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Abstract

Given a set of spatial objects, our task is to assign
all the objects to the minimum number of service
sites and to find the regions for building these service
sites. Each service site has a coverage region (i.e., an
area of service) and a capacity (i.e., a maximum num-
ber of objects it can serve, called k-constraint). The
service sites can provide service for objects located
within the coverage regions. Aiming at this prob-
lem, we propose a novel kind of spatial queries, called
Optimal k-Constraint Coverage (OCC ) queries. An
OCC query returns some feasible regions such that
setting up the minimum number of service sites within
these regions will guarantee that all the spatial ob-
jects can be served. Furthermore, an optimal cover-
age scheme to assign the objects to these service sites
is retrieved by this query as well. Due to the capacity
constraints, objects located within the coverage re-
gion of a service site may not be assigned to one ser-
vice site. Therefore, the cost of searching an optimal
coverage over all possible coverage schemes becomes
prohibitive. To answer OCC queries efficiently, we
devise a general query framework, which provides two
solutions to cope with OCC query processing. The
naive solution only returns a local optimum without
insuring the minimum number of service sites. To im-
prove it, the other solution called Optimal Coverage
Algorithm (Opt-C ) is proposed to retrieve an optimal
coverage scheme. During the procedure, we present
refinement methods for reducing intermediate results
of OCC queries to improve the efficiency. The perfor-
mance of the proposed methods is demonstrated by
the extensive experiments with both synthetic and
real datasets.

Keywords: Optimal Coverage; Minimum number; k-
Constraint; Opt-C Algorithm

1 Introduction

Optimal location queries have gained much research
attention (Zhang et al. 2006, Cabello et al. 2005, Xiao
et al. 2011) in many real-world applications. Given
a set of objects, an optimal location query returns
the “best location”such that setting up a service site
at this location guarantees the maximum number of
objects by proximity. In some cases, the “best loca-
tion”is denoted by a region (Wong et al. 2009, Zhou
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et al. 2011) in which any point can be an optimal
location.

For existing optimal location query techniques,
however, some significant improvements are required
when we consider building multiple service sites. For
example, we wish to build some service sites to pro-
vide assistance for people in the disaster area. To aid
people on time, the distance between each person and
his/her assigned service site must be not more than
a given distance r. For each site, the medical sup-
plies are prepared for at most k people. To minimize
the cost, we require a query which can return some
regions such that setting up the minimum number of
service sites would provide aid for all the persons.

The objective of the above problem we are investi-
gating is serving all the objects (people) with the min-
imum number of service sites. Compared to optimal
location queries, this problem equals to maximizing
the average number of served objects for each service
site. In addition, the spatial assignment technique
also has attracted much research attention (Leong
et al. 2008, 2010) in several application domains. This
optimized spatial assignment desires an optimal as-
signment between objects and a set of given service
sites. It focuses on minimizing the cost between ob-
jects and fixed number of service sites while is unable
to minimize the number of service sites.

For our problem, the coverage regions of service
sites may have irregular shapes. For ease of presen-
tation, we assume that the coverage region of any
service site p is a circular disk with the center at p
and the radius r. Moreover, p can provide service for
arbitrary k objects within its coverage region. Figure
1(a) illustrates that two service sites p1 and p2 serve
a set of spatial objects {o1, o2, o3, o4, o5, o6}. Suppose
that the capacity of p1 and p2 (p1.k and p2.k) are
both set as 4. As shown in the figure, {o1, o2, o3} can
be assigned to p1 and {o4, o5, o6} can be assigned to
p2. Another available attempt to solve this problem is
illustrated in Figure 1(b). In this solution, the service
site p3 serves the maximum number of objects, which
is a result of the optimal location query. However, it
is not the optimal coverage for all the objects with
the lowest number of service sites since other two ser-
vice sites p4 and p5 must be set up to serve o1 and
o5, respectively.

