
On Wheels, Nuts and Software

Michael Ellims
Pi Technology,

Ely Rd. Milton, Cambridge, CB4 6WZ England
mike.ellims@pitechnology.com

Abstract
In this paper I examine the issue of whether we can trust
software systems and put forward an argument that in an
absolute sense the answer must necessarily be no for a
multitude of reasons. The paper then examines the
question of whether this is an actual impediment to the
successful application of software with particular
reference to automotive applications. In particular I
examine the question of whether our expectations of
software are compatible with the realities of road vehicle
manufacture and use. I conclude that with good
methodology and integration within a whole vehicle
development process, software based systems can, and
will provide levels of safety above those which are
experienced today so long as certain critical constraints
are met..

Keywords: systems, requirements, safety, limits

1 Introduction

The question being addressed is “can we trust
programmable technology?”. In the context of safety
related systems what does this question actually ask? Can
we trust software? This question seems too limited, and
perhaps should be, “can we develop software that is safe
and reliable?”. This is better, however this still excludes
the environment in which the software operates and so
the question can, and should, be rephrased as “can we
develop software that is safe and reliable in all its
interactions with the environment in which it operates?”.
This is the primary question which this paper attempts to
address. The question is quite broad and to answer it we
need to answer similar questions as to whether or not we
can completely trust the components that make up
software based systems.

There are a number of major elements that can be
considered: system requirements, software requirements,
the software itself and the hardware environment in
which it operates i.e. processors, memory, wiring harness,
sensors and so forth.

The paper is structured in two main parts. The first,
section 2, broadly examines the question of whether we

Copyright © 2004, Australian Computer Society, Inc.
This paper appeared at the 9th Australian Workshop on
Safety Related Programmable Systems (SCS'04),
Brisbane. Conferences in Research and Practice in
Information Technology, Vol. 47. Tony Cant, Ed.
Reproduction for academic, not-for profit purposes
permitted provided this text is included.

can trust the requirements, the software itself or the
hardware on which it executes and attempts to establish
what the limits are on our ability to construct software
systems. The second, section 3, approaches the question
by examining some of the evidence in the form of data on
recorded failures in automotive software systems and
goes on to put forward reasons why, when compared to
other automotive systems, software based systems seem
to be relatively successful. Section 4 examines the
question directly by looking at some instances where
software based systems add benefits, in particular for the
case of electronic throttles. Section 5 then looks at what
we can expect in the near term future and asks the
question of whether the success achieved to date can
continue. Section 6 examines some of the issues that the
author has found problematic in the past and believes still
need to be addressed. Section 7 draws some conclusions.

2 On the Limits of Correctness

2.1 Requirements

To be able to completely trust the requirements we need
to be able to successfully capture all requirements. Is this
possible? The answer to this question may be no, or at
least not completely. Requirements capture involves
explicitly stating what we want the system to do, what
information is available to the system and stating what we
don’t want the system to do by means of a complete
hazard analysis.

To perform this phase of the process successfully we
have to know the answers to the questions above however
the process is subject to very human limitations. For
example in a study by Curtis, Krasner and Iscoe (1988)
domain knowledge is identified as one of, if not the
primary factor related to the success of a software
system1. This is highlighted in [Redmill99] where the
roles necessary to perform a HAZOP are enumerated.
Experts feature prominently. Some of the areas listed as
requiring input from experts include;

• Understanding hazards associated with the
system

• Knowledge of similar systems

• Knowledge of the systems environment

What is being asked for here is that persons with relevant
domain knowledge be involved in the hazard discovery

1 This paper contains the truly wonderful quote, “Writing
code isn’t the problem, understanding the problem is the
problem”.

process. There are a number of issues associated with the
process. For example in the second point noted above the
word “similar” has been used. This is in recognition of
the fact that no two systems are ever exactly the same.
New systems usually introduce new functionality. Even if
functionality were to remain unaltered something is
changing; it may be the processor, the communications
channels, the sensor set, it is however change.

The very fact that change is present means that there is no
one who is “before the fact” an expert in all the aspects of
the new system.

Another issue is that experts are usually expert in a single
domain and for the development of systems requirements,
this tends to imply they are not experts in programming.
The converse is also usually true, programmers are not
usually experts in the domain of the systems they are
developing.

This in itself leads to some “interesting” problems. The
first, and possibly most significant of which is
communication. Experts in different fields do not use the
same language, or rather do not always use the language
in the same ways, this is true despite superficial
similarities such as having "English" as a native tongue.

Possibly worse is that each profession tends to have its
own formal notation (or notations) for encoding
information. The point is raised by McDermid et. al.
(1998) who point out that control engineers use
differential calculus while it can be expected that
"programmers" would use formal notations such as Z or
B. Any translation for one system to another can
introduce errors. If errors can be introduced then they
probably will be. Of course translation from a system
specified as a set of differential equations to English can,
and usually will, also result in at least some translation
problems.

Of course problems in communications are not limited to
those associated with translation. Failure to pass
information can also have catastrophic consequences. In
their analysis of the Challenger disaster, Pinkus et al.
(1997) argue that had the complete set of failure vs.
temperature data been presented, including information
for flights where no failures were detected, then the
relationship would have been more apparent.

