
On the Effectiveness of Virtualisation Assisted View Comparison
for Rootkit Detection

Toby J. Richer1 Grant Neale1 Grant Osborne1

1Defence Science and Technology Organisation
PO Box 1500, Edinburgh, South Australia 5111,

Email: toby.richer@dsto.defence.gov.au

Abstract

There is growing interest in tools for monitoring virtu-
alisation infrastructure and detecting malware within
Virtual Machines (VMs). View comparison, or cross-
view validation, is a technique for detecting object
hiding by malware. It involves comparing different
views of system objects to find discrepancies that
might indicate the use of object hiding techniques.

We present Linebacker, a system for perform-
ing view comparison on VMware vSphere VMs.
Linebacker compares external (i.e. hypervisor level)
and internal (i.e. guest operating system level) views
of process, file and registry objects within VMs to
detect rootkits that cloak such objects from the view
of the guest operating system. We use Linebacker to
compare the efficacy of the view comparison technique
to sandboxing or API call monitoring approaches to
rootkit detection. We also present a case study evalu-
ating the performance impacts associated with using
Linebacker to monitor VMs in a production environ-
ment. We present execution and analysis time metrics
for this study and discuss feedback provided by users.

Finally, we analyse our results and make recom-
mendations regarding the implementation of view
comparison for real-world virtualisation infrastruc-
ture.

1 Introduction

There is growing interest in tools for monitoring virtu-
alisation infrastructure and detecting malware within
Virtual Machines(VMs).

Rootkits often use evasion techniques to avoid de-
tection and thus increase their chance of persisting on
a system. Evasion techniques may include manipula-
tion of the way a system reports active processes, lists
files and their contents, and displays registry keys.
View comparison (Wang, Vo, Roussev, Verbowski &
Johnson 2004) is a technique for detecting rootkits
by comparing internal and external views of oper-
ating system objects. The ability of the technique
to detect rootkits has been demonstrated previously
(Garfinkel & Rosenblum 2003, Wang, Beck, Vo, Rous-
sev & Verbowski 2005, Quynh & Takefuji 2007, Jiang,
Wang & Xu 2007, Jones, Arpaci-Dusseau & Arpaci-
Dusseau 2008, Wang, Hu & Li 2011), but to our
knowledge it has not yet been implemented within

Copyright c©2015, Commonwealth of Australia. This
paper appeared at the Australasian Information Security
Conference(ACSW-AISC 2015), Sydney, Australia, January
2015. Conferences in Research and Practice in Information
Technology (CRPIT), Vol. 161, Ian Welch and Xun Yi, Ed.
Reproduction for academic, not-for-profit purposes permitted
provided this text is included.

commercial monitoring tools (Adventium Labs 2014,
Trend Micro 2014).

There are potentially several reasons why view
comparison is not currently used in commercial mon-
itoring tools. View comparison may not scale well to
monitoring a large number of machines. The results
of view comparison may be difficult to interpret, and
may result in a high false positive rate when applied
to production systems. Many current virtualisation
assisted implementations of view comparison rely on
modifications to existing commercial or open-source
hypervisors (Garfinkel & Rosenblum 2003, Quynh &
Takefuji 2007, Jiang et al. 2007, Wang et al. 2011,
Jones et al. 2008), and it may be that adding this
capability to commercial tools is too onerous. It
may also be that the same or better performance
(in terms of VM impact and detection of rootkits)
can be achieved through the commercially available
tools that use vShield Endpoint (VMware 2014d) such
as Bitdefender SVE (Bitdefender 2014), Sophos An-
tivirus for vShield (Sophos 2014) or Trend Micro Deep
Security Antivirus (Trend Micro 2014).

We have developed a system for performing view
comparison and live Virtual Machine Introspection
(VMI)-based (Garfinkel & Rosenblum 2003) foren-
sics on VMware vSphere VMs. Our system supports
the “vanilla” VMware ESXi hypervisor and does
not require additional drivers (other than VMware
Tools) to be installed within monitored VMs. As
a result, we have been able to evaluate the perfor-
mance of our tools in a production environment and
gather feedback on the user experience. We also used
the Cuckoo malware analysis tool (Cuckoo Sandbox
Developers 2014) to sandbox the execution of a sam-
ple set of common malware. This sandboxing process
was used to generate profiles of the malware, which
we used to compare the ability of API monitoring and
view comparison to detect rootkits.

This work contributes an analysis of the effective-
ness of view comparison detection techniques in de-
tecting object hiding performed by rootkits, as com-
pared to API call monitoring techniques. We assume
that the data generated by Cuckoo is similar to the
data used by API call-based detection techniques in
commercial rootkit detection tools. This data in-
cludes windows kernel level activity associated with
creation of processes and files, and any subsequent
calls made to install filter drivers to hide them from
the operating system. To our knowledge, our work is
the first analysis of view comparison that compares it
to another method of detecting object hiding, over a
range of rootkits. Our work also contributes an anal-
ysis of view comparison performance across multiple
VMs hosted on standard VM infrastructure. Our
results provide new insights into the impact of im-
plementing view comparison techniques in real-world

Proceedings of the 13th Australasian Information Security Conference (AISC 2015), Sydney,
Australia, 27 - 30 January 2015

35

virtualisation infrastructure.
The next section describes previous work in

view comparison and introduces Linebacker, our im-
plementation of view comparison for the VMware
vSphere virtualisation platform. Linebacker imple-
ments view comparison using standard APIs devel-
oped by VMware. Section 3 presents an evaluation of
the efficacy of performing virtualisation assisted view
comparison, based on tests of Linebacker on a corpus
of real-world malware samples. Section 4 presents
a case study on the performance of Linebacker in a
real-world scenario. Finally, Section 5 presents our
conclusions and discusses potential further work in
this area.

2 View Comparison

View comparison, also known as cross-view validation
(Wang et al. 2004, Wang et al. 2005), is a technique
for detecting rootkits. It involves comparing differ-
ent views of system objects to find discrepancies that
might indicate the use of evasion techniques by rootk-
its.

A rootkit is malicious software that allows an at-
tacker to establish and maintain a persistent presence
on a machine, while concealing their presence from
legitimate users of the machine. Rootkits often hide
objects such as files, registry entries, processes and
kernel modules in order to avoid detection.

