
,

and
Nt(Π1)

|Π1|
=

1 + |V1|
2|V1|+ 2

=
1

2
.

This statement contradicts the vertex t must sat-
isfy Inequality (1).

Case 2: T1 = {t1} and f1 ∈ F2.

The neighbors of the vertex t1 in Π1 are all ver-
tices in V1 as T1 = {t1}. Also, the neighbors of
the vertex t1 in Π2 are all vertices in T2, with
also all vertices in V2 and f1. Therefore, we have

Nt1(Π1)

|Π1| − 1
=

|T1| − 1 + |V1|
|F1|+ 2|V1|+ |T1| − 1

=
1− 1 + |V1|

|F1|+ 2|V1|+ 1− 1

=
|V1|

|F1|+ 2|V1|

≤ 1

2
.

CRPIT Volume 135 - Computer Science 2013

26



Since |T1| = 1, |T2| = |T |−1 and |T |+ 1 > |F | ≥
|F2|, then we have

Nt1(Π2)

|Π2|
=
|T2|+ |V2|+ 1

|T2|+ 2|V2|+ |F2|
>

1

2
.

This statement contradicts the fact that the ver-
tex t1 must satisfy Inequality (1).

Case 3: T1 = {t1} and |F1| ≥ 2.

Case 1 and Case 2 resulted in if T1 = {t1}, then
the vertex f1 must be in F1 and |F1| ≥ 2. Now
we consider the vertex t1 to show that it violates
Inequality (1). First, the neighbors of the vertex
t1 in Π1 are all vertices in V1 and f1. Second, the
size of |F1| ≥ 2, therefore we have

Nt1(Π1)

|Π1| − 1
=

|V1|+ 1

|F1|+ 2|V1|+ |T1| − 1

=
|V1|+ 1

|F1|+ 2|V1|

≤ 1

2
.

On the other hand, |F1| ≥ 2 implies that |F1| +
|F2| ≥ |F2|+2. The latter inequality implies that
|T | = |F | > |F2|+ 1. Then, we have

|T | > |F2|+ 1

⇒ |T | − 1 > |F2|
⇒ |T2| > |F2|
⇒ 2|T2|+ 2|V2| > |T2|+ 2|V2|+ |F2|.

The most right inequality implies that

Nt1(Π2)

|Π2|
=

|V2|+ |T2|
|T2|+ 2|V2|+ |F2|

>
1

2
.

This statement shows that the vertex t1 violates
Inequality (1).

Case 4: {t1, t} ⊆ T1 where t 6= t1.

The above cases imply that the set T1 must con-
tain another vertex t 6= t1. Since the vertex
t ∈ T1 must satisfy Inequality (1), then we have

Nt(Π1)

|Π1| − 1
=
|T1|+ |V1| − 1

|Π1| − 1

≥ Nt(Π2)

|Π2|

=
|T2|+ |V2|
|Π2|

. (2)

Also, each vertex t′ in T2 must satisfy Inequal-
ity (1), therefore,

Nt′(Π2)

|Π2| − 1
=
|T2|+ |V2| − 1

|Π2| − 1

≥ Nt′(Π1)

|Π1|

=
|T1|+ |V1|
|Π1|

. (3)

From Inequality (2) we get

|Π2|(|T1|+ |V1|)
≥ (|Π1| − 1)(|T2|+ |V2|) + |Π2|. (4)

From Inequality (3) we get

|Π1|(|T2|+ |V2| − 1) ≥ (|Π2| − 1)(|T1|+ |V1|),

or equivalently

|Π1|(|T2|+ |V2| − 1)

≥ |Π2|(|T1|+ |V1|)− (|T1|+ |V1|). (5)

Combining Inequality (4) and Inequality (5) we
arrive at

|Π1|+ |Π2| ≤ (|T1|+ |T2|) + (|V1|+ |V2|).

This inequality contradicts to the fact that F is
not empty. �

Observation 2.6 The set F can not be cut by the
community structure.

Proof: Assume that F is cut into (F1, F2) where F1 ⊆
Π1, F2 ⊆ Π2 and F1 6= ∅. Also assume that the
original set V is cut into (V1, V2) with V i ⊆ Πi and i =
1, 2, where V1 and V2 could be empty. Moreover, since
T can not be split, without loss of generality we can
assume that Π1 = V1∪V ′

1 ∪F1, Π2 = V2∪V ′
2 ∪T ∪F2.

We show that F2 is empty or we have a contradiction.
Assume that F2 is not empty and let f ∈ F2. Then

we will face the following cases.

Case 1: f = f1.

The neighbors of vertex f1 in Π2 are all vertices
in V2, plus all vertices in F2−{f1} and the vertex
t1. Therefore, we have

Nf1(Π2)

|Π2| − 1
=

|F2|+ |V2|
|F2|+ 2|V2|+ |T | − 1

≤ 1

2
.