There is also the interesting question of how domain
knowledge is gained in the first place. Domain
knowledge derives from essentially two sources. Firstly
there is the established body of knowledge that is
available through formal education, books, research
journals etc. Secondly, and more importantly for the
current discussion is domain knowledge acquired though
ones working life and professional activities. To some
greater or lesser extent much of the knowledge acquired
by this route will be empirical in nature and hence subject
to greater or lesser degrees of validation and analytical
analysis. Indeed it may not actually be possible to
perform experimental validation.

For example consider the use of battery packs in hybrid
electric vehicles. These packs are expected to last for the
lifetime of the vehicle. However it is not possible to

obtain precise data on how these packs will behave over
the time periods for which they are required to operate
before they are deployed. Various techniques can be used
to obtain a good or rather reasonable estimate of their
future performance using models of various types and
applying empirical techniques, such as accelerated
ageing. However precise data will not be available until
the actual required life span (around 15 years) has passed.
Of course by then technology will have moved on and the
information may well be redundant.

2.2 Software
If we are given a “perfect” set of requirements then at
least theoretically it would seem possible to produce
“perfect” software (at least at the level of the source code)
using techniques such as formal methods.

However, formal methods only usually take into
consideration the specification for the software; they do
not in general take into consideration any of the more
“interesting” aspects of the hardware. Consider the
following fragment of code:

if (((HW_can_var_name & 0xC0) &&

 (HW_can_var_name & 0x3F))…

This seems innocuous enough, until of course it’s pointed
out that the variable HW_can_var_name references a
special purpose hardware register. Reading the register
also clears it, so the second read is always zero. This of
course should be hidden inside an access function and is
of itself a rather trivial example but it demonstrates the
principle.

The language that is used is also an issue. Most
embedded systems are programmed in C. While this is
not optimal from the point of view that C has many
known flaws, e.g. Hatton (1995) and programming all
systems in, for example, SPARK Ada (Barnes 1997)
may be preferable, it is often necessary as no other
compilers are available. Even SPARK Ada isn’t perfect,
it’s just better. For example in chapter 2 of Barnes (1997)
it is stated that analysis of floating point representations
are performed using rational numbers.

Translators are available to convert Ada source to C
source (e.g. Adatoccpptranslator 2004). However, even if
perfect translation is achieved, the source itself is not
being executed. It needs to be compiled. For some reason
the compilation process still seems a bit of a black art,
possibly because new and modified processor
architectures are always becoming available. However, I
will admit that it is not as bad as it once was, but that in
itself has an interesting failure mode – on one project we
lost 3 days (6 man days) of work because the two young
engineers didn’t even consider the possibility of their
problem being a compiler error.

The following code compiled correctly for unsigned 32
bit integers,

 if (v1 < v2)…

But this did not,

 if (v2 > v1)…

Therefore if we accept that it is possible that errors can be
injected into software by a compiler then we are left with
no alternative but to attempt to reveal the errors by testing
it.

There is also another oft-ignored issue. The processors
used for embedded systems are usually what the desk top
fraternity might "kindly" describe as grossly under
powered. In addition some of the problems they are being
asked to deal with are computationally quite complex; it
is even possible that for some computations no analytical
solution exists. The solution to this problem is to
approximate solutions, usually with the introduction of
large look-up tables that encapsulate the transfer function
from inputs to outputs.

For example, on a modern PC a MatLab model of a
combustion cycle in a 16 cylinder engine takes a factor of
10 longer than real time so it is hardly suitable for use in
an embedded system. To compensate for this, the
appropriate transfer function is normally “calibrated” as a
look-up table using empirically derived data.

To give an idea of the potential size of the problem table
1 shows the size of the calibration data areas from three
projects to develop engine control units developed over
the period from 1990 to the present day. It should also be
remembered that this is only for the main engine control
unit.

Year Application Data Size

1990 Heavy duty “truck” engine 8K bytes

1998 Industrial Engine 32K bytes

2004 Passenger car 60K bytes

Table 1 : calibration sizes for three engine control
systems.

Beizer (1990) noted this as an issue in 1990 and
characterises the problem using the phrase “code migrates
to data”. The problem is in fact more general than the
example of a transfer function given above, as the same
techniques can be used for sequencing events or messages
and controlling the behaviour of the system. In the limit
this data can constitutes what Beizer terms "a hidden
programming language" that possibly has as much affect
on the system as the code itself.

The obvious problem with this migration, from the point
of view of safety and reliability, is that we have moved
the problem from one of ensuring that the program is
correct to the associated problem of showing the data that
controls the program is correct. A problem for which
formal methods may be less applicable.

Of course when (not if, e.g. Yang 2002) neural networks
are used in production systems, we have a whole new
validation problem to consider.

2.3 Hardware
As we all know, software does not run in isolation. It runs
on some sort of hardware platform. The problem with
hardware, like software, is that it is also subject to errors
in design, the example that springs to everyone’s mind

being the Pentium bug. However, this is not an isolated
problem; many (possibly all) of the processors commonly
used in embedded systems have some sort of hardware
issues associated with them.

