
On Inference of XML Schema with the Knowledge of an Obsolete One

Irena Mlýnková

Charles University, Faculty of Mathematics and Physics, Department of Software Engineering
Malostranské nám. 25, 118 00 Prague 1, Czech Republic

Email: irena.mlynkova@mff.cuni.cz

Abstract

The XML has undoubtedly become a standard for data
representation and manipulation. But most of XML docu-
ments are still created without the respective description of
their structure, i.e. an XML schema. Hence, in this paper
we focus on the problem of automatic inferring of an XML
schema for a given sample set of XML documents. Con-
trary to existing approaches we propose an algorithm that
exploits additional input information – an obsolete XML
schema. Consequently, we are able to exploit the informa-
tion which was correct once and to infer the schema more
efficiently.

Keywords: XML Schema, validity, schema inference,
schema correction.

1 Introduction

Without any doubt XML (Bray et al. 2006) is currently a
de-facto standard for data representation. Its popularity is
given by the fact that it is well-defined, easy-to-use and, at
the same time, enough powerful. To enable users to spec-
ify own allowed structure of XML documents, so-called
XML schema, the W3C1 has proposed two languages –
DTD (Bray et al. 2006) and XML Schema (Thompson
et al. 2004, Biron & Malhotra 2004). The former one is di-
rectly part of XML specification and due to its simplicity
it is one of the most popular formats for schema specifi-
cation. The latter language was proposed later, in reaction
to the lack of constructs of DTD. The key emphasis is put
on simple types, object-oriented features and reusability
of parts of a schema or whole schemas.

On the other hand, statistical analyses of real-world
XML data show that a significant portion of XML doc-
uments (in particular, 52% (Mignet et al. 2003) of ran-
domly crawled or 7.4% (Mlynkova et al. 2006) of semi-
automatically collected2) still have no schema at all.
What is more, XML Schema definitions (XSDs) are used
even less (only for 0.09% (Mignet et al. 2003) of ran-
domly crawled or 38% (Mlynkova et al. 2006) of semi-
automatically collected XML documents) and even if they
are used, they often (in 85% of cases (Bex et al. 2004))

This work was supported in part by the Czech Science Foundation
(GAČR), grants number 201/09/P364 and 201/09/0990.

Copyright c©2009, Australian Computer Society, Inc. This paper ap-
peared at the 20th Australasian Database Conference (ADC 2009),
Wellington, New Zealand, January 2009. Conferences in Research and
Practice in Information Technology (CRPIT), Vol. 92, Athman Bouguet-
taya and Xuemin Lin, Ed. Reproduction for academic, not-for profit
purposes permitted provided this text is included.

1http://www.w3.org/
2Data collected with the interference of a human operator.

define so-called local tree grammars, i.e. languages that
can be defined using DTD as well.

In reaction to this situation a new research area of auto-
matic inference of an XML schema has opened. The key
aim is to create an XML schema for the given sample set
of XML documents that is neither too general, nor too re-
strictive. Currently there are several proposals of respec-
tive algorithms (see Section 2), but there is still a space
for further improvements. In this paper we focus on in-
ferring of a schema from a sample set of XML documents
in a special situation when we are provided with the orig-
inal, but already obsolete schema. According to statistical
analyses of real-world XML data (Mlynkova et al. 2006)
it is quite a common case, since the XML schema is usu-
ally considered as a kind of data documentation. Since
the schema is not used as it is supposed to be, i.e. for
checking the correct structure of XML documents, it is
usually not updated in case the respective data are. Hence,
in this paper we propose an algorithm which infers a cor-
rect schema on the basis of the knowledge of the outdated
one. Contrary to existing approaches that would infer a
correct schema regardless the existing one, we are able to
exploit the information which was correct once and to in-
fer the schema more efficiently.

The paper is structured as follows: Section 2 overviews
existing papers on automatic inference of XML schemas
as well as issues related to our stated problem. Section 3
provides background information on languages for XML
schema definition. Section 4 describes their relation to
the theory of automata and grammars and introduces the
problem of schema inference. Section 5 describes the pro-
posed solution in detail. And, finally, Section 6 provides
conclusions and outlines possible future work.

2 Related Work

The existing solutions to the problem of automatic infer-
ence of an XML schema can be classified according to
several criteria. Probably the most interesting one is the
type of the result (i.e. DTD or XSD) and the way it is con-
structed, where we can distinguish heuristic methods and
methods based on inferring of a grammar.

Heuristic approaches (Moh et al. 2000, Wong &
Sankey 2003, Garofalakis et al. 2000) are based on ex-
perience with manual construction of schemas. Their out-
put does not belong to any special class of grammars and,
hence, we cannot say anything about its features. They
are based on generalization of a trivial schema using a set
of predefined heuristic rules, such as, e.g., “if there are
more than three occurrences of an element, it is probable
that it can occur arbitrary times”. These techniques can be
further divided into methods which generalize the initial
schema until a satisfactory solution is reached (e.g. (Moh
et al. 2000, Wong & Sankey 2003)) and methods which
generate a number of candidates and then choose the opti-
mal one (e.g. (Garofalakis et al. 2000)). While in the first
case the methods are threatened by a wrong step which
can cause generation of a suboptimal result, in the latter

case they have to cope with space overhead and specify-
ing a reasonable function for evaluation of quality of the
candidates.