Aiming to solve the above variant of optimal loca-
tion query problem, we propose a novel kind of spatial
queries called Optimal k-Constraint Coverage (OCC )
queries which can retrieve a series of regions such that
setting up the minimum number of service sites within
the regions would guarantee to provide service for all
the given objects, where each service site subjects to
the capacity constraint (i.e., a maximum number of
objects it can serve, called k-constraint). Given a set
of spatial objects O, OCC queries are particularly
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(a) An optimal coverage
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(b) Coverage the maximum number of ob-
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(c) The regions for building service sites

Figure 1: Examples on OCC queries

useful for the optimal assignment resource that en-
sures to maximize the average number of objects cov-
ered by each service site. Hence, this type of queries
are important to a wide range of applications, such
as Location-Based Services, the best locations choice
and so on. In these applications, the service sites can
be set up in the whole space U instead of some can-
didate points. In essence, there is a common problem
such as “where are the best regions to build the min-
imum number of service sites”in these applications.
Note that the results of OCC queries are the regions
for building the service sites and an optimal coverage
scheme to assign the spatial objects to these service
sites located at any points within these regions.

In Figure 1(c), any two service sites can be built
at any locations of the two shadow regions to serve
{o1, o2, o3} and {o4, o5, o6} respectively, where the ca-
pacity constraint of each service sites is set as 4. Since
the total number of the objects is 6, at least two
sites are needed to serve {o1, o2, o3, o4, o5, o6}. The
shadow regions are the results of the OCC query over
these objects. Besides, there are some other cover-
age schemes that all the objects are assigned to two
service sites (e.g., {o1, o2, o3, o6} are assigned to the
service site set up in shadow region A, and {o4, o5}
are assigned to the service site set up in shadow re-
gion B). Our task is to return an optimal coverage
scheme over all possible coverage schemes which de-
note assignments between objects and service sites.
Along with the increasing number of served objects,
the number of available schemes may become pro-
hibitive. Therefore, the OCC query evaluation raises
serious practicality concerns for the volume of objects
in realistic settings.

This work focuses on OCC query processing,
which has two main challenges. (i) How to retrieve
the regions such that setting up service sites within
these regions will guarantee to provide service for all
given objects. (ii) How to choose an optimal coverage
scheme that the spatial objects can be assigned to the
minimum number of service sites while insuring the
capacity constraints. Aiming at the above challenges,
we propose a general query framework for answering
the OCC queries simply and elegantly. Consider a
set of spatial objects O={o1, o2, o3, o4, o5, o6, o7, o8}.
We will illustrate the process of OCC query on these
objects in the rest of the paper. In detail, our contri-
butions are summarized as follows.

• We formally define a novel kind of spatial queries,
called Optimal k-Constraint Coverage (OCC )
queries, which can choose an optimal coverage
scheme that aims to assign all the given objects
to the minimum number of service sites, and re-
trieve some regions to build these service sites
for serving all given objects while insuring the
capacity constraints of service sites.

• To answer OCC queries efficiently, we first pro-

pose a local optimum algorithm to serve objects
located in each coverage set with the lowest num-
ber of service sites.

• To improve the local optimum algorithm, we
present another approach for choosing an opti-
mal coverage to assign all objects to the min-
imum number of service sits, which guarantees
that this scheme is global optimum. During this
process, refinement methods are proposed to fur-
ther improve the efficiency.

• We evaluate the performance of our methods
through extensive experiments with real and syn-
thetic datasets.

The rest of this paper is organized as follows. Sec-
tion 2 introduces the related work. Section 3 de-
fines the OCC query processing formally. Section
4 describes the query framework for answering OCC
queries. Section 5 provides some efficient and effective
methods for answering our queries in details. Section
6 gives the experimental results and Section 7 con-
cludes this paper.