A simple technique for hiding files is to set the
hidden bit for each of these files within the Master File
Table (MFT). However, the details of such files are
still available from the MFT, or by changing system
settings to show hidden files.

A more sophisticated hiding technique employed
by rootkits is to hook the system Application Pro-
gramming Interface (API) functions used to enumer-
ate a particular type of object and filter out any re-
sults referring to the object being hidden. The un-
derlying data structures storing hidden objects are
not modified by this filtering technique. These hid-
den objects can be detected by comparing the raw
contents of these structures to the view presented by
the system APIs. Objects that appear within the un-
derlying data structures, but are not visible in API
results might have been hidden by a rootkit.

Direct Kernel Object Manipulation (DKOM)
rootkits hide objects by modifying data structures
in the kernel directly. These rootkits can poten-
tially be detected by comparing API results with raw
data structure contents. In some cases they can be
detected by comparing the contents of related ker-
nel data structures storing similar information(Wang
et al. 2005).

More recent rootkits have implemented new tech-
niques to avoid being detected by view comparison
(Kapoor & Mathur 2011). The Koutodoor rootkit
blocks read/write access to files, rather than hiding
them. The TDSS family of rootkits store files as
orphan files in unused portions of the drive. They
alter the Master Boot Record (MBR) to allow ac-
cess to these files without them appearing within the
filesystem. Another approach, proposed by Jiang et
al(Jiang, Wang & Xu 2010), is for rootkits to modify
the fundamental structure of disk or memory to hide
processes or files. This would also have the potential
to hide processes from Linebacker, since it relies on
the reconstruction of disk or memory by VMWare or
forensics tools. However, it would be extremely dif-
ficult to modify these fundamental structures while
enabling the normal operation of other software on
the guest OS. Hiding information outside the file sys-

tem, as done by the TDSS family of rootkits, achieves
a similar goal more easily.

Some rootkits do not attempt to hide the presence
of the files they have added or altered. One technique
used by rootkits is to Hide in Plain Sight (HIPS), by
hiding objects within existing files or memory struc-
tures or in obscure sections of the filesystem. Rootkits
that do not try to hide file objects will not be detected
by view comparison, but will potentially be vulnera-
ble to other established rootkit detection techniques.

Virtualised infrastructure provides a significant
advantage over non-virtualised infrastructure for the
application of view comparison. VMI allows VMs to
be observed from the hypervisor, providing an ex-
ternal viewpoint that cannot be tampered with from
within monitored VMs. Guest operating system data
structures in memory or on disk can be parsed di-
rectly from this external view. View comparison can
be performed by comparing this external view with
the internal view provided by the guest operating sys-
tem.

2.1 Virtual Machine Introspection

Virtualisation allows multiple VMs to run on a sin-
gle physical server. Software called the hypervisor, or
Virtual Machine Monitor (VMM), presents a virtual
hardware platform to VMs and manages accesses to
physical hardware. This allows isolation to be main-
tained between VMs sharing the same physical hard-
ware.

Virtual Machine Introspection (VMI) (Garfinkel &
Rosenblum 2003) is the observation of software run-
ning inside of VMs from the hypervisor level. The
hypervisor controls all access to the virtual hardware
platform and the underlying physical hardware, al-
lowing disk, memory, CPU, network and other hard-
ware contents or state to be observed directly, without
relying on the operating system running within the
VM. Such an operating system is commonly referred
to as the guest operating system. VMI has previ-
ously been used in a number of applications includ-
ing Intrusion Detection Systems(IDSs) (Garfinkel &
Rosenblum 2003, Jiang et al. 2007, Jones et al. 2008),
malware detection and analysis (Jiang et al. 2007,
Litty, Lagar-Cavilla & Lie 2008), and forensics (Hay
& Nance 2008, King & Chen 2005, Krishnan, Snow &
Monrose 2010, Nance, Hay & Bishop 2009).

The key obstacle to VMI is the semantic gap be-
tween the state of a guest operating system and the
raw data visible to the hypervisor. The challenge of
reconstructing guest operating system semantics from
this external view is well known and a number of
methods have been proposed (Garfinkel & Rosenblum
2003, Jiang et al. 2007, Krishnan et al. 2010, Litty
et al. 2008, Pfoh, Schneider & Eckert 2009). Pfoh et
al. (Pfoh et al. 2009) provide a useful categorisation of
such methods into three “view generation patterns”:
in-band delivery, out-of-band delivery and derivative.
These three patterns or combinations thereof encap-
sulate all possible methods of bridging the semantic
gap.

In-band delivery (Pfoh et al. 2009) uses an agent
within the VM to deliver information to the hypervi-
sor. This method avoids the semantic-gap challenge
by leveraging the guest operating system’s inherent
knowledge of its own architecture. This method lacks
portability and is easily subverted.

Out-of-band delivery (Pfoh et al. 2009) generates
an OS-level view from hypervisor-level state informa-
tion using semantic knowledge obtained in advance.
This knowledge might include kernel symbol tables,
address space layouts or file system specifications.

CRPIT Volume 161 - Information Security 2015

36

The significant body of computer forensics re-
search focused on reconstructing system state from
forensic disk and memory images can be applied to
overcome the semantic gap when using out-of-band
delivery. Disk forensics techniques can be used to ex-
tract a variety of metadata (e.g. a file’s author or its
modification, access and creation times) and digital
evidence (e.g. emails, images, videos and documents)
from a file system. There are several commercial tools
that perform this type of analysis, such as EnCase
Forensics (Guidance Software 2013). VMware uses
delta files to track changes to the disks of VMs. In
this case, changes in unallocated parts of the hard
drive and modification of existing files will appear in
these delta files, even if the file system is undisturbed.
However, approaches to detect rootkits based on the
delta files are beyond the scope of this work.

Memory forensics techniques can be used to gather
system state information from volatile memory. Pro-
cess and network connectivity information can be ex-
tracted from a memory image (Okolica & Peterson
2010). The Virtual Address Descriptor (VAD) data
structure maintained by the kernel to keep track of
allocated memory ranges can be used to enumerate
the files and objects to which each process has refer-
ences (Vömel & Freiling 2011, Russinovich, Solomon
& Ionescu 2009). Aljaedi et al. (Aljaedi, Lindskog,
Zavarsky, Ruhl & Almari 2011) discuss the large va-
riety of information types able to be extracted from
memory. A range of tools have now been developed to
help with the analysis of volatile memory images, such
as the Volatility Framework (Volatile Systems 2013).