On the other hand, methods based on inferring of a
grammar (Ahonen 1996, Bex et al. 2007) output a partic-
ular class of languages with specific characteristics. Al-
though grammars accepting XML documents are context-
free, the problem can be reduced to inferring of a set
of regular expressions, each for a single element. But,
since according to Gold’s theorem (Gold 1967) regular
languages are not identifiable in the limit only from posi-
tive examples (in our case sample XML documents which
should conform to the resulting schema), the existing
methods exploit restriction to an identifiable subclass of
regular languages.

A set of approaches related to our stated problem, i.e.
the problem of correcting an incorrect XML schema, are
so-called XML schema evolution or XML schema version-
ing algorithms (Su et al. 2001, Tan & Goh 2005, Guer-
rini et al. 2007). However, their aim is opposite to ours.
XML schema evolution means that the original schema is
replaced by an updated schema and, hence, the effects of
the update on its instances need to be solved. In particu-
lar, the approaches deal with the problem how document
adaptation according to the evolved schema can be (even-
tually automatically) performed to make them valid again.
Schema versioning means that the original documents and
schemas should be preserved and a new updated version
of the schema is created. Document adaptation is not an
issue, but the problem of handling different versions of the
same data arises.

Instead of adapting the set of XML documents accord-
ing to the modified schema we have the opposite task –
we want to adapt the given schema according to the set of
XML documents. Among the existing works there seems
to be only one approach with an aim similar to ours. In
(Bertino et al. 2002) the authors propose an approach to
evolving a set of DTDs to obtain structures that are cor-
rect and precise with regard to a set of XML documents.
The approach is intended for a kind of dynamic repository
of XML data and DTDs. It is based on exploitation of
similarity of XML documents and DTDs and a set of data
mining heuristics.

3 XML Schema Languages

The simplest and most popular language for description
of the allowed structure of XML documents is currently
the Document Type Definition (DTD) (Bray et al. 2006).
It enables one to specify allowed elements, attributes and
their mutual relationships, order and number of occur-
rences of subelements, data types and allowed occurrences
of attributes. A simple example describing a database of
employees is depicted in Figure 1.

Figure 1: An example of a DTD of employees

At first glance it seems that the specification of the al-
lowed structure is sufficient. Nevertheless, even in this
simple example we can find several problems. For in-
stance, we are not able to specify the correct structure
of an e-mail address. Similarly, we cannot simply spec-
ify that a person can have four e-mail addresses at maxi-

mum. And, as we can see, the fact that the order of ele-
ments first and surname is not significant cannot be
expressed easily as well. Therefore, the W3C proposed a
more powerful tool – the XML Schema language (Thomp-
son et al. 2004, Biron & Malhotra 2004).

The XML Schema language has a number of advan-
tages. The main advantages are that:

• each XSD is a well-formed and valid XML docu-
ment,

• it has a strong support of data types, both simple and
complex and both built-in and user-defined,

• it enables one to re-use and re-define existing
schemes or selected parts,

• it enables one to specify the allowed structure using
more precise constraints (e.g. minimum and max-
imum allowed occurrences, ordered/unordered se-
quences, integrity constraints etc.) and

• it enables one to specify equivalent schemes using
distinct constructs.

For example an XSD equivalent3 to the example of a
DTD in Figure 1 is depicted in Figure 2.

Figure 2: An example of an XSD of employees

3Having the same set of document instances.

4 Relation to Automata and Grammars

An XML schema describing the allowed structure of XML
documents is an extended context-free grammar (Berstel
& Boasson 2000), i.e. a grammar where nonterminals can
be rewritten regardless the context in which they occur.
The extension is given by the fact that on right hand sides
of productions occur regular expressions.

Definition 1 Given the alphabet Σ, a regular expression
(RE) over Σ is inductively defined as follows:

• ∅ (empty set) and ε (empty string) are REs.
• ∀a ∈ Σ : a is a RE.
• If r and r′ are REs of Σ, then (rr′) (concatenation),

(r|r′) (alternation) and (r∗) Kleene closure) are REs.

The DTD language adds two abbreviations: (r|ε) =
(r?) and (rr∗) = (r+). Also the concatenation is ex-
pressed via the ‘,’ operator. The XML Schema language
adds (among other extensions) another one, so-called un-
ordered sequence of REs r1, r2, ..., rk, i.e. an alternation
of all possible ordered sequences of r1, r2, ..., rk. The
DTD syntax is often extended with respective ‘&’ oper-
ator.

Definition 2 An extended context-free grammar is a
quadruple G = (N,T, P, S), where N and T are finite
sets of nonterminals and terminals, P is a finite set of
productions and S is a non terminal called a start sym-
bol. Each production is of the form A → r, where A ∈ N
and r is a regular expression over alphabet N ∪ T .

The language generated by grammar G is denoted by
L(G).

A language generated by a grammar can be accepted
by an automaton, in our case a finite state automaton.