Hardware shares a number of characteristics very similar
to software. For example showing that the hardware is
correct seems to be as intractable a problem as showing
software is correct. As with software, both formal
methods and testing have been applied with varying
degrees of success.

Interestingly there is a long history of attempting to adapt
ideas from software testing to the hardware validation
problem: for example Maurer (1990) approached the
problem using context free grammars and recent work
continues the trend. The most recent edition of IEEE
Design and Test of Computers (March-April 2004) is
devoted to this problem. A number of techniques for
testing hardware are presented in that issue which in
software terms range from functional testing at the system
(i.e. chip) level to, most interestingly from the point of
view of the current discussion, what Scafidi et. al. (2004)
describe as “unit” testing of components in isolation.

Issues with hardware could be pushed down the chain to
complete hardware modules, out into the connectors and
the wiring harness and down on to the sensors and
actuators. Unfortunately hardware devices often find
unusual and interesting failure modes or behaviour which
neither the manufacture nor the customer know about.

2.4 Retrospective

Above I have discussed a selection of problems that must
be overcome if we are able to completely trust software.

Firstly the requirements have to be correct, and given the
failings of human nature and the fact that we do not and
in some situations cannot have access to perfect
information, producing perfect requirements is probably
impossible in the limit.

Secondly the actual software has to be correct. Again, if
we ignore the problems associated with actually writing
correct software, there are still serious issues associated
with the use of compilers and the way in which solutions
are approximated.

Just as bad, it appears that we can't even completely trust
the hardware on which we are relying to correctly run the
software!

3 Of Software in Practice

3.1 A reality check

Given all of the above the outlook looks bleak for being
able to answer yes to the question “can we develop
software that is safe and reliable in all it’s interactions
with the environment in which it operates?”. However the
argument given above seems more than slightly at odds
with experience. Automotive software failures do not in
general kill or maim large numbers of people every year!
This is not to belittle the possibility that they may. It’s a
statement that currently they just don’t.

Area Affected Volume Percentage Examples

mechanical 638324 86.4 incorrect design, wrong parts

electric 71859 9.7 mainly problems with wiring harnesses being
chaffed

assembly 10801 1.5 missing bolts, bolts not torqued correctly, bad
welding

hydraulic 3553 0.5 contamination or leak of fluid

software 524 0.1 (1.9) unknown, ECU replacements included

Table 2 : ascribed root causes of vehicle recalls for the year 2001.

However this view may not mesh with people’s
perception of reality. For example in the first three
months of this year (2004) there have been two notable
vehicle recall “campaigns”.

• General Motors – vehicles recalled because of a
delay activating antilock braking system at low
speeds.

• Ford/Mazda – 470,000 Escape and Tribute
SUVs because engine may stall at speeds below
40mph2.

In these incidents, which are related to software, it is
claimed that only eight minor injuries were caused.

In addition in the United States, the National Highway
Traffic Safety Administration (NHTSA 2004) has opened
a safety investigation into unintended vehicle acceleration
in Toyota Camry and Lexus ES 300 cars. Again this may
affect over 1 million vehicles. As the investigation is on-
going it’s too early to state if this is a software problem,
but it also seems plausible that if a problem does exist it
could well be a hardware issue. Throttles are known to
stick: they are mechanical, they fail.

Based on only the above, the situation seems less than
good. However consider that in AP2 (2004) it is also
reported that GM may need to recall up to 1.8 million
vehicles to replace faulty seatbelts. This is a simple
mechanical system.

So how can we get some idea of how large the problem
actually is? One thing we can do is look at accident
statistics. For the year 2002 in the United Kingdom we
find that there were a total of 3,431 road deaths (Dept. for
Transport 2002). At the same time there were 302,605
casualties of which 35,976 where classified as serious i.e.
requiring hospitalisation.

The above reference does not give the root cause of the
accidents. However, the Parliamentary Advisory Council
for Transport Safety (PACTS) web site does give some
data in this area.

• young drivers (17-21) were involved in 15%
injury crashes.

2 From references AP1 and AP2 (2004).

• 6% of all road casualties and 16% of road deaths
occurred while a driver was under the influence
of alcohol.

• 10% of collisions are related to driver fatigue.

• vehicle defects are a factor in an estimated 5%
of collisions.

It would seem that there is a significant software problem,
but from the above data it would seem to be that the
neural network in the driver’s head has been mis-trained!
The software problem could be stated as being in "the nut
on the nut behind the wheel"!

Returning to the original point, an examination of the
2001 recall data from the Department of Transport (see
section 11 Appendix : UK Recall Data for details) reveals
that a total of 739,107 vehicles were subject to recall.

Table 2 is my analysis of the root cause of each recall.
Unfortunately the information above is not always precise
enough to determine the exact cause of the fault, but most
are obvious - e.g. a fault with airbags where one of four
bolts was omitted can be ascribed to an assembly fault.

In the case of possible software errors 0.1% of the
recalled vehicles (car, van, truck and motor cycles) I
could classify the fault as a software error on the grounds
that the unit needed to be reprogrammed. However if
ECU replacement is also counted then this figure jumps
to 1.9% of the recalls but again this could be because of
hardware failures.