In addition to forensics tools, memory and disk
driver software on the VM monitor is often similar
or identical to the driver software on the guest. In
this case, the drivers on the monitor can be used as
a template for reconstruction the memory and disk
structures. This is the approach used in VMWatcher
(Jiang et al. 2010).

Derivative delivery (Pfoh et al. 2009) generates an
OS-level view using knowledge of the virtual hardware
architecture of VMs. An example of this approach is
monitoring the contents of CPU control registers to
infer information about the state of the VM. This ap-
proach is portable between different guest operating
systems and is much less likely to be subverted by
malicious modification of guest data structures. Un-
fortunately it is not portable across VM hardware ar-
chitectures and can only extract limited information
as prior semantic knowledge of the guest operating
system cannot be used as a part of this approach.

2.2 Existing Implementations

View comparison based rootkit detection was first im-
plemented by Strider GhostBuster (Wang et al. 2005),
which compares the high-level view provided by the
Win32 APIs to the lower-level view obtained by pars-
ing data structures directly. These data structures are
accessed by using a kernel driver, triggering a kernel
memory dump or booting the monitored system from
a WinPE boot CD. GhostBuster is able to detect hid-
den files, processes, kernel modules and registry en-
tries. The file and registry view comparison aspects
of this tool were subsequently released as RootkitRe-
vealer, which used a kernel driver for its trusted view
(Microsoft Research 2010).

Kernel Rootkit Trojan Detector (KeRTD)
(Mahapatra & Selvakumar 2011) uses a number of
techniques to detect and defend against rootkits.
View comparison is used to compare process, driver
and access control lists between kernel and user-mode
to detect hidden objects.

A number of academic hypervisor-based IDS pro-
totypes use VMI to provide the external view for their
view comparison modules. Livewire (Garfinkel &
Rosenblum 2003), XenKIMONO (Quynh & Takefuji
2007), VMwatcher (Jiang et al. 2007) and VMDe-
tector (Wang et al. 2011) all read VM memory di-
rectly from the hypervisor to access kernel data struc-
tures. The contents of data structures listing kernel
modules, processes and network connections are then
compared to user-mode views of the corresponding
objects to detect hiding.

Lycosid (Jones et al. 2008) uses a different ap-
proach to detect hidden processes. Process creation
and deletion is inferred by observing related events,
such as virtual address space creation and destruc-
tion, from the hypervisor. A hidden process causes
the process count observed using this technique to
differ from that reported by the guest operating sys-
tem, allowing the hiding to be detected.

2.3 Our Implementation

We have developed a tool, named Linebacker, to per-
form view comparison and enable the use of standard
disk and memory forensics on running VMs hosted
on standard VMWare ESX servers. To our knowl-
edge, none of the existing view comparison tools are
designed to run on VMware enterprise infrastructure;
VMWatcher is able to perform view comparison on
VMWare Workstation though development of this ca-
pability required access to VMWare source code. This
tool is able to compare internal (i.e. in-band deliv-
ery) and external (i.e. out-of-band delivery) views of
memory, filesystem and registry objects for Windows
VMs. Linebacker relies on VMware supported APIs
to obtain the internal and external views required to
perform view comparison. This approach eliminates
the need to install an additional agent within each
monitored VM, relying instead on installation of the
standard set of VMware Tools within the Guest.

The view comparison techniques we employ aim to
detect hiding of malware artefacts from the guest op-
erating system. Examples include filtering the results
of API calls before they are returned to the operat-
ing system or modifying kernel data structure using
DKOM. Hide In Plain Sight (HIPS) techniques such
as creating a file or process with a legitimate look-
ing name or setting system or hidden attributes on
files to conceal them from the user are not the target
of our view comparison system, but may be detected
by it. Such techniques do not prevent the guest op-
erating system from accessing the concealed objects,
and are better addressed through analysis of the vis-
ible file objects in the operating system than by view
comparison.

Linebacker obtains an external view of memory
objects by parsing Virtual Machine Suspended State
(VMSS) memory images. VMSS files are generated
by VMware hypervisors when VMs are suspended.
These files store the metadata required to resume the
execution of suspended VMs. This metadata nec-
essarily includes an atomic snapshot of each VM’s
memory at the time is was suspended. The VMware
vSphere Web Services API (VMware 2014c) is used
to momentarily suspend each monitored VM, trigger-
ing the creation of a VMSS file. The list of processes
running in the VM is then parsed from this mem-
ory image using the open-source Volatility Framework
(Volatile Systems 2013). This list is then compared to
the corresponding internal list, which is obtained via
the VMware Tools guest addition using the VMware
VIX API (VMware 2014b). Any processes that ap-
pear only in the external view are reported as hidden.

Proceedings of the 13th Australasian Information Security Conference (AISC 2015), Sydney,
Australia, 27 - 30 January 2015

37

Similarly, Linebacker obtains an external view of
disk objects by parsing disk snapshots. The VMware
vSphere Web Services API is used to capture a snap-
shot of each monitored VM. These snapshots are
then mounted using the VMware Virtual Disk De-
velopment Kit (VDDK) (VMware 2014a), allowing
filesystem-level access to the contents of the VM’s
disks. This allows the files and directories on each
disk to be enumerated and compared to the corre-
sponding internal view. The internal view is obtained
by using the VIX API to execute the dir command
within the guest operation system. This command
is run with flags to include any hidden files and to
run recursively through all subdirectories. Any files
that appear only in the external view are reported as
hidden.

Linebacker also uses disk snapshots to reconstruct
an external view of the non-volatile contents of the
Windows registry (Russinovich, Solomon & Ionescu
2012). This is done by parsing the ‘hive’ files storing
the registry using Hivex (Jones 2010). The corre-
sponding internal view of the registry is obtained by
using the VIX API to recursively enumerate all keys
and values in the registry using the RegEnumKeyEx
and RegEnumValue Windows API functions. These
internal and external views can then be compared to
detect hidden registry entries.

3 Detection

We conducted a set of tests in order to determine the
efficacy of Linebacker’s view comparison techniques
at detecting the evasion behaviour of rootkits. This
involved using Cuckoo Malware Sandbox in conjunc-
tion with our own scripts to execute Linebacker and
Cuckoo on a corpus of malware executables. Each
sample was run on a Windows XP x86 VM and a
Windows 7 x86 VM hosted on the VMware ESXi 5.5
hypervisor.