Definition 3 A finite state automaton (FSA) is a quintuple
A = (Q, Σ, δ, S, F), where Q is a set of states, Σ is a
set of input symbols (alphabet), δ : Q × Σ∗ → Q is the
transition function, S ∈ Q is the start state and F ⊆ Q is
the set of final states.

The language accepted by an automaton A is denoted
by L(A).

For each RE we can construct a FSA and vice versa.

4.1 Problem Statement

The studied problem can be described as follows: Be-
ing given a set of XML documents D = {d1, d2, ..., dn}
(i.e. words over an alphabet TD), we search for an XML
schema sD (i.e. a grammar GD = (ND, TD, PD, SD)) s.t.
∀i ∈ [1, n] : di is valid against sD (i.e. D ⊆ L(GD)). In
particular, we are searching for sD that is “enough” con-
cise, precise and, at the same time, general.

Most of the existing approaches use the following
strategy: For each occurrence of an element e ∈ D and
its subelements e1, e2, ..., ek we construct a production ~pe

of the form e → e1 e2 ... ek.4 The left hand side is called
element type and denoted type(~pe), the right hand side is
called a content model of the element type and denoted
model(~pe). The productions form so-called initial gram-
mar (IG). For each element type the productions are then
merged, simplified and generalized using various meth-
ods and criteria. A common approach is so-called merg-
ing state algorithm, where a prefix tree automaton (PTA)
is built from the productions of the same element type and
then generalized via merging of its states. Finally, the gen-
eralized automata are expressed in syntax of the selected
XML schema language.

An example of a IG and PTA for element person is
depicted in Figure 3.

4Attributes are often omitted for simplicity.

Figure 3: An example of a IG and a PTA

In the existing works the rules for merging the states of
an automaton differ, but they have a common aim to create
a concise and precise XML schema. While the heuristic
approaches exploit a set of various heuristic rules, the ap-
proaches based on inference of a grammar utilize the rules
so that the result fulfills the conditions the selected sub-
class of regular languages states.

The problem we are dealing with is a schema inference
task with a special condition – knowledge of an obsolete,
i.e. incorrect and/or too general, schema sorig . Our aim
is to exploit this additional information in order to speed
up the inference process and to make the resulting schema
more precise.

5 Proposed Approach

In general the given problem can be divided into checking
and correction/adaptation of the following subsets:

1. Simple data types

2. Element/attribute names

3. REs

The first two sets can be solved relatively easily. In
case of simple data types we simply check whether the
selected data types are not too general or too restrictive
and, if necessary, we make the respective corrections. In
fact, even most of the existing schema inference methods
do not deal with simple types at all.

In case of element/attribute names we can select from
two approaches. On one hand, we can consider and distin-
guish either the same or distinct names. On the other hand,
we can take into account their semantics and consider that
only an element/attribute name can be modified. However,
it is only a question of finding the respective mapping be-
tween the names, whereas we can find such mapping only
in case the changes are semantically related, such as, e.g.,
changing name into title. Consequently, it is only mi-
nor aspect of the problem and we will not deal with it in
the following text as well.

The most important task of the given problem is to
check and correct REs. In general we can encounter the
following cases:

1. The original XML schema sorig does not need to
be corrected. The XML documents in D and valid
against it and it is enough concise and precise.

2. The XML documents in D are valid against sorig ,
however it is too general. In particular, there can oc-
cur the following cases:

(a) Too high upper limit of occurrences (see Exam-
ple 1)

(b) Too low lower limit of occurrences (see Exam-
ple 2)

(c) Occurrence of redundant data (see Example 3)

3. The XML documents in D are not valid against sorig
anymore. In particular, there can occur two situa-
tions:

(a) sorig does not involve items that XML docu-
ments in D do (see Example 4).

(b) The XML documents do not involve items that
are in sorig mandatory (see Example 5).

Example 1 Consider the following set of productions ex-
tracted from XML documents:

E → A B C C C
E → A B C C

and the following production taken from sorig:
E → A B C+
The production should be corrected, since the + oper-

ator should be used only in case more than 5 occurrences
of an element.

Example 2 Consider the following set of productions ex-
tracted from XML documents:

E → A B C C C
E → A B C C

and the following production taken from sorig:
E → A B? C
The production should be corrected, since the element

B is present in all document instances.

Example 3 Consider the following set of productions ex-
tracted from XML documents:

E → A B C C C
E → A B C C
The following productions from sorig need to be cor-

rected since they contain redundant data with regard to
the given documents:

E → A B X? C+
E → A (B | X) C+

Example 4 Consider the following set of productions ex-
tracted from XML documents:

E → A B C C C
E → A B C C
The following production from sorig needs to be cor-

rected since it does not involve element B present in the
documents:

E → A C+

Example 5 Consider the following set of productions ex-
tracted from XML documents:

E → A B C C C
E → A B C C
The following production from sorig needs to be cor-

rected since it involves compulsory element X not present
in the documents:

E → A B C+ X

5.1 Possible Solutions

The first possible solution is to simply ignore sorig and
infer a correct schema purely on the basis of D. The ad-
vantage of this approach is obvious – we use a verified
approach that provides a correct result. However, we do
not exploit an available and apparently useful information.
Hence, our aim is to exploit this information when appro-
priate and, thus, to speed up the inference process and pro-
vide a more precise schema.