Looking at what the software errors actually are we find
that;

• dashboard software warning light fails to come
on – driver will not be aware that there may be
uneven braking under extreme conditions (240)

• smart airbag software may not detect child seat
(128)

Problems associated with electronic control units are as
follows;

• unintended water ingress may cause airbag
deployment (3055)

• active yaw control may leave differential clutch
engaged resulting in damage to differential (156)

• a fault with the unit may cause deployment of
front airbag (14,045)

The last of the cases above is the most serious. The
wording of the recall notice “exchange for a quality
assured control unit” suggests a hardware fault rather than
a software fault, but it is also possible the microprocessor
has been mask programmed preventing its replacement in
situ.

If (and it’s a big if) five percent of deaths and collisions
and injuries are caused by vehicle faults then we could
expect, in the UK, 171 deaths and 15,000 injuries to be
attributable to the recalls above. Of these 2% or 4 deaths
and 300 injuries would be caused by software systems.
However we don’t see this many deaths attributed to
software (or at least there is no evidence we do). In fact
only a small number of deaths and serious injuries may be
directly attributable to software, such cases arising mainly
in America and which are still disputed.

Indeed a fair proportion of accidents that do involve
vehicle faults can probably be ascribed to poor
maintenance. Most of the author’s close calls are due to
this, the list being impressive;

• loss of speed control, throttle pedal fell off,
water ingress – rusted.

• loss of headlights at night, the Swiss AA man
was very nice about it.

• partial loss of steering, main pivot came away
from axle in Mont Blanc tunnel.

• loss of clutch, vehicle stuck in second, stalled.

• partial loss of steering, steering box failed (at
195,000 miles).

And that's only in old vehicles! In new vehicles, a clutch
failure due to a hydraulic line failure, a starter motor relay
failure, an alternator failure, and at a grand total of 23
miles - a rear bumper came lose on the M253. The point
of all of this is that all of these failures were mechanical
in nature.

Casual inquiries within Pi Technology seem to indicate
that many other engineers have experienced similar
failures, the worst being a mechanical/hydraulic power
steering system that wanted to turn hard right.

3.2 Why so good so far?

Given that we don’t seem to be killing and maiming
people in large numbers because of defects in software
systems one has to ask why? This is despite not adopting
techniques such as formal methods and even often not
completely understanding the technology and it’s
interactions. Hoare (1996) has speculated as to generic
reasons why this is the case. However I want to address
what I believe are a number of reasons specific to the
automotive environment.

3 The London orbital motorway – often a four lane car
park.

I believe that in some respects the automotive industry
has a number of advantages over other industries. These
can be briefly stated as follows;

• high-end first

• justified paranoia

• volume

• Californian Air Resources Board (CARB)

3.2.1 High-end first

New technologies are usually placed into high-end
vehicles, i.e. expensive cars before they filter down into
vehicles built for the masses. This has the advantage of
low, initial volumes and relatively large development
budgets.

The automotive industry uses these high-end applications
to refine technologies and make them generic and thus
cost effective before scaling up production by an order of
magnitude. The scaling of course also increases risk by an
order of magnitude.

3.2.2 Justified paranoia
One of the top priorities for any vehicle manufacture is to
avoid recalls. This is understandable because, even if no
mechanical parts are to be exchanged, the minimum cost
of a recall will be around $50 per vehicle, which
obviously for a million vehicles is a lot of money. This
doesn't include the cost of lost sales or any costs resulting
from litigation (fines, damages etc.). Audi sales dropped
60% over three years after an investigation into
unintended acceleration, even though no fault was found
and no recall was issued.

Vehicles are well tested before being released to the
public. Typically a new vehicle will involve several years
of testing before going into production, in a large variety
of environments, winter testing being particularly
problematic: hence the popularity of Waiorau in New
Zealand for winter testing during the northern hemisphere
summer.

It is instructive to look at one aspect of track work and the
role it plays in safety. Specifically on a test track you can
safely induce failures in the system to see what happens.
In Pi Technology’s own test vehicles, track work has
been used to gain assurance that the vehicle can be
steered when the engine “fails”, that it can still be braked
and that the vehicle is stable in corners.

Before production vehicles are released to the public
individual vehicles in a test fleet will often be driven in
excess of 100,000 km. This is in addition to performing
purely software based testing e.g. unit testing as well as
extensive bench testing.

3.2.3 Volume

The automotive industry produces large numbers of
vehicles. In the UK alone each year in the order of one
million vehicles are sold and a company like Ford
produces on the order of three million vehicles per annum
world wide. To gain some idea of what this means, if

70,000 vehicles of one model are on the road and each is
driven for 5 hours per week this represents 18 million
hours of use per year. This is probably an underestimate
as many people spend more than an hour commuting one
way!

Large manufactures also run large programmes to track
faults, for the simple expedient that if you can fix a
problem before you build more vehicles, then you can
save on the recall costs.

The upshot of this is that there are statistically significant
amounts of fault data available based on the actual usage
profile of the vehicle fleet.

3.2.4 CARB

The automotive industry has one extremely bad side
effect - pollution, and the other effects that ever
increasing levels of traffic have caused. As far as I know,
no one has ever had global warming in their hazard
analysis! A side effect of pollution of course has been the
legislative efforts to limit it. One of the more beneficial
side effects being that engine control units now have to
monitor their own "health".