While Cuckoo is not specifically designed to detect
rootkits, it is designed for wider analysis of rootkits.
It does not use the same techniques to extract in-
formation as rootkit detectors, as it sandboxes the
execution of malware rather than using API hooking
(i.e. it does not install a system level driver that ma-
nipulates or reads API calls at a kernel level), but it
provides the same type of information as is used by
rootkit detectors such as GMER (GMER - Rootkit
Detector and Remover 2014). As an analysis tool
rather than a detector, it will provide all the meta-
data it can about the malware it is sandboxing with-
out filtering this information down to a set of single
alerts for each rootkit detected. Our position is that
the most informative way of analyzing view compar-
ison as a rootkit detection technique is to compare
the total sets of raw data obtained by Linebacker and
Cuckoo when tested against a broad range of object
hiding techniques, then examining both (a) what type
of techniques are detected by each, and (b) how this
raw data could be filtered to produce a rootkit detec-
tor. If a filtered output of Linebacker was compared
to a end-user tool such as GMER, it would be harder
to determine if any differences in performance were
due to view comparison or differences in filtering tech-
niques. Also, given the constant changes in malware,
a relative comparison of the types of object hiding de-
tected by Linebacker and Cuckoo is more informative
than comparing the total number of rootkits detected
by each.

3.1 Method

The method used to conduct the tests was:

1. reset the VM-under-test to a “base” state (i.e.
has the Cuckoo agent running and no malware
sample executing)

2. execute Linebacker’s registry, disk and memory
view comparison tools on a clean environment to
record metadata about the “base” state of the
VM

3. use Cuckoo to inject the malware sample and ex-
ecute it in a sandboxed manner

4. use Cuckoo to record all metadata about the mal-
ware executable using the Cuckoo agent

5. execute Linebacker’s registry, disk and memory
view comparison tools on the infected VM to
record its “dirty” state (i.e. potentially hidden
files, processes and registry keys)

6. export all reports for later analysis

7. power off the VM.

This method was repeated for each of our malware
samples, against Windows XP and Windows 7 SP1
VMs-under-test. The malware samples used for this
testing consisted of the 13 rootkits listed in Table 1.
We chose a range of 40 publicly-available rootkits that
were representative of a range of object hiding tech-
niques used by rootkits encountered on the internet.
These techniques are summarised in Section 2.3. We
then ran them on our test Windows XP system, and
removed those that did not run, or ran but had no
effect on any aspect of the system (as measured by
Cuckoo). In the case of the FUTo(Silberman 2006)
rootkit, the version that we found did not run on our
Windows XP test system, but we were able to find a
cut-down version of the rootkit that employs the same
techniques and ran successfully on Windows XP. This
was tested later.

The information provided by Cuckoo includes:

• native function and Windows API call traces

• copies of files created and deleted from the file
system

• child process and process activity logs.

We use Linebacker’s view comparison techniques to
provide metadata about:

• processes for which an EPROCESS structure can be
parsed directly from an external VMSS memory
image, but which are omitted from the results of
Windows API calls used to enumerate processes
internally;

• files that are visible when directly parsing an ex-
ternal snapshot of a VM disk, but are not listed
internally;

• registry keys that are visible when directly pars-
ing registry hive files from disk snapshots, but
are not visible via the Windows API calls used
to enumerate registry contents internally.

To compare the results of both techniques, we fil-
tered out clear false positives from each set of results.
The baseline registry, process and file system chatter
were removed from Linebacker by removing any re-
sult that appeared in both the clean and dirty runs
of Linebacker for a particular rootkit. In addition,

CRPIT Volume 161 - Information Security 2015

38

the dirty results for every test included malware files
uploaded to the sandbox by Cuckoo and Windows
prefetch files created as a result of executing the mal-
ware. These files were also filtered from the results.
To determine if the remaining artefacts were part of
the rootkit or unrelated, we consulted available refer-
ences on the behaviour of each rootkit. Where neces-
sary, we repeated the test procedure and manually
inspected the “dirty” state of the VMs through a
VMware console. Through this, we could determine
as precisely as possible how much of the information
provided by Cuckoo or Linebacker was directly re-
lated to the detection of a rootkit.

3.2 Results

The detection testing results obtained using
Linebacker are summarised in Tables 1 and 2.
For Windows 7, we have also indicated whether,
based on any evidence of activity in Cuckoo, the
rootkit has installed successfully. The results are
described below, and analysed in more detail in
Section 3.3

Note: We refer to the memory view comparison
results as “process” results, as we were only exam-
ining potentially hidden process information rather
than all of the artefacts that could be extracted from
memory.

Process Results: While Linebacker’s process
view comparison tool detected three true positive hid-
den processes, a large number of false positives were
removed through the filtering and verification process.
Both Linebacker and Cuckoo detected a hidden pro-
cess for the zeus.melt.exe rootkit on both editions
of Windows tested. The name of the process is actu-
ally a random string, which changed each time we ex-
ecuted the rootkit. This behaviour is consistent with
published descriptions of this rootkit’s behaviour. A
hidden instance of smss.exe was also detected for two
samples from the Zbot family, when run on Windows
XP. Cuckoo did not detect this. On Windows 7, these
two samples were not successfully installed.

As stated above, the FUTo rootkit was executed
manually on both Windows XP and Windows 7.
It was used to hide the notepad.exe process. On
Windows XP the hidden process was detected by
Linebacker. On Windows 7, the rootkit failed to run.

Disk Results: After filtering the results from
Linebacker, and comparing the results with refer-
ences on these rootkits, it was found that Linebacker
had detected only two of the malware samples,
Trojan-Spy.Win32.ZBot.dol.exe and QVOD, hid-
ing files. This sample hid the directory C:\Documents
and Settings\Test\Application Data\wsnpoem in
Windows XP. This directory contained two files:
audio.dll and video.dll. The wsnpoem directory
is created by particular variants of the Zeus trojan.
The audio.dll file within this directory is used to
store stolen data to be sent back to the command
and control server. The video.dll file stores the
encrypted configuration for the trojan (ZeusTracker
2014). Linebacker also detected these files in Win-
dows 7, in the directory C:\Users\testadmin\-
Roaming\wsnpoem, though in this case Cuckoo also
detected the files. Cuckoo observed the creation
of three executable files by three variants of the
Zeus/Zbot trojan: oembios.exe, ntos.exe and
sdra64.exe, but did not detect the creation or pres-
ence of the files found by Linebacker on the Windows
XP test machine. Linebacker did not detect the exe-
cutable files found by Cuckoo as being hidden.