The second natural approach can be based on the fol-
lowing simple observation: The existing inference meth-
ods produce plenty of possible solutions, that are evalu-
ated and the (sub)optimal one is selected as the result. It is

caused by the fact that the approaches are based on heuris-
tic rules that generalize the IG. The amount of generaliza-
tions is high and we do not know which is the optimal one
unless we combine it with the rest of the schema. Hence,
a natural idea may be that we will exploit the knowledge
of sorig in situations when there are multiple generaliza-
tion possibilities. However, the problem is that this ap-
proach can be exploited only in case of simple REs. Oth-
erwise, the inclusion, equivalence and intersection prob-
lem of REs cannot be solved in reasonable time and, con-
sequently, we cannot easily find the related schema frag-
ments.

Consequently, the solution we propose is a relaxed ver-
sion of the two described approaches. We do exploit sorig ,
however, we do not stick to it 100%. In addition, we are
able to find its suboptimal correction/adaptation with rea-
sonable complexity.

5.2 Proposed Solution

In the approach we propose we firstly divide the given
problem into two independent and optional steps:

1. Correction of the input schema

2. Specialization of the input schema

In the fist step we assume there exists at least one doc-
ument d ∈ D s.t. d is not valid against sorig . Hence,
we need to find schema scorrect, i.e. the correction of
sorig , s.t. for ∀d ∈ D : d is valid against scorrect. In
addition, let Σcorrect be the set of all possible corrections
of sorig . Then we want to find a correction scorrect s.t.
dist(sorig, scorrect) 6 dist(sorig, s) for ∀s ∈ Σcorrect,
where dist(s, s′) is the edit distance, i.e. the sequence of
operations for transforming s to s′. In other words, we
want to find a correction that requires the least modifica-
tions of sorig .

In the second step we assume that we have a schema
scorrect, s.t. ∀d ∈ D : d is valid against scorrect. How-
ever, we want to specialize the REs involved in the schema
with regard to the data in D, resulting in more precise and
readable schema s′correct.

Note that any of the steps can be used separately. On
one hand, we may require only the correction step with-
out any unnecessary schema modifications. On the other
hand, we may have a correct schema but we want to make
it more precise, since we know that the data are more spe-
cific.

5.2.1 Schema Correction

First of all, let us mention the fact that each content model
of an XML document must be so-called deterministic or
1-unambiguous.

Example 6 Consider the following content model:
(A B) | (A C)
It is non-deterministic, because while reading A, the

XML processor cannot know which A in the model is be-
ing matched without looking ahead to see which element
follows. On the other hand, an equivalent content model:

A (B | C)
is deterministic. The processor does not need to look
ahead to see what follows; either B or C will be accepted.

This requirement is stated directly in the W3C specifi-
cation of XML (Bray et al. 2006) and ensures that an XML
processor can match the schema with the data efficiently.
And, consequently, we are able to determine the validity
of the documents in D efficiently as well.

The correction algorithm consists of the following
steps:

1. We divide the set D into sets Dvalid and Dinvalid, i.e.
valid and invalid documents, s.t. Dvalid∪Dinvalid =
D and Dvalid ∩ Dinvalid = ∅.

2. For ∀d ∈ Dinvalid we create the respective set of
productions and merge them with sorig .

The key step of the approach is merging a single pro-
duction ~pe created from an element e and its subelements
in XML document d ∈ Dinvalid with productions of
sorig . The merging algorithm can be described as follows:
Firstly, we identify production ~qe from sorig to be merged
with. For this purpose we can use any of the strategies
used in the existing works for grouping the productions. In
most of them the productions are simply grouped accord-
ing to equivalence of element types, more sophisticated
approaches take into account also greater context. Since
this is not the key aspect of our proposal, we will further
assume the former approach.

Having the two productions ~pe and ~qe to be merged,
we parse the model(~pe). Similarly to the approach of
merging productions into a PTA, we match the elements of
model(~pe) with model(~qe) until the parsing does not fail.
Whenever we reach an element e′ ∈ model(~pe) that in-
vokes invalidity, we create a separate branch of automaton
for ~qe consisting of the rest of the content model staring
with e′.

Example 7 Consider the following example of schema
production ~qE:

E → A (B | C) D+
and the following example of document production ~pE:

E → A C Q D D D
The automata describing the productions are depicted

as follows:

Using the above described algorithm, they are merged
into the following automaton:

(Note that if we merge sorig with productions of d ∈
Dvalid, the automata of sorig do not change, since there
occurs no element that would violate creating of a new
branch.)

After merging each of the automata, the newly created
schema scorrect ensures that each d ∈ D is valid against
scorrect. However, the respective automata, i.e. REs, are
not very concise and precise. Therefore, we need to apply
an approach that would merge the newly added branches
more precisely.

Example 8 Consider the merged automaton in Example
7. After more elaborate merging of states of the new
branch, we get the following more concise result:

Since there can exist multiple ways how to merge the
newly added states with the original ones, we exploit a
modification of existing general approach to schema in-
ference that can cope with all the possible cases. In partic-
ular, we utilize an approach from (Vosta et al. 2008) since
it is one of the recent approaches that combines most of
the previously proposed and verified methods.