For example one of the CARB regulations states “The
monitoring method for the catalyst(s) shall be capable of
detecting when a catalyst trouble code has been cleared
(except diagnostic system self-clearing), but the catalyst
has not been replaced”.

The implications of this are that while it may be sufficient
to monitor the temperature at which a catalyst operates to
detect a problem, to meet the full requirement as given
above probably means two heated oxygen sensors to
compare oxygen level pre and post catalyst and in
addition monitoring the performance of those sensors
themselves for open or closed circuit conditions and how
they are ageing via their switching frequency etc.

In addition, to ensure that the requirements will be met
requires large amounts of engine testing to completely
characterise the behaviour of the system. It has to be
right: if the system is too sensitive then it will result in
warranty claims, if it is not sensitive enough then the
manufacture can be fined $25US per defect for each
engine produced.

The effect of this is (or at least should be) that in general
all electronic control systems will flag the fact that
failures have been detected, whether they be within
themselves, their associated sensors or in the actuators.
Thus those items tend to be serviced before they fail
catastrophically.

As an indication of the scale of the work involved, for
one engine control unit I have been involved with,
something like 24% of the total code is devoted
exclusively to dealing with faults. But it must be noted
that this does not include code embedded with control
functions that actually detects the errors. It is probably
safe to assume that around one third of the implemented
functionality is directly associated with fault detection,
mitigation and reporting.

3.3 Other mitigating factors
In section 2 I listed a number of factors that I believe
limit the production of software based systems that could
be considered absolutely safe. In summary these can be
briefly stated as follows;

 requirements - do we know what we are doing?

 software - can we trust the code?

 hardware - will it always work?

In this section I want to examine, briefly, how the
automotive development process deals with those specific
issues and another important factor.

3.3.1 Requirements

On the subject of requirements there are several features
of the process that lead us to believe that in general it is
possible to produce adequate requirements for systems.

If we consider only new functionality, then obviously we
start with the concept of what we want to achieve. This in
turn will be followed by some design work and then, and
in some respects most importantly, new functionality will
be prototyped. This leads to an extensive body of
empirical knowledge about the problem that will be
encountered and more importantly how new functions
will fail. In effect the process of prototyping increases the
domain knowledge of the persons involved.

That prototyping is a (reasonably) effective tool for
addressing the problems associated with requirements can
be understood if one considers how the prototyping is
performed. Firstly bench systems are usually made up for
off vehicle development work. In cases where new or
novel technology is being introduced full scale vehicles
are also manufactured for use on test tracks, climate
chambers, vibrations rigs, and later on the road, usually
accumulating what for the average motorist would be
significant mileage.

Once the development process has been completed and
production ramp-up is being undertaken the testing
continue, firstly with the manufacturers of the electronic
sub-system (not usually the automotive manufacturers)
who will replicate much of the above process (bench,
track & test fleet) and finally pre-production with the
vehicle manufacturers who again will run fleets to put
significant mileage on vehicles.

Fundamentally there is nothing wrong with the process
described above. The only significant issue arises from
the fact that the work is being undertaken by (usually)
two different groups of people which need to
communicate. As noted above, communication is always
an issue.

3.3.2 Software

In general the software written for vehicles cannot be
considered rocket science. That is, it is not usually
pushing the boundaries of what is technically possible (at
least not yet) and as such is reasonably amenable to good
software engineering practice.

At the design level, techniques such as dynamic memory
allocation and recursion are usually banned and there is
surprisingly little use made of pointers (for obvious
reasons).

The coding process is in the main still largely performed
by hand, although many manufactures, including
ourselves (Wartnaby et. al. 2003) are attempting to at
least semi-automate the process by auto-coding from
Simulink “models” and similar tool sets.

Code is reviewed, and static analysis is usually
performed, often only to meet the MISRA C guidelines
(MISRA:1998), however tools such as PolySpace which
perform non-standard execution of code are becoming
commonplace.

At a minimum, systems will be black-box tested against
requirements and for systems of a more risky nature it is
common for unit testing at the functional level to be
undertaken. For example the Ford standards require that
statement coverage is achieved for all software and
branch coverage is recommended for system with safety
mitigating software. Daimler-Chrysler even has a
software research team actively investigating automatic
test data generation (e.g. Wegener 2001).

3.3.3 Hardware

Of all the three areas that I have considered hardware - at
least as far as concerns microprocessor hardware is
concerned - is the least amenable to being brought under
control.

This is because it is, for the most part, out of our control!

As far as hardware correctness within an application is
concerned the only technique open to the automotive
sector is to perform tests that match the expected use of
the any hardware features to gain confidence that the
hardware will perform as expected.

On the subject of reliability, processor hardware does
pretty well. For instance with one engine mounted ECU
for which I have some information, of the warranty
returns only three instances (0.001% of production) were
recorded where failure of the ECU was attributed to the
processor failing.

3.3.4 Loosely coupled systems
In the terms of Perrow (1999) current automotive systems
can be characterised as loosely coupled, linear systems.