For the QVOD rootkit, a number of files were de-
tected by Linebacker within the system restore direc-

tories. A manual verification revealed that these files
were detected because the rootkit had set the “sys-
tem” attribute for these files. This prevents them
from being read by the dir /h command for any-
one but the system administrator. While this is
an example of Linebacker detecting rootkit activity,
these files are only hidden from some users of the
operating system, as opposed to the files hidden by
Trojan-Spy.Win32.ZBot.dol.exe.

Linebacker detected files from other samples, on
both Windows XP and Windows 7 test machines, but
it was discovered during the verification process that
these files were not associated with the malware under
test. These files were either hidden from Linebacker’s
internal view as a result of filesystem permissions, hid-
den with the “system” attribute as described above,
or created in the time interval between the internal
and external views of disk being generated.

Registry Results: The registry view compari-
son did not detect any hidden keys or values.

3.3 Discussion

Process Results: The large number of false posi-
tives removed through the filtering and verification
process can be attributed to the small delay between
capturing the memory image providing the external
process listing and the generation of the internal view
via VMware Tools. In practice it is not possible to
synchronise these two views perfectly as a VM must
be paused to allow an atomic memory image to be
captured. We expect the number of false positives to
increase with process creation and termination activ-
ity on the monitored system.

For example, a process in the system may termi-
nate during the time it takes to download the VMSS
memory image from the guest. This process would
appear in the external memory image, but would not
be reported in the internal process listing. Our tool
would then detect this process as potentially mali-
cious, even though it is simply the result of benign
process creation and exit activity.

Another cause of process false positives is
EPROCESS structures for terminated processes remain-
ing in memory. These structures remain in mem-
ory until they are overwritten or wiped, which may
not happen for some time after a process terminates.
Such structures will be parsed as active processes in
the external view, resulting in a false positive.

To our knowledge the false positives would be diffi-
cult to filter outside of a controlled test environment,
as filtering could also filter out process hiding that a
rootkit may use to preserve itself. Our results show
the concept of memory-based view comparison has
the potential to work. However it is our recommen-
dation that a realistic security solution would require
cross checking against additional detection capabil-
ities (such as live in-memory monitoring of process
behaviour — something that is not possible using the
free VMware APIs).

Disk Results: Linebacker’s disk analysis de-
tected object hiding from only one of the rootkits in
the test set. The files created by this rootkit were not
observed by Cuckoo. Though Cuckoo’s recording of
API callsg found more rootkits, and found more files
associated with rootkits overall, this suggests that
view comparison and tracking API calls may work
as complementary approaches to rootkit detection.

As with the memory analysis, the disk view com-
parison produced a large number of false positives.
An advantage of the disk view comparison technique
is that false positives tend to appear in the same lo-
cations in the filesystem. False positives that occur

Proceedings of the 13th Australasian Information Security Conference (AISC 2015), Sydney,
Australia, 27 - 30 January 2015

39

Table 1: Summary of hidden objects detected by Linebacker (Windows XP x86)
Rootkit Installed? Process File Registry

Backdoor.Win32.Ghost.binder.exe Y - - -

Backdoor.Win32.Ghost.20.exe Y - - -

Backdoor.Win32.Ghost.21.exe Y - - -

Backdoor.Win32.Ghost.23.exe Y - - -

QVOD Y - Y -

TDL4 Y - - -

Trojan-Spy.Win32.Zbot.dol.exe Y - Y -

Trojan-Spy.Win32.Zbot.aaak.exe Y smss.exe - -

Wink.bg.exe Y - - -

zbot.exe Y smss.exe - -

ZeroAccess-z (dumped.dll) Y - - -

zeus.melt.exe Y meyw.exe - -

FUTo(manual) Y notepad.exe - -

Table 2: Summary of hidden objects detected by Linebacker (Windows 7 x86)
Rootkit Installed? Process File Registry

Backdoor.Win32.Ghost.binder.exe Y - - -

Backdoor.Win32.Ghost.20.exe N - - -

Backdoor.Win32.Ghost.21.exe N - - -

Backdoor.Win32.Ghost.23.exe Y - - -

QVOD N - - -

TDL4 Y - - -

Trojan-Spy.Win32.Zbot.dol.exe Y - Y -

Trojan-Spy.Win32.Zbot.aaak.exe N - - -

Wink.bg.exe Y - - -

zbot.exe N - - -

ZeroAccess-z (dumped.dll) Y - - -

zeus.melt.exe Y leby.exe - -

FUTo(manual) N - - -

as a result of file permissions can be filtered out using
a fixed list of directories. File hiding that occurs as
a result of rootkits, and appears in other directories,
is unusual and flagging such activity should produce
few false positives. A drawback of this approach to
reducing the number of false positives is that an at-
tacker could design malware that hides in parts of the
system that have the highest level of security. Unless
Linebacker is run with this level of access, files hid-
den in these areas will be assumed to be hidden via
normal system permissions rather than hidden by an
attacker. Running Linebacker with administrator cre-
dentials on all the systems it monitors could be seen
as creating an additional method for these systems to
be compromised.

A key issue with file-based view comparison is that
it only detects rootkits that exhibit a certain class
of file-hiding behaviour. Such behaviour is far from
ubiquitous. Unsophisticated rootkits may not make
any attempt to avoid detection, thus view compari-
son will not detect them. Rootkits that employ HIPS
strategies will not be detected for similar reasons.
Some modern rootkits, such as TDL-4, use alterna-
tive evasion techniques that avoid creating file system
objects entirely. Later versions of the TDL rootkit
store the exploit in slack space at the end of a drive,
then overwrite the MBR to load the exploit before the
rest of the operating system (Lau 2013). This tech-
nique circumvents the Master File Table (MFT), so
the view comparison approach will not detect these
files — they will not appear in internal or external

analyses of the file table. However, forensic analysis
of the external view of the disk could detect changes
in slack space.

Despite these issues, view comparison does detect
some rootkits and provides information about where
they hide on the system, making it a valuable addi-
tion to an arsenal of complementary detection tools.
However, if a new system for monitoring VMs were to
be developed, an approach based on offline full anal-
ysis of disk changes would be able to detect a wider
range of threats than view comparison alone.