Similarly, the neighbors of the vertex f1 in Π1 are
all vertices in V1, plus all vertices in F1, therefore,

Nf1(Π1)

|Π1|
=
|F1|+ |V1|
|F1|+ 2|V1|

>
1

2
.

This statement shows that the vertex f1 violates
Inequality (1), so it is a contradiction.

Case 2: f 6= f1 and f does not connect to a vertex
of V2.

The neighbors of the vertex f in Π2 are all
vertices in V2 except one, plus all vertices in
F2 − {f}, hence,

Nf (Π2)

|Π2| − 1
=
|F2| − 1 + |V2| − 1

|F2|+ 2|V2|+ |T | − 1
<

1

2
.

Similarly, the neighbors of the vertex f in Π1 are
all vertices in V1, plus all vertices in F1, therefore,

Nf (Π1)

|Π1|
=
|F1|+ |V1|
|F1|+ 2|V1|

>
1

2
.

This contradicts the fact that the vertex f must
satisfy Inequality (1).

Case 3: f 6= f1, f does not connect to a vertex of V1
and |F1| ≥ 2.

The neighbors of the vertex f in Π2 are all ver-
tices in V2, plus all vertices in F2 − {f}, hence,

Nf (Π2)

|Π2| − 1
=

|F2| − 1 + |V2|
|F2|+ 2|V2|+ |T | − 1

<
1

2
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Similarly, the neighbors of the vertex f in Π1 are
all vertices in V1 except one, plus all vertices in
F1. Moreover, the size of |F1| ≥ 2, therefore,

Nf (Π1)

|Π1|
=
|F1|+ |V1| − 1

|F1|+ 2|V1|
≥ 1

2
.

Similar to Case 1 above, we have a contradiction
that the vertex f violates Inequality (1).

Case 4: If f 6= f1, f does not connect to a vertex of
V1 and |F1| < 2.

Since F1 is not empty, we must have |F1| = 1, and
by Case 1, F1 = {f1}, while |F2| = |F |−1. More-
over, the vertex f1 must satisfy Inequality (1).
Therefore, we have

Nf1(Π1)

|Π1| − 1
=

|V1|
1 + 2|V1| − 1

=
1

2
.

Now, to find the value of Nf1(Π2)/|Π2|, we note
that f1 is adjacent to all the vertices in F2, all the
vertices in V2 and t1. Moreover, |F2| = |T | − 1.
Thus,

Nf1(Π2)

|Π2|
=

|V2|+ |F2|+ 1

2|V2|+ |F2|+ |T |

=
|V2|+ |T |

2|V2|+ 2|T | − 1

>
|V2|+ |T |

2|V2|+ 2|T |

=
1

2
.

This is a contradiction since the vertex f1 must
satisfy Inequality (1) for a 2-community. �

Observation 2.7 The set F and and the set T do
not belong to a same community.

Proof: (by contradiction) Assume V is cut in (V1, V2).
Also, assume Π1 = F ∪T ∪V1 ∪V ′

1 and Π2 = V2 ∪V ′
2 .

Consider a vertex t 6= t1 in T . The neighbors of the
vertex t in Π1 are all vertices in V1, plus all vertices
in T − {t}. Similarly, the neighbors of the vertex t
in Π2 are only all vertices in V2. Since (Π1,Π2) is a
community structure, then the vertex t must satisfy
Inequality (1). Therefore, we have

Nt(Π1)

|Π1| − 1
=

|V1|+ |T | − 1

|F |+ 2|V1|+ |T | − 1
≥ Nt(Π2)

|Π2|
=
|V2|
2|V2|

.

By simplifying the the above inequality we arrive at

|V1|+ |T | − 1

|F |+ 2|V1|+ |T | − 1
≥ 1/2.

Now the above inequality implies that

2 · (|V1|+ |T | − 1) ≥ |F |+ 2|V1|+ |T | − 1,

and hence

2 · |V1|+ 2 · |T | − 2 ≥ |F |+ 2|V1|+ |T | − 1.

Since |T | = |F |, the last inequality implies that
−2 ≥ −1, which is a contradiction. Therefore, T and
F are not in a same community. �

Observation 2.8 If (V1, V2) is a cut of V based
on community structure (Π1,Π2), then Π1 =
F
⋃

V1

⋃
V ′
1 , Π2 = T

⋃
V2

⋃
V ′
2 and V1 is a clique.

Proof: (by contradiction) Assume V1 is not a clique.
Therefore, there exist a missing edge between two ver-
tices of V1. Suppose v ∈ V1 is one of the end points of
the mentioned missing edge. Assume xv is the num-
ber of missing edge in V1 with one end in v. Clearly
xv ≥ 1. Also assume that yv is the number of missing
edge in V2 with one end in v.