Automotive systems are loosely coupled in the sense that
in general a failure in one sub-system does not normally
severely impact the functionality of all other sub-systems.
For example a failure in the breaking sub-system will not
normally affect the steering and when it does it usually
degrades the performance not remove it. Likewise a
failure in the engine does not remove all braking ability,
although there is a coupling in that there will be some
loss of power assist, and loss of engine power can also
affect power steering capability. However without the

engine you should stop as the engine itself becomes a
braking system4.

There are other options available to the driver as well: if
the engine runs away, you have the option of turning the
ignition off, it should stop the fuel pump - but don’t lock
the steering wheel! The clutch can also be used in a
manual to disconnect engine from the wheels. There is
also the emergency (park) brake as a final backup system.

If all else fails there are crumple zones, seat belts and
airbags all of which are independent of the driveline.

All of the above tend to limit the severity of systems
failures, as noted in section 3.1 vehicles can suffer quite
large systems failures and not cause accidents. This
doesn’t necessary mean they won’t, but it does provide a
safety margin.

4 Is it safe?

At this point we should be in a position to look at the
main topic of this conference; that is, can we trust the
software (systems)?

The arguments present in section 2 suggest that the
answer should be no. However with the examination of
data present in section 3 it was seen that in practice issues
with software accounted for only 2% of safety related
vehicle recalls (as recorded by the Department for
Transport) vs. 84% for some potentially very serious
mechanical failures.

If we examine just problems with throttles we find a total
of 52,378 vehicles were affected by recall notices in the
years 1998-2001. Analysis revels that 27,903 vehicles
were recalled due to design flaws in the throttle body
itself. A further 13,566 were cause by either mats being
trapped under the throttle pedal or interference between
the throttle cable and the front bulkhead. Some 3,243
were caused by interference between of the throttle cable
or other linkages within the engine bay and 4,649 were
indirectly caused by the introduction of electronic
controls. But again, the direct cause is mechanical, part of
the mass air flow (MAF) sensor could become detached
and jam the throttle open. No instances were found where
a throttle problem could be attributed to software.

The obvious question is why? There are a number of
reasons. Firstly an electronic system removes the cable
and other mechanical linkages from the system. At the
same time it allows the introduction of redundancy5,
electronic throttle pedals have dual input sensors with
different signals so they can be cross checked and failures
detected. Hence if one fails a “trouble code” should be
recorded and the warning lamp should come on.

Secondly the electronic throttles themselves are self-
contained units, which reduces the possibilities of

4 In effect what is known as “jake brake” though less
efficient.
5 Note the Volvo 740 has twin throttle cables so this is
possible in a mechanical system, but not usual.

external mechanical interference, though internal failures
can sill occur as noted above.

Thirdly, there are more possibilities to cross check the
system, for example information from closed loop fuel
control can be used to infer the approximate throttle
position and hence be cross checked against the throttle
position feedback from the throttle itself. Note that again
the issue of domain knowledge is present – you have to
know that the cross check described above can be
performed.

Other inputs can also be used, for example it is possible
to infer that if the brake has been hard on for some time
and the throttle is wide open then something may be
wrong. Note the use of the word hard above One
advanced driving technique known as left foot braking
involves the use of both the throttle and brake at the same
time. Again you have to know about this to be able to
take it into account.

5 Will it continue?

The features outlined above have, in general, served the
industry reasonably well to date, but will it continue?

If one looks back at how electronic controls have been
introduced we can note several features. First in the
beginning there were single electronic systems,
controlling simple functions such as spark timing. Over
time these have evolved into more complex systems e.g.
the modern engine control unit now has to control spark
timing, perform knock detection and control, detect
misfire, monitor the air/fuel ratio and health of the
catalyst, run the throttle and fuel injectors etc.

In addition the number of computer controlled functions
has increased, so we have ABS, traction control,
instrument clusters, computer controlled automatic
transmissions, electronic park brakes and so on. On it's
own each of these systems is simple enough and in
isolation their effects can be reasonably bounded and
failure modes analysed and accounted for.

However, individual control systems no longer operate in
isolation. They are all part of the same vehicle, and
increasingly they need to communicate and co-operate
with one another. In addition, many of the components
that now interact were originally conceived with different
design philosophies. For example instrument clusters
were at one time standalone devices that displayed
information such as engine speed, "mileage", engine
revolutions etc. As such they have been traditionally
treated as SIL 0 systems. However it was shown above
that at least one safety recall has involved a cluster where
a dashboard software warning light related to the ABS
function failed to come on.

Given the above I perceive that many of the problems that
will be seen in the future are going to be system problems
where interactions between components that have
“traditionally” supplied isolated functions are required to
interact.

6 Continuing Issues
Flowers (1996) puts forward the thesis that all software
failures can be attributed to a failure of management, and
indirectly at least that may well be the case. Failures due
to management can have any number of causes, such as
failure to provide adequate tools, to allow enough time, to
maintain proper oversight on contractors and suppliers
and so on ad infinitum.

Part of this is due to the misconceived idea that “it’s just
software” and that “software is easy, it’s just typing”.
However, typing is to software, as drawing is to
mechanical or civil engineering. It’s hard to do
mechanical engineering if you can’t draw; but it’s not the
only skill necessary.