Firstly, note that the problem of generalization of an
automaton is viewed as a kind of optimization problem.

Definition 4 A model M = (Θ, Ω, σ) of a combinatorial
optimization problem consists of a search space Θ of pos-
sible solutions to the problem (so-called feasible region),
a set Ω of constraints over the solutions and an objective
function σ : Θ → R+

0 to be minimized.

In our case Θ consists of all possible generalizations
of an automaton. As it is obvious, Θ is theoretically infi-
nite and thus, in fact, we can search only for a reasonable
suboptimum. Therefore, we use a modification of ACO
heuristics (Dorigo et al. 2006). Ω is given by the features
of XML schema language we are focussing on. And fi-
nally, to define σ we exploit a modification of the MDL
principle (Grunwald 2005).

Ant Colony Optimization (ACO) The ACO heuris-
tics is based on observations of nature, in particular the
way ants exchange information they have learnt. A set
of artificial “ants” Λ = {a1, a2, ..., acard(Λ)} search the
space Θ trying to find the optimal solution sopt ∈ Θ s.t.
σ(sopt) 6 σ(s);∀s ∈ Θ. In i-th iteration each a ∈ A
searches a subspace of Θ for a local suboptimum until
it “dies” after performing a predefined amount of steps
Nant. While searching, an ant a spreads a certain amount
of “pheromone”, i.e. a positive feedback which denotes
how good solution it has found so far. This information is
exploited by ants from the following iterations to choose
better search steps. The search terminates either after a
specified number of iterations Niter or if s′opt ∈ Θ is
reached s.t. σ(s′opt) 6 Tmax, where Tmax is a required
threshold.

The obvious key aspect of the algorithm is one step of
an ant. Each step consist of generating of a set of possi-
ble continuations, their evaluation using σ and execution
of one of the candidate steps. The executed step is se-
lected randomly with probability given by σ. And this is
the biggest strength of the ACO heuristics. Contrary to
greedy search strategy which can get stuck in local subop-
timum, ACO is able to search greater subspace of Θ due
to random selection of continuations and possible tempo-
ral moving to a worse case.

Generating a Set of Possible Continuations A single
step of an ant is represented using a modification of the
current automaton. As we have mentioned, most of the
existing approaches exploit the merging state strategy, i.e.
reduction of the set of states of the automaton on the ba-
sis of various rules, such as k, h-context (Ahonen 1996)
which merges states with same contexts (prefixes) or s, k-
string (Wong & Sankey 2003) which merges states with
same suffixes.

We will preserve the same merging strategies, the key
difference is in the set of states that can be merged. In the
original algorithm, any of the states of the automaton that
fulfills any of the merging conditions can be merged. In
our case we do not want to modify the original automa-
ton, since we want to preserve the information it carries.
Therefore, we restrict the merging only to cases when the
set of merged states involves at least one of the states of
the new branch. Consequently, we can encounter the fol-
lowing two situations:

1. We merge the states within the new branch, i.e. we
truncate the new branch.

2. We merge a state of the new branch with an original
one, i.e. we reduce the number of states of the whole
automaton.

Evaluation of Continuations The evaluation of mov-
ing from schema sx to sy , where sx, sy ∈ Θ, remains in
our case the same. In particular, it is defined as:

mov(sx, sy) = σ(sx) − σ(sy) + pos(sx, sy)

where σ is the objective function and pos(sx, sy) > 0 is
the positive feedback of this step from previous iterations.
For the purpose of specification of σ, most of the exist-
ing works exploit the MDL principle (Garofalakis et al.
2000). It is based on two observations: A good schema
should be enough general which is related to the low num-
ber of states of the automata. On the other hand, it should
preserve details which means that it enables one to ex-
press document instances in D using short codes. In other
words, most of the information is carried by the schema
itself and, thus, it does not need to be encoded. Hence, the
quality of a schema s ∈ Θ described using a set of pro-
ductions Rs = {~p1, ~p2, ..., ~pcard(Rs)} is expressed using:

• the size (in bits) of Rs and
• the size (in bits) of codes of document instances in D

expressed using Rs.

Let O be the set of allowed operators and E the set of
distinct element names in D. Then we can view model(~p)
of ∀~p ∈ Rs as a word over O ∪ E and its code can be
expressed as |model(~p)| · dlog2(card(O) + card(E))e,
where |model(~p)| denotes length of word model(~p). The
size of code of a single instance d ∈ D is defined as
the size of code of an inferring sequence of productions
Rd = 〈~g1, ~g2, ..., ~gcard(Rd)〉 necessary to convert the ini-
tial nonterminal to d using productions from Rs. Since
we can represent the sequence Rd as a sequence of ordi-
nal numbers of the productions in Rs, the size of the code
of d is card(Rd) · dlog2(card(Rs))e.

5.2.2 Schema Specialization

In the second step of the proposed algorithm we assume
that we are provided with a correct schema scorrect. Our
current aim is to specify the schema using a more precise
schema s′correct. And naturally, we want to preserve the
validity condition for all documents in D.