Registry Results: Our registry view compari-
son detected only a small number of entries. These
appeared in both the “clean” and “dirty” scans, so
they are not the result of object hiding by rootkits.
Cuckoo observed that registry entries were created by
some of the rootkits in our sample. We believe that
these entries were not hidden as there is little benefit
to cloaking registry entries from the guest operating
system. Cloaking these entries would prevent them
from having their intended effect, such as automati-
cally re-launching the rootkit following a reboot.

Overall: The Linebacker tools detected a small
proportion of the rootkits we tested. These rootkits
use a range of techniques to prevent their detection,
from HIPS through DKOM to hiding in slack space.
The view comparison technique is only designed to
detect a subset of these techniques. To get protection
against a broad band of rootkits, Linebacker would
need to be combined with other detection techniques
such as traditional antivirus techniques and MBR

CRPIT Volume 161 - Information Security 2015

40

protection techniques. The Linebacker tools tend to
generate a large number of false positives that must be
filtered out in some way. The registry and hard drive
in particular have large amounts of ongoing change
and deletion even on VMs that are only running the
malware under test. The inability to perfectly syn-
chronise the external and internal views makes it
difficult to determine (without manual verification)
whether or not a process detected by the memory
analysis tool is a false positive or not. File permissions
and UAC in Windows 7 can also cause large numbers
of false positives (i.e. preventing Linebacker’s inter-
nal view from accessing files which are not actually
hidden in a malicious sense). This is highlighted by
the fact that our testing against known malware sam-
ples generated thousands of lines of marked-as-hidden
output that needed to be filtered out before meaning-
ful analysis could take place. This could potentially
be an even greater problem for scaling view compar-
ison up from single machines to enterprise systems,
though in enterprise systems there is the potential to
compare output across a set of identical systems to
identify the anomalous behaviour caused by rootkits
(Bianchi, Shoshitaishvili, Kruegel & Vigna 2012).

4 Performance Case Study

We conducted a series of tests to determine the per-
formance of the Linebacker view comparison tools on
a small scale set of production VMware ESXi infras-
tructure. These tests involved recording execution
time metrics for the memory and registry components
of Linebacker. Due to limitations of the older version
of VMware ESXi used on our infrastructure, we were
not able to run the memory tool’s view comparison
techniques, nor could we execute the disk analysis
tool. This is because these tools rely on later versions
of the VMware Web Services SDK.

Our tests monitored a set of 9 VMs running the
Windows 7 operating system, which were hosted on a
cluster of VMware ESXi 4.1 servers running on IBM
HS22V blades. The VMs were used for general office
work by volunteer members of our research group for
one month.

Memory: The time taken to prepare the anal-
ysis of memory from a series of VMs varied errati-
cally throughout the analysis based on current net-
work and server loads. A single preparation time in-
cludes the time taken to suspend and resume a VM-
under-analysis and then download its VMSS file for
analysis. The total time for all VMs to be prepared
in a memory analysis batch job and the time taken to
analyse the memory snapshots are given in Table 3.
The high standard deviation for the total batch time
highlights how erratic the performance of VMware
API calls can be. We suggest that this behaviour
is caused by surges in network activity slowing the
VMSS download or heavy server disk activity slow-
ing the time taken to suspend the VM and then write
its VMSS file to disk.

The relatively low times for processing snapshots
show that the offline memory analysis is not the per-
formance bottleneck. This is largely expected as
Linebacker uses the well tested and robust Volatil-
ity framework to extract memory artefacts from the
VMSS files by efficiently parsing in memory Windows
kernel structures. This suggests that if it were pos-
sible to analyse the memory images in place, large
performance gains could be made.

There are noticeable performance impacts that
arise as a result of capturing an up-to-date memory
snapshot for the purpose of forensically examining it

via the Linebacker memory tool. These arise as a re-
sult of ESXi hosts only creating a memory dump when
a VM is suspended. As the entire memory is imaged
in this process, the time taken to suspend then resume
a VM is related to the size of the memory provided to
that VM. The time taken is also related to the current
disk and CPU load on the ESXi host. We received
several reports from users of noticeable hitching or
pausing as a result of the memory analysis tool.

It is worth noting that performance impacts are
worse in ESXi versions 5.5 and later, as they imme-
diately delete VMSS files upon resuming from a sus-
pended state. In versions 5.1 and earlier the VMSS
file lingered after the resuming of the VM and could
downloaded in the background for later analysis. In
more recent versions, the VMSS file can only be cap-
tured to disk if the VM is paused for the duration
of the capture time. This means that the execution
of monitored VMs must be halted while the memory
snapshot is created and downloaded from the hyper-
visor.

Our suggestion would be that given the perfor-
mance impacts of capturing the up-to-date memory
snapshot and the time taken to capture it, this anal-
ysis would only be run at off-peak times.

Disk and Registry: The disk and registry com-
ponents of Linebacker rely on a single shared disk
snapshot for their external view. Capturing snap-
shots had a negligible impact on users of the VMs in
our trial. In some cases a small pause in execution
lasting less than a second was observed by users dur-
ing snapshot creation, although most users noticed no
impact on the execution of their VMs at all.

The analysis time for the registry component of
Linebacker includes generation of an internal registry
view, capturing a disk snapshot and comparing the
external registry view stored in the snapshot with the
internal view. We recorded the total batch time to
perform this analysis for all VMs in our case study,
as well as the time taken to perform each step of this
analysis on individual VMs. These times are sum-
marised in Table 3.

We consider the time taken to analyse all VMs
to be reasonable given the number of VMs being
monitored. We believe the time taken to perform
individual analysis steps shows that this approach
can feasibly be implemented in production environ-
ments. While monitoring larger systems of hundreds
or thousands of VMs was outside the scope of our
case study, we expect that a scalable implementation
could be achieved by performing the monitoring in a
distributed manner across the system.

It is important to remember that the execution
of monitored VMs continues throughout the disk and
registry monitoring process, with the possible excep-
tion of a small pause at the start of the snapshot
creation process.