The problem has several roots. Firstly software is
intangible so all you see is the typing. Software tools like
SimuLink may help here as they graphically and
explicitly show the complex interactions in a familiar
manner. If nothing else, they look like circuit diagrams
and people “know” electronics is hard.

Secondly, for most people software is easy. For example,
most graduates have experience of programming at some
level, even if it’s only programming a spreadsheet.
Unfortunately the problems faced as an undergraduate
actually aren’t that complex. They can’t be. They have to
fit within the structure of a university course. This then
perhaps leads to an attitude of “If I can do it, why can’t
you?”

Finally, as Kuhn (1962) would say, there has been a
paradigm shift. The software in a vehicle will soon
account for a significant proportion of the vehicle cost.
Just over thirty years ago it accounted for nothing. The
long history of isolated component systems hasn’t helped
as we are only beginning to discover issues arising from
the non-linear coupling effects associated with multiple,
communicating components.

This then is the first challenge - management needs to
understand that it’s not “just software”, it’s engineering.
As such, more attention needs to be placed on the
integration of the software development process in the
context of the vehicle systems it interacts with both
directly and indirectly. We need to be able to manage this
additional complexity, to expect it and to build into the
process activities and time to deal with it.

The above may all be true, however there are other
systematic problems associated with the production of
software based systems.

In the three issues I put forward as major impediments to
writing absolutely correct software in section 2
requirements was listed first. This was not random, it is
my experience that the quality of requirements is the
biggest single barrier to being able to produce software
based systems.

For example, it was stated in section 2.1 that change
always introduces problems. On an engine we decided to
implement knock detection by using an FFT algorithm
running on a DSP coprocessor using one sensor for each
of 16 cylinders. Normally this would be done using some

sort of band-pass filter. While the requirements for
sampling the data were correct, associated requirements
for deciding if the sampled data indicate whether knock
was present were not. In theory we knew what we were
doing, but in practice we lacked the empirical domain
knowledge, particularly during transitions between
operating states of the engine. Happily a few months of
experiments (i.e. we gave up and built prototypes)
resulted in a working system that is also potentially
capable of detecting failures in valves and the main
bearings.

As a further example, a manufacturer has stated that they
have problems getting their best engineers to work on
requirements, mainly because it is perceived as low status
work!

If we can’t get the specifications right then the software
has no hope of working first time, effectively you will be
prototyping the system - even if that was not your
intention. This is both a technical and a managerial issue.
Technical in the sense that we need to be able to
determine the requirements and document them.
Managerial in the sense that the management of that
process needs to be better defined and controlled. You
can’t build reliable, safe systems based only on
prototypes.

Another issue we need to address is that we have to learn
that system testing the software is, and probably always
will be, a horrendous problem. It takes longer and costs
more than anyone wants to pay, but worse, we leave it
until last. If you have a requirements specification then
you can decide how to test it. The very process of
designing tests will change the specification. Again
Beizer (1990) has noted that “more than the act of testing,
the act of designing tests is one of the best bug preventers
known”. Which is precisely my experience.

Thus we need to design systems that can be tested, as
components, as sub-systems and finally as complete
systems. It is necessary therefore that we take the attitude
that the testing of systems be considered as important as
the design of systems and that it be done as an “up front”
activity and not something that is done when we are
finished. Thus being able to test a system is a requirement
on any system; unfortunately it is a requirement that is
often ignored until it’s too late to directly incorporate it.
Again this is both a technical and managerial issue. How
do we design for test and how do we incorporate testing
effectively into the development process.

We also have to learn how, at the vehicle level, to design
systems that are, “simple”. By this I don’t mean trivial, I
mean systems that have limited interactions and
dependencies, systems that are amenable to analysis and
systems that limit and isolate their own faults and that can
communicate required fault information to other affected
parts of the system. This should be possible; the author
has performed such an analysis (Ellims 2001) on a simple
distributed control system. Probably if the author can,
anyone can.

As stated above this is an issue of managing complexity,
it is also a technical issue in that we need to educate
engineers that simplicity is a virtue.

All of the above are what can be termed “big issues”.
However until we can deal with these we can only make
limited progress towards building systems that can truly
be regarded as “safe”. The big issues are what I have
chosen to concentrate on in this paper. However, as the
saying goes “for the want of a nail the shoe was lost”. If
we are honest we still have problems with software
“nails”. However, as stated previously this appears to be
at least partly amenable to technical solutions.

7 Conclusions
It would appear that current programmable automotive
systems appear to be safe, at least relative to some
mechanical systems. This is possibly more due to good
luck than good judgement. Luck that to date complexity
has been limited, luck that we have not yet attempted to
build tightly coupled systems, luck that the majority of
failures do not have catastrophic consequences.

However as was noted in section 6 it’s easy to identify
issues associated with how automotive systems are
developed. As the systems being deployed gain more
interactions, become more tightly coupled and start to
take over functions from the driver this approach will
necessarily begin to fail.

Therefore the automotive industry is going to have to get
good at systems engineering - fast. The first of the new
generation of systems are just around the corner.

8 Afterword

It should also be noted that this paper is developed from
the authors experience in the automotive and related
industries. As such it should only be considered as being
representative of the industry and practices within it, not
as a definitive assessment. Neither can the author claim
that the views expressed here are universally accepted
within the industry and as such it should be considered to
be a personal assessment of the state of play.