Since (Π1,Π2) is a community structure, the ver-
tex v must satisfy Inequality (1), therefore we have

Nv(Π1)

|Π1| − 1
=

(|V1| − 1)− xv + |F | − (xv + yv)

|Π1| − 1

≥ Nv(Π2)

|Π2|

=
|V2| − yv + |T |

|Π2|
. (6)

Since |Π1| = |Π2|, therefore |V1| = |V2|. Now we
simplify Inequality (6) as follows.

|Π2|((|V1| − 1)− xv + |F | − (xv + yv))

≥ (|Π1| − 1)(|V2| − yv + |T |).

Now we substitute |Π1| with |Π2|, |F | with |T | and
|V1| with |V2| as they are equal to each other. There-
fore, we get

|Π2|((|V2| − 1)− xv + |T | − (xv + yv))

≥ (|Π2| − 1)(|V2| − yv + |T |).

After canceling equal values from the both sides of
the inequality and simplifying it, then we arrive at

|V2|+ |T | ≥ |Π2|+ 2 · xv|Π2|.

But, the latter inequality represents a contradiction
since xv ≥ 1 and the value of the left side of the
above inequality is in fact less than |Π2|. Therefore
V1 is a clique. �

Observation 2.9 The size of V1 is at least n/2.

Proof: Observation 2.8 shows that V1 is a clique.
Also we know that |Π1| = |Π2|, therefore, |V1| = |V2|.
Hence, the size of |V1| = n/2. �

3 Some observations on the definition of com-
munity structure

As we alluded in the introduction, our aim was to in-
vestigate when can we find a large community within
a community structure. Thus, we focused on the
2-Communities problem since this ensures one com-
munity is large as it must include half of the vertices
of the underling graph. However, we discovered that
requesting connectivity for each community changes
the problem. According to Definition 1.1, commu-
nities are not required to to be connected. That is,
each community C in the community structure is not
required to be connected.

Observation 3.1 There are graphs that do not
have a 2-community structure, if we demand that
each community must be connected; but have a 2-
community structure under Definition 1.1.
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Figure 2: This graph has a 2-community structure,
nodes in the purple oval is one community and nodes
in the green are the other. But the purple community
is disconnected. There is no 2-community structure
if we require the communities to be connected.

Proof: For example, the graph in Figure 2 has a
non-connected community in a 2-community struc-
ture, but it does not have a 2-community structure
where both communities are connected. It does have
a community structure with three communities. �

One can examine Olsen (2012)’s original proof
about whether there exists a community structure
where a given set S of vertices is in one commu-
nity. We discovered that the proof also shows the
problem to be NP -complete when we add the condi-
tion that each community shall be connected. Also,
Olsen’s algorithm (Olsen 2012, Theorem 2) for com-
puting a sample community structure always returns
connected communities in the structure.

We find it more natural that communities
should be connected. And thus, propose that
Definition 1.1 should require that each com-
munity be connected.

Olsen’s algorithm (Olsen 2012, Theorem 2) also
has the unfortunate circumstance that it may pro-
duce very small (and thus a large number) of commu-
nities. The algorithm uses a polynomial number of
local-search improvements among certain partitions
of the input graph G. Each step requires polynomial
time and the climb on the values of the objective
function finishes with a community structure. The
output of his algorithm depends to the initial state
and, for example, if we consider the graph in Fig-
ure 3 the algorithm finishes with many communities,
each of size three; although the graph accepts a 2-
community (with connected communities). That is,
if we apply his algorithm to this graph by consider-
ing the edge {v, w} and the edge {v′, w′} as an ini-
tial stage, then it will produce a community structure
with many small communities. Therefore, this algo-
rithm may not produce a community structure which
has far more communities (O(n)) when the graph ac-
tually accepts a constant number. Thus, it is not a
good algorithm to approximate within a constant ra-
tio the largest community or the smallest number of
communities.
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Figure 3: The left side illustrates the schema of the in-
put graph; many S3s (stars of three vertices, arranged
in a cycle). The right side illustrates a community
structure found by applying Olsen’s algorithm (Olsen
2012) with an initial state consisting of the edge
{v, w} and the edge {v′, w′}.

4 Classes of graphs with 2-communities

The example of Figure 3 enables us to reflect on what
graphs accept 2-communities. In particular, since a
community is a concept close to a cluster or a re-
gion of high density, a community structure with 2-
communities must imply some low density between
the communities. We can establish a relation between
the notion of a cut in a graph and the notion of a 2-
community structure. A cut in a graph G= (V , E)
is a partition (Π1,Π2) of vertices of G, and is called
balanced if |Π1| = |Π2|. The set of edges whose end
points are in different subsets of the partition is called
a cut set. A min-cut is a cut with the smallest cut-set
size (and can be found in polynomial time, although
it might not be balanced). Figure 4 illustrates a min-
cut of size two.

b b

bb

b

Figure 4: A min cut of size two.