5 Conclusions

Our efficacy results show that virtualisation assisted
view comparison detects a limited subset of modern
rootkits. We attribute this to malware authors ei-
ther hiding objects outside the file system, or taking
a HIPS approach and relying on the presence of other
filesystem activity to hide the activities of their mal-
ware. Linebacker detected six of thirteen rootkits on
Windows XP, and two of seven rootkits on Windows
7. However, five of the rootkits tested used no object
hiding. Two rootkits hid rootkit objects by altering
existing files, registry entries or processes rather than
creating new ones. One rootkit hid objects outside

Proceedings of the 13th Australasian Information Security Conference (AISC 2015), Sydney,
Australia, 27 - 30 January 2015

41

Table 3: Performance case study results (in seconds)
Operation Mean Time Median Time Std. Dev.

Memory batch preparation (all VMs) 1202 715 1018

Analyse memory snapshot (per VM) 21.48 20.57 3.14

Batch registry analysis (all VMs) 787 837 274

Internal registry view (per VM) 11.3 11.0 3.9

Capture disk snapshot (per VM) 14.9 16.0 4.3

Registry view comparison (per VM) 56.5 55.0 11.5

the filesystem. Each rootkit that was able to hide new
files or processes without going outside the filesystem
to do so was detected by Linebacker.

The registry analysis component detected no
rootkit evasion behaviour. We suggest that this is
likely caused by the fact that authors can effectively
maintain a persistent key in the registry without re-
sorting to installing filter drivers or applying other
evasion tactics. There is a large amount of existing
noise in the registry due to general Windows OS ac-
tivity. Hiding in this background “white noise” is
relatively easy. Furthermore, employing evasion tech-
niques such as API manipulation within the registry is
risky due to the high volume of activity in the registry.
A filter driver applied here by a rootkit is likely to
noticeably degrade system performance, which may
arouse the suspicion of users or administrators.

The disk analysis detected little rootkit evasion
behaviour. With several rootkits not using object
hiding, and one rootkit hiding in slack space, there
were few cases where rootkits used hiding techniques
detectable by Linebacker.

The memory analysis component did successfully
identify rootkit evasion behaviours, however we found
it difficult to discern true positives from false posi-
tives without manual analysis of the target VM. This
was primarily due to processes starting and stopping
between internal and external scans, and EPROCESS
structures remaining resident in memory for an in-
determinate time. We attempted to rectify this by
checking the process end time field in this structure,
however we have found that the field is often left
empty.

There are fundamental issues with the use of view
comparison to detect rootkits. The difficulties we ex-
perienced in synchronising the internal and external
views of disk and memory cannot be resolved with-
out modifying the hypervisor to support more direct
access to the state of executing VMs. A large num-
ber of false positives are caused by this sync issue,
in addition to those caused by file access permissions.
Finally, a large number of rootkits, as shown by our
sample set, either employ a HIPS strategy or use al-
ternative hiding techniques that our tool is not de-
signed to detect.

Our performance results highlight that disk and
registry view comparison and VMI techniques can be
implemented on VMware vSphere infrastructure with
minimal impact. We also identified that memory-
based process view comparison and VMI causes no-
ticeable hitching and performance issues on moni-
tored VMs. These issues arise from the need to sus-
pend VMs in order to create up-to-date VMSS files.
Unfortunately, creating these VMSS files cannot be
avoided as they contain the atomic raw memory snap-
shot required for perform view comparison analysis on
a VM.

If it was to be used in rootkit detection, view com-
parison would be best used as part of a complemen-
tary set of approaches. In spite of the issues with

view comparison, we feel that VMI approaches as a
whole provide a valuable source of “trusted” exter-
nal view computer security audit data. That is, VMI
and the VMware APIs provide an accurate view of
the processes, network connections, sockets, files and
registry contents on VMs. VMI may be a good ba-
sis for detecting object hiding techniques that alter
or work outside the filesystem itself, in addition to
those detected by view comparison. Memory-based
VMI causes performance impacts in vSphere deploy-
ments and as a result care must be taken in determin-
ing when the analysis will take place. The disk and
registry VMI tools can be applied in vSphere infras-
tructure with minimal impact.

Our plan in future is to use Linebacker as a basis
for analysis of multiple machines across a network.
In this case, rather than performing analysis within
Linebacker, it will act as a data source for existing an-
alytic tools. By comparing multiple similar machines
on the same network, we hope to identify anomalous
behaviour in single VMs and track how this behaviour
moves through a network of VMs.

References

Adventium Labs (2014), ‘Virtual cyber defender
introspection appliance (vcd-ia)’.
URL: http://www.adventiumlabs.com/our-
work/products-services/virtual-cyber-defender-
introspection-appliance-vcd-ia

Aljaedi, A., Lindskog, D., Zavarsky, P., Ruhl, R.
& Almari, F. (2011), Comparative analysis of
volatile memory forensics: Live response vs.
memory imaging, in ‘Privacy, Security, Risk and
Trust (PASSAT), 2011 IEEE Third International
Conference on and 2011 IEEE Third Interna-
tional Conference on Social Computing (Social-
Com)’, pp. 1253 –1258.

Bianchi, A., Shoshitaishvili, Y., Kruegel, C. & Vigna,
G. (2012), Blacksheep: detecting compromised
hosts in homogeneous crowds, in ‘Proceedings
of the 2012 ACM conference on Computer and
communications security’, CCS ’12, ACM, New
York, NY, USA, pp. 341–352.
URL: http://doi.acm.org/10.1145/2382196.2382234

Bitdefender (2014), ‘Bitdefender security for virtual-
ized environments’.
URL: http://enterprise.bitdefender.com/solutions/
gravityzone/virtualization-security.html

Cuckoo Sandbox Developers (2014), ‘Cuckoo Sand-
box’.
URL: http://www.cuckoosandbox.org

Garfinkel, T. & Rosenblum, M. (2003), A virtual
machine introspection based architecture for in-
trusion detection, in ‘Proc. Network and Dis-
tributed Systems Security Symposium’, pp. 191–
206.

CRPIT Volume 161 - Information Security 2015

42

GMER - Rootkit Detector and Remover (2014).
Viewed 16/05/2013.
URL: http://www.gmer.net

Guidance Software (2013), ‘EnCase Forensic: Com-
puter forensic analysis software’.
URL: https://www.encase.com

Hay, B. & Nance, K. (2008), ‘Forensics examination of
volatile system data using virtual introspection’,
SIGOPS Oper. Syst. Rev. 42, 74–82.