9 Acknowledgements

The following all contributed to the development of this
paper either by discussing ideas with the author or
reviewing final drafts. Graham Tebby, James Bridges and
Keith Jackson of Pi Technology and John McDermid of
the University of York.

10 References

Adatoccpptranslator: http://adatoccpptranslator.free.fr/
accessed May 2004.

AP1: Associated Press: 13 April 2004, in Detroit Free
Press.

AP2: Associated Press: 15 April 2004, in Detroit Free
Press.

DFP: Detroit Free Press, 9 March 2004.

Dept. for Transport (2002): Department for Transport,
“Transport statistics bulletin: Road Casualties in Great
Britain Main Results 2002”. http://www.dft.gov.uk/
accessed May 2004.

Beizer, B. (1990): Software Testing Techniques: Second
Edition. London, International Thomson Computer
Press.

Curtis, B. Krasner, H. Iscoe, N. (1988): A field study of
the software design process for large systems, Comm.
ACM , 31(11):1268-1287.

Barnes, J. (1997): High integrity Ada: The SPARK
approach, Harlow, Addison Wesley Longman.

Ellims, M. Parker, P. Zurlo, J. (2002): Design and
Analysis of a Robust Real-time Engine Control
Network, IEEE Micro (Special Edition: Critical
Embedded Automotive Networks), 22(4): 14-19.

Flowers, S. (1996): Software failure: Management
Failure, Amazing Stories and Cautionary Tales,
Chichester, John Wiley & Sons.

Hatton, L. (1995): Safer C: Developing Software for
high-integrity and safety-critical systems. Maidenhead,
McGraw-Hill.

Hoare, C.A.R. (1996) How did software get so reliable
without proof? Third Intl' Symp. on Formal Methods
Europe (FME'96) Industrial Benefit and Advances in
Formal Methods, Oxford United Kingdom, LNCS
1051:1-17, Berlin, Springer Verlang.

Kuhn, T.S. (1962), The Structure of Scientific
Revolutions, Chicago, University of Chicago Press.

McDermid, J. Galloway, A. Burton, S. Clark, J. Toyn, I.
Tracey, N. Valentine, S. (1998): Towards industrially
applicable formal methods: three small steps, and one
giant leap. Proc. Int’l Conf. on Formal Eng. Methods
(ICFEM’98),Brisbane, Austrailia, 76-88, IEEE.

Maurer, P.M. (1990): Generating testing data with
enhanced context-free grammars. IEEE Software
7(4):50-55.

MISRA (1998): Guidelines for the use of The C
Language in Vehicle based Software, Nuneaton, the
Motor Industry Research Association.

NHTSA: http://www.nhtsa.dot.gov/ investigation
PE04021 accessed May 2004.

Perrow, C. (1999): Normal Accidents: Living with High-
Risk Technologies, Princeton, Princeton university
press.

PACTS : Parliamentary Advisory Council for Transport
Safety,
http://www.pacts.org.uk/policy/briefings/statistics_uk.h
tm accessed May 2004.

Pinkus, R.L.B Shuman, L.J Hummon N.P. Wolf, H.
(1997): Engineering Ethics Balancing Cost, Schedule
and Risk - Lessons Learned from the Space Shuttle,
Cambridge, Cambridge University Press.

Scafidi, C. Gibson, J.D, Bhatia, R. (2004): Validating the
Itanium 2 exception control unit: a unit-level approach.
IEEE Design and Test of Computers, 21(2) 94-101.

C.E. Wartnaby, S.M. Bennett and M. Ellims, R.R. Raju,
M.S Mohammed, B. Patel and S.C. Jones, (2003):

Auto-generated production code development for
Ford/Think Fuel Cell Vehicle Programme SAE Word
Congress, 2003 SAE Technical Paper Series 2003-01-
0863

Wegener, J. Baresel, A. Sthamer, H. (2001): Evolutionary
test environment for automatic structural testing,
Information and Software Technology, 43 841-854.

Yang, H. Yizhang, L, Wasacz, B. (2002): Neural
Network Based Feedforward Control for Electronic
Throttles, SAE Technical Paper Series 2002-01-1149

11 Appendix : UK Recall Data
All data on safety related vehicle recalls has been
extracted from public sources. The data on vehicle recalls
between the years 1998 and 2001 has been extracted from
the following documents which were accessed from the
Department for Transport (DfT) web site in April 2003
and stored locally on the authors computer.

RECALLS_CAMPAIGNS_BULLETTINS_1998_Jan-Jun.pdf

RECALLS_CAMPAIGNS_BULLETTINS_1998_Jul-Dec.pdf

to

RECALLS_CAMPAIGNS_BULLETTINS_2001_Jan-Jun.pdf

RECALLS_CAMPAIGNS_BULLETTINS_2001_Jul_Dec.pdf

These documents are no longer available from the web
site and in their place access to a database has been
provided where searches can be performed for specific
vehicles. This is of course not ideal for the current paper
so data after December 2001 is effectively not available
via the web. The DfT have however agreed to supply the
author with paper copies from July 2004.