The problem of schema specialization can be divided
into several steps:

1. Pruning of unused schema fragments

2. Correction of lower and upper bounds of occurrences
of schema fragments

3. Correction of operators

4. Refactorization

According to user requirements, selected steps can be
omitted depending on the respective application. For in-
stance a user may omit step 1. requiring that unused
schema fragments should be preserved. In fact, even the
whole specialization process can be omitted in case we
want to preserve the information from the original schema
sorig as much as possible.

Unused Schema Fragments The aim of this step is to
identify schema fragments that are not used in the sample
XML documents D. The approach can be described as
follows: For each element e in the given schema scorrect
we preserve a usage flag ϕused(e) that carries the infor-
mation about its usage in D. At the beginning of the algo-
rithm we set ϕused(e) = F (false) for ∀e ∈ scorrect. Us-
ing an XML parser we parse each d ∈ D, we check usage

of particular elements of scorrect and set ϕused(e) = T
(true) whenever e ∈ scorrect is used. After parsing the
whose set D we check the flag ϕused. All elements
e ∈ scorrect s.t. ϕused(e) = F together with the asso-
ciated operators can be eliminated since they are not used
in the sample data.

Example 9 Consider the following set of productions ex-
tracted from XML documents:

E → A C
E → A B B B C
E → A B C
E → A B B B B
The following production from scorrect involves frag-

ment Q? not used in the documents.
E → A B* C? Q?
Parsing the content model of the first production we set

ϕused(A) = T and ϕused(C) = T , i.e.
E → A B* C? Q?

T F T F
Parsing the second production we set ϕused(A) = T ,

ϕused(B) = T , ϕused(B) = T , ϕused(B) = T and
ϕused(C) = T , i.e.

E → A B* C? Q?
T T T F

Similarly we process the remaining productions which
do not change the current settings. Finally, we can see
that schema fragment Q? is not used in any of the input
documents and, hence, we can specialize the schema to:

E → A B* C?

Note that since we assume that each d ∈ D is valid
against scorrect, the elimination of unused schema frag-
ments is a correct application which preserves correctness
of the content models, as well as validity of the data in
D. It can be proven as follows: Since the data are valid,
a candidate for elimination must be an optional schema
fragment, i.e. an item of a sequence associated with either
? or * operator or an item of a choice. Hence the elim-
ination causes either truncating of the sequence or reduc-
tion of options of the choice. The schema fragment can
be either a single element or a sequence of elements. In
the latter case, again due to the assumption of validity, all
the elements in the sequence have ϕused of F and, hence
should be eliminated.

Finally, note that this simple strategy can be applied
on both DTDs and XSDs, since their treatment in case of
used and unused schema fragments is the same.

Occurrences In the second step we want to correct the
allowed numbers of occurrences of schema fragments, i.e.
operators ?, + and * in case of DTD or minOccurs and
maxOccurs attribute values in case of XSD. Similarly to
the previous case for each fragment f in the given schema
scorrect we preserve minimum repetition flag ϕmin(f) and
maximum repetition flag ϕmax(f) that carry the informa-
tion about its minimum and maximum amount of succes-
sive occurrences in D.

At the beginning of the algorithm we set ϕmin(f) =
∞ and ϕmax(f) = 0 for each fragment f ∈ scorrect.
Using an XML parser we again parse each d ∈ D. For
each repeating sequence of a schema fragment f we de-
termine its length lf , i.e. the amount of repetitions. If
lf < ϕmin(f), we set ϕmin(f) = lf . If lf > ϕmax(f),
we set ϕmax(f) = lf .

Example 10 Consider the following set of productions
extracted from XML documents:

E → A
E → B
E → A A
The following production from scorrect should be spe-

cialized.
E → A+ | B | (C D)

Parsing the content models of the productions we set
ϕmin and ϕmax as follows:

E → A+ | B | (C D)
Start: ϕmin ∞ ∞ ∞

ϕmax 0 0 0
E → A ϕmin 1 0 0

ϕmax 1 0 0
E → B ϕmin 0 0 0

ϕmax 1 1 0
E → A A ϕmin 0 0 0

ϕmax 2 1 0

The resulting values of ϕmin and ϕmax carry infor-
mation about minimum and maximum occurrences of the
respective schema fragments. In particular:

• If ϕmin = 0, the respective schema fragment has
optional occurrence.

• If ϕmin > 0, the respective schema fragment has
compulsory occurrence.

• If ϕmax > 1, the respective schema fragment has
multiple occurrence.

In case we correct an XSD, we can use ϕmin and
ϕmax as new values for minOccurs and maxOccurs
attributes of respective schema fragments. In case we cor-
rect a DTD, we transform the values of ϕmin and ϕmax
to respective DTD operators – see Table 1, where repmin
is the minimal occurrence which induces generalization to
arbitrary occurrences.

ϕmin ϕmax DTD operator
0 1 ?
0 > repmin *
> 0 > repmin +

Table 1: Transformation of ϕmin and ϕmax to DTD oper-
ators

In addition, note that the values of ϕmax also carry the
same information as ϕused. In particular:

• If ϕmax = 0, then ϕused = F .

• If ϕmax 6= 0, then ϕused = T .