2 RELATED WORK

2.1 Spatial Queries

There is a large volume of previous works (Prasad
et al. 1998, Chen et al. 2005, Beskales et al. 2008,
Lian & Chen 2009, Ishikawa et al. 2009, Deng et al.
2009, Nutanong et al. 2008) devoting to spatial query
processing in last few years. Especially, this trend
has led to the development of spatial database man-
agement for spatial queries. Joao Rocha Junior et
al. (Rocha-Junior et al. 2010) address the top-k spa-
tial preference query which returns a ranked set of
the k best data objects based on the scores of feature
objects in their spatial neighborhood. They map the
pairs of data and feature objects to the distance-score
space, which enables to identify the minimum subset
of pairs necessary to answer any ranked spatial prefer-
ence query. They also improve the efficiency by avoid-
ing examining the spatial neighborhood of the data
objects during query execution. Zhenjie Zhang et al.
(Zhang et al. 2008) address the continuous k-means
problem, where a k-means query returns k points in
space, while guaranteeing that the average squared
distance between each point in P and its nearest cen-
ter is minimized. A novel algorithm is proposed to re-
duce the computation and communication costs, and
a threshold is assigned to each moving object such
that the object sends a location update only when
it crosses the range boundary. Because these works
do not consider the optimal locations (or regions) to
build service sites, they are not suitable for our prob-
lem.
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Furthermore, some other work focuses on finding a
region such that building a new service site in this lo-
cation guarantees the maximum number of objects by
proximity. Sergio Cabello et al. (Cabello et al. 2005)
address the RNN facility location problems which is
actually the MaxBRNN problem when the optimiza-
tion criteria is maximizing the number of potential
customers for the new facility. This work is solved
for Euclidean space. In this space, Raymond Chi-
Wing Wong et al. (Wong et al. 2009) present the al-
gorithm called Bichromatic reverse nearest neighbors
problem, which focuses on finding an optimal region
that maximizes the size of BRNNs and an efficient al-
gorithm called Maxoverlap is proposed for that. They
define two concepts called consistent region and max-
imal consistent region to efficiently find an optimal
region that maximizes the size of customers by prox-
imity, and it uses the region-to-point transformation
to solve the MaxBRNN problem. Considering that
a customer may use the service site which is any of
his/her k nearest service site, (Zhou et al. 2011) ex-
tend the MaXBRNN to the MaxBRkNN which finds
an optimal region that deploying a service site in this
region attracts the maximum number of customers
who would consider the site as one of their k nearest
service sites.

Optimal location queries are a significant sort of
spatial queries and several query approaches have
been proposed for retrieving the optimal locations
with respect to different semantics. Du Yang et al.
(Du et al. 2005) define and investigate the optimal
location problem. They focus on solving the problem
in the Manhattan distance space. They retrieve ob-
jects of interest in some given order and then use a
plane-sweep algorithm to identify an optimal location.
Furthermore, Xia et al. (Xia et al. 2005) examine a
related problem of finding the top-k most influential
sites among a given set of service sites. Note that in
the top-t influential sites problem, the search space is
limited. This makes the top-t influential sites problem
very different from the optimal location problem.

The solutions for MaxBRNN problem and optimal
location queries cannot be applied to find optimal re-
gions for multiple service sites and do not consider
minimizing the number of required service sites.

2.2 Spatial Assignment

The spatial assignment problem also has attracted
much research attention (Leong et al. 2008, 2010) for
the optimal assignment domain. Leong Hou U (Leong
et al. 2008) consider the capacity constrained assign-
ment, where each service provider can serve at most
k customers, when the total size of served customers
is maximized and the total assignment cost is mini-
mized. They propose efficient algorithms for optimal
assignment that employ novel edge-pruning strate-
gies, based on the spatial properties of the problem.
Additionally, they develop approximate CCA solu-
tions that provide a tradeoff between result accuracy
and computation cost. They also (Leong et al. 2010)
propose the continuous optimal assignment problem,
whose objective is to construct an optimal assignment
between mobile users and a set of servers and then
constantly maintain it. The optimal assignment