Jiang, X., Wang, X. & Xu, D. (2007), ‘Stealthy mal-
ware detection and monitoring through VMM-
based ’out-of-the-box’ semantic view reconstruc-
tion’, ACM Trans. Inf. Syst. Secur. 13, 12:1–
12:28.

Jiang, X., Wang, X. & Xu, D. (2010), ‘Stealthy
malware detection and monitoring through
vmm-based “out-of-the-box” se-
mantic view reconstruction’, ACM Trans. Inf.
Syst. Secur. 13(2), 12:1–12:28.
URL: http://doi.acm.org/10.1145/1698750.1698752

Jones, R. (2010), ‘Hivex - Windows registry “hive”
extraction library’. Viewed 26/07/2013.
URL: http://libguestfs.org/hivex.3.html

Jones, S. T., Arpaci-Dusseau, A. C. & Arpaci-
Dusseau, R. H. (2008), VMM-based hidden
process detection and identification using Ly-
cosid, in ‘Proceedings of the fourth ACM SIG-
PLAN/SIGOPS international conference on vir-
tual execution environments’, VEE ’08, ACM,
pp. 91–100.

Kapoor, A. & Mathur, R. (2011), Predicting the fu-
ture of stealth attacks, in ‘the 21st Virus Bulletin
International Conference’.

King, S. T. & Chen, P. M. (2005), ‘Backtracking in-
trusions’, ACM Trans. Comput. Syst. 23, 51–76.

Krishnan, S., Snow, K. Z. & Monrose, F. (2010),
Trail of bytes: efficient support for forensic
analysis, in ‘Proceedings of the 17th ACM
Conference on Computer and Communications
Security’, CCS ’10, ACM, pp. 50–60.
URL: http://doi.acm.org/10.1145/1866307.1866314

Lau, H. (2013), ‘Backdoor.Tidserv - technical de-
tails’.
URL: http://www.symantec.com/security
response/writeup.jsp?docid=2008-091809-0911-
99&tabid=2

Litty, L., Lagar-Cavilla, H. A. & Lie, D. (2008), Hy-
pervisor support for identifying covertly execut-
ing binaries, in ‘Proceedings of the 17th Confer-
ence on Security Symposium’, USENIX Associ-
ation, pp. 243–258.

Mahapatra, C. & Selvakumar, S. (2011), ‘An online
cross view difference and behavior based kernel
rootkit detector’, SIGSOFT Softw. Eng. Notes
36(4), 1–9.

Microsoft Research (2010), ‘Strider GhostBuster
rootkit detection’.
URL: http://research.microsoft.com/en-
us/um/redmond/projects/strider/rootkit/

Nance, K., Hay, B. & Bishop, M. (2009), Investigat-
ing the implications of virtual machine introspec-
tion for digital forensics, in ‘Availability, Reli-
ability and Security, 2009. ARES ’09. Interna-
tional Conference on’, pp. 1024 –1029.

Okolica, J. & Peterson, G. L. (2010), ‘Windows oper-
ating systems agnostic memory analysis’, Digi-
tal Investigation 7, Supplement(0), S48 – S56.
The Proceedings of the Tenth Annual DFRWS
Conference.

Pfoh, J., Schneider, C. & Eckert, C. (2009), A formal
model for virtual machine introspection, in ‘Pro-
ceedings of the 1st ACM Workshop on Virtual
Machine Security’, VMSec ’09, ACM, pp. 1–10.

Quynh, N. A. & Takefuji, Y. (2007), Towards a
tamper-resistant kernel rootkit detector, in ‘Pro-
ceedings of the 2007 ACM Symposium on Ap-
plied Computing’, SAC ’07, ACM, New York,
NY, USA, pp. 276–283.

Russinovich, M. E., Solomon, D. A. & Ionescu, A.
(2009), Windows Internals, fifth edn, Microsoft
Press.

Russinovich, M., Solomon, D. & Ionescu, A. (2012),
Microsoft Windows Internals: Part 1, 6th edn,
Microsoft Press.

Silberman, P. (2006), ‘FUTo’.
URL: http://uninformed.org/index.cgi?v=3&a=7

Sophos (2014), ‘Sophos antivirus for vShield’.
URL: http://www.sophos.com/en-
us/products/server-security.aspx

Trend Micro (2014), ‘Deep security’.
URL: http://www.trendmicro.com.au/au/
enterprise/cloud-solutions/deep-security/

VMware (2014a), ‘VDDK documentation’.
URL: http://www.vmware.com/support/ devel-
oper/vddk/

VMware (2014b), ‘VIX API documentation’.
URL: http://www.vmware.com/support/
developer/vix-api/

VMware (2014c), ‘VMware vSphere Web Services
SDK documentation’.
URL: http://www.vmware.com/support/
developer/vc-sdk/

VMware (2014d), ‘vShield Endpoint’.
URL: http://www.vmware.com/au/products/
vsphere/features-endpoint

Volatile Systems (2013), ‘The Volatility framework:
volatile memory artifact extraction utility
framework’.
URL: https://www.volatilesystems.com/default/
volatility

Vömel, S. & Freiling, F. C. (2011), ‘A survey of main
memory acquisition and analysis techniques for
the windows operating system’, Digital Investi-
gation 8(1), 3–22.

Wang, Y., Hu, C. & Li, B. (2011), VMDetector: A
VMM-based platform to detect hidden processes
by multi-view comparison, in ‘High-Assurance
Systems Engineering (HASE), 2011 IEEE 13th
International Symposium on’, pp. 307 –312.

Wang, Y.-M., Beck, D., Vo, B., Roussev, R. &
Verbowski, C. (2005), Detecting stealth soft-
ware with Strider Ghostbuster, in ‘Dependable
Systems and Networks, 2005. DSN 2005. Pro-
ceedings. International Conference on’, IEEE,
pp. 368–377.

Proceedings of the 13th Australasian Information Security Conference (AISC 2015), Sydney,
Australia, 27 - 30 January 2015

43

Wang, Y.-M., Vo, B., Roussev, R., Verbowski, C. &
Johnson, A. (2004), Strider ghostbuster: Why
it’s a bad idea for stealth software to hide files,
Technical report, Technical Report MSR-TR-
2004-71, Microsoft Research.

ZeusTracker (2014), ‘Zeus tracker - faq’.
URL: https://zeustracker.abuse.ch/faq.php

CRPIT Volume 161 - Information Security 2015

44