Consequently, using ϕmin and ϕmax we can also iden-
tify the unused schema fragments.

Operators Apart from unused schema fragments and
imprecise minimum and maximum occurrences, there can
occur also too general combinations of operators and al-
lowed occurrences. In particular, we will deal with vari-
ous combinations of ‘|’ (choice), ‘,’ (sequence) and
‘(’, ‘)’ (group) constructs of DTD (XSD).

In general, there can occur two situations, so-called
grouping and degrouping. We will depict them by simple
rules listed in Figure 4.

a?, b? → (a, b)?
a?, b∗ → (a, b+)?
a?, b? → a|b
a?, b∗ → a|b∗

Figure 4: Grouping and degrouping rules

In general, both types of rules transform the content
models to more restrictive ones. Hence, naturally, we can
apply the rules only in case the input data are valid also
against the more restrictive version.

The algorithm for finding candidates for grouping and
degrouping is similar to the previous case: For each of the

REs that conform to the left hand sides of the rules in Fig-
ure 4, we need to check that the input data conform to their
right hand sides as well. While parsing the documents
in D, for each of the candidate schema fragment f and
for each grouping/degrouping rule r1, r2, ..., rk we pre-
serve the respective flags ϕr1(f), ϕr2(f), ..., ϕrk

(f) car-
rying the information whether or not the instances of f in
D conform to right hand side of the respective rule. At
the beginning of the algorithm we set the flags ϕr1(f) =
T, ϕr2(f) = T, ..., ϕrk

(f) = T . While parsing the doc-
uments, whenever we encounter a document instance that
does not fulfill the right hand side of a rule ri, we set the
respective ϕri(f) = F . After parsing each d ∈ D we
can apply grouping and degrouping rules only in case the
respective flag remains positive, i.e. there occurs no doc-
ument instance in D that would not be valid against it.

Example 11 Consider the following schema production:
E → A? B? C D*

In case the document productions are as follows:
E → A B C D D D D
E → A B C
E → C D D

we can apply operation grouping resulting in the following
schema production:

E → (A B)? C D*
On the other hand, if the document productions are as

follows:
E → A C D D D D
E → B C
E → A C D D

we can apply operation degrouping resulting in the fol-
lowing schema production:

E → (A | B) C D*

Note that we can use a much wider set of grouping
and degrouping rules, depending on user requirements on
schema correction. However, if the set of rules is too wide,
it can generate too large set of possible combinations and,
hence, we should use the classical merging state algorithm
instead, since it would enable one to find the suboptimal
solution efficiently. The decision remains in hands of a
user and his/hers requirements for schema specialization.

Refactorization A natural last step of each of schema
inference method is refactoring, i.e. improving readability
and simplifying structure while preserving the functional-
ity of the resulting schema. A demonstrative set of rules is
depicted in Figure 5.

a?? → a?
a++ → a+

a∗∗ → a∗

a∗? → a∗

a?∗ → a∗

a+∗ → a∗

a∗+ → a∗

a?+ → a∗

a+? → a∗

aa∗ → a+

a+a∗ → a+

a?a+ → a∗

(ab)|(ac) → a(b|c)

Figure 5: Merging of operators

The specified rules enable one to remove duplicate
occurrence operators, to merge sequences of distinct oc-
currence operators into a single one, to merge sequences
of the same fragments, to avoid nondeterministic content
models etc. Naturally, there can exist various other sets
of refactorization rules depending on the requirements of
respective applications.

5.3 Complexity

The proposed algorithm consists of schema correction and
schema specialization. Schema correction is performed
using the ACO heuristic whose complexity in the worst
case is limited by the allowed number of iterations, num-
ber of steps of an ant and number of ants, i.e. O(Niter ×
Nant × card(Λ)). On the other hand, schema specializa-
tion is based on linear parsing of XML documents in D,
i.e. O(|D| × max

card(D)
i=1 (|di|)), where |di| denotes the

number of elements and attributes in document di. Nat-
urally, if we decide to perform the schema specialization
using the classical ACO heuristic, it will have the same
complexity as the correction algorithm. Consequently, the
ACO heuristic enables one to search a greater space of
possible solutions and, hence to find a better solution, but
at the cost of efficiency.

In general, even if we use the ACO heuristic instead
of the proposed simple heuristic strategy, the inference al-
gorithm will be still more efficient than the original one
that does not take into account the original schema. The
reason is that we do not begin with simple PTA, but with
an XML schema that is at least partly correct and enough
generalized. If we consider the worst case, i.e. the case
when the input schema sorig is completely incorrect, the
proposed approach builds a classical PTA from the given
XML documents and merges them. The unused schema
fragments of sorig are then simply removed in linear time.

6 Conclusion

The aim of this paper was to propose an algorithm for
automatic inference of an XML schema which exploits
an additional information – the original, possibly incor-
rect or too general schema. We have proposed a two-step
approach. Firstly, we correct the schema so that the in-
put XML documents are valid against it, whereas the new
schema preservers the information carried by the original
one as much as possible. Secondly, we propose a heuris-
tic approach that enables one to specify the schema more
precisely. In particular, we propose two alternatives which
differentiate in efficiency and quality of the result.