We show that a balanced min-cut of a graph G
constitutes a 2-community structure.

Observation 4.1 If (Π1,Π2) is a cut of size two of
a graph G with cut-set S, then every vertex that is not
an endpoint of an edge in S satisfies Inequality (1).

This is immediate. Every vertex v ∈ Πi, that is not
an endpoint of an edge in the cut-set S, has no con-
nections to the other side. Thus, the value of Nv(Πj)
with j 6= i is zero.

Observation 4.2 If (Π1,Π2) is a minimum cut of
graph G with |Π1| = |Π2|, then (Π1,Π2) forms a 2-
community structure.

Proof: Based on Observation 4.1, we only need to
show that every vertex in the cut-set satisfies Inequal-
ity (1). Assume a vertex v ∈ Π1 is an endpoint of an
edge in the cut-set S. The number of neighbors of ver-
tex v in the set Π1 is equal or greater that the number
of neighbors of vertex v in the set Π2. Otherwise, we
can make an smaller cut-set by moving vertex v to
the set Π2 (contradicting the fact that the size of S
is minimum among all cut-sets). Therefore,

Nv(Π1)

|Π1| − 1
≥ Nv(Π2)

|Π2|
,

since the size of Π1 is equal to the size of Π2. That
is the vertex v satisfies Inequality (1). �

Corollary 4.3 Paths and cycles with even number of
vertices have a 2-communities structure.

The above corollary can be extended to the paths and
cycles with odd number of vertices.

Lemma 4.4 The 2-Communities problem for
graphs with maximum degree two and |V | ≥ 3 can be
solved in polynomial time.

Proof: Let G= (V , E) be a graph with maximum de-
gree two. If G is not a connected graph, then consider
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any connected component Π1 as one community and
Π2 = V − Π1 as the second community. The par-
tition (Π1,Π2) forms a 2-community structure since
there is no edge between the two sets. Thus, based
on Observation 4.1, all vertices satisfy Inequality (1).

Assume now that G is a connected graph. Since
the maximum degree is at most two and the graph is
connected, the graph G is a path or a cycle. We can
construct a two communities as follows.

Case 1: The graph G is a path. We pick a vertex v of
degree one and add all vertices in a path of length
d|V |/2e from v into a set Π1. The rest of vertices
is placed in a set Π2. It is not hard to see that
all vertices in Π1, and Π2 satisfy Inequality (1).
Hence (Π1,Π2) is a 2-community structure.

Case 2: G is a cycle. We pick a vertex v of the cycle
and add all vertices in a path of length d|V |/2e
from v into a set Π1. Again, the rest of vertices is
placed in a set Π2. A similar argument to Case 1
shows that (Π1,Π2) is a 2-community structure.

�

5 Conclusion and open problems

We studied the computational complexity of the uni-
form k-Communities problem. We showed that this
problem is NP -complete even for k = 2. The com-
plexity of the problem is not known if we drop the
uniformity (size of all communities are equal) condi-
tion as in the k-Communities problem. This leads
to observations for detecting a community structure
of size two. We also showed that the known algo-
rithm (Olsen 2012) for finding a community structure
may find a solution that is very far from an optimal
solution to the 2-Communities problem. Moreover,
we observed that there may exist graphs where some
communities are not connected. Since requiring all
communities to be connected is consistent with pre-
vious work, we suggest the definition should incorpo-
rate this requirement.

Our work here leads to several interesting open
problems for finding a community structure with a
specific property. We list some of them.

Problem 1: Determine the computational complex-
ity of the uniform k-Communities problem on
different classes of graphs, such as planar graphs
and regular graphs.

Problem 2: Determine the computational complex-
ity of the k-Communities problem.

Problem 3: Determine the computational complex-
ity of finding a community structure with one
community of size at least k.

Another interesting connection of the
k-Communities problem seems to be a rela-
tively similar problem in the literature which is
called the Sparsest Cuts problem. A sparest cut of
a graph G= (V , E) is a partition (V1, V \ V1) having
the minimum density

|cut-set(V1)|/|V1||V \ V1|

among all partitions in the graph, where

cut-set(V1) = {e = {u, v} ∈ E | u ∈ V1 and v /∈ V1}.

The Sparsest Cuts problem is NP -hard; however, it
can be solved in polynomial time on trees and planar

triconnected graphs (Matula & Shahrokhi 1990). It is
not hard to see that in paths and in cycles a sparsest
cut is also a 2-community structure and vice versa.
However, it would be interesting to know on what
graph classes the concept of 2-community structure
and of sparest-cut are identical.
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