Currently, we are dealing with throughout implemen-
tation of the proposal, since we intend to apply it on a
representative set of real-world XML data as well as to ex-
ploit it in existing applications (Dokulil et al. 2007). We
assume that similarly to paper (Bex et al. 2007) we will
discover that the real-world data need special treatment
since they do not involve all the constructs allowed by the
W3C specifications.

Our future work we will focus mainly on integrating
of user interaction which is the key aspect in case mul-
tiple solutions are available and searching the optimum
is made only using heuristics. In fact, there seems to be
no work, that would deal with this topic in detail, taking
into account reasonable requirements for user’s skills and
amount of decisions to be made. Next, we will deal with
inference of further XSD specific features, in particular
integrity constraints. And, finally, since for further pro-
cessing of the respective XML data also constraints that
cannot be expressed in XSD may be useful, we will try to
get also beyond its expressive power.

References

Ahonen, H. (1996), Generating Grammars for Struc-
tured Documents Using Grammatical Inference Meth-
ods, Technical Report A-1996-4, Dept. of Computer
Science, University of Helsinki.

Berstel, J. & Boasson, L. (2000), XML Grammars,
in ‘Mathematical Foundations of Computer Science’,
LNCS, Springer, pp. 182–191.

Bertino, E., Guerrini, G., Mesiti, M. & Tosetto, L. (2002),
Evolving a Set of DTDs According to a Dynamic Set
of XML Documents, in ‘EDBT ’02’, Springer-Verlag,
London, UK, pp. 45–66.

Bex, G. J., Neven, F. & den Bussche, J. V. (2004),
DTDs versus XML Schema: a Practical Study, in
‘WebDB’04’, ACM, New York, NY, USA, pp. 79–84.

Bex, G. J., Neven, F. & Vansummeren, S. (2007), In-
ferring XML Schema Definitions from XML Data, in
‘VLDB’07’, ACM, Vienna, Austria, pp. 998–1009.

Biron, P. V. & Malhotra, A. (2004), XML Schema Part 2:
Datatypes (Second Edition), W3C.

Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E.
& Yergeau, F. (2006), Extensible Markup Language
(XML) 1.0 (Fourth Edition), W3C.

Dokulil, J., Tykal, J., Yaghob, J. & Zavoral, F.
(2007), Semantic Web Repository And Interfaces, in
‘SEMAPRO’07’, IEEE Computer Society, Los Alami-
tos, USA, pp. 223–228.

Dorigo, M., Birattari, M. & Stutzle, T. (2006), Ant
Colony Optimization – Artificial Ants as a Computa-
tional Intelligence Technique, Technical Report 2006-
023, IRIDIA, Bruxelles, Belgium.

Garofalakis, M., Gionis, A., Rastogi, R., Seshadri, S. &
Shim, K. (2000), XTRACT: a System for Extracting
Document Type Descriptors from XML Documents, in
‘SIGMOD’00’, ACM, New York, NY, USA, pp. 165–
176.

Gold, E. M. (1967), ‘Language Identification in the
Limit’, Information and Control 10(5), 447–474.

Grunwald, P. (2005), A Tutorial Introduction to the Min-
imum Description Principle. http://homePAGES.
cwi.nl/˜pdg/ftp/mdlintro.pdf.

Guerrini, G., Mesiti, M. & Sorrenti, M. A. (2007), XML
Schema Evolution: Incremental Validation and Effi-
cient Document Adaptation, in ‘XSym’07’, Springer,
Vienna, Austria, pp. 92–106.

Mignet, L., Barbosa, D. & Veltri, P. (2003), The XML
Web: a First Study, in ‘WWW’03’, ACM, New York,
NY, USA, pp. 500–510.

Mlynkova, I., Toman, K. & Pokorny, J. (2006), Sta-
tistical Analysis of Real XML Data Collections, in
‘COMAD’06’, Tata McGraw-Hill, New Delhi, India,
pp. 20–31.

Moh, C.-H., Lim, E.-P. & Ng, W.-K. (2000), Re-
engineering Structures from Web Documents, in
‘DL’00’, ACM, New York, NY, USA, pp. 67–76.

Su, H., Kramer, D., Chen, L., Claypool, K. & Runden-
steiner, E. A. (2001), XEM: Managing the Evolution of
XML Documents, in ‘RIDE ’01’, IEEE Computer So-
ciety, Washington, DC, USA, p. 103.

Tan, M. & Goh, A. (2005), Keeping Pace with Evolv-
ing XML-Based Specifications, in ‘Current Trends
in Database Technology – EDBT ’04 Workshops’,
Springer, Heraklion, Crete, Greece, pp. 280–288.

Thompson, H. S., Beech, D., Maloney, M. & Mendelsohn,
N. (2004), XML Schema Part 1: Structures (Second
Edition), W3C.

Vosta, O., Mlynkova, I. & Pokorny, J. (2008), Even an Ant
Can Create an XSD, in ‘DASFAA’08’, LNCS, Springer,
pp. 35–50.

Wong, R. K. & Sankey, J. (2003), On Structural Infer-
ence for XML Data, Technical Report UNSW-CSE-TR-
0313, School of Computer Science, University of NSW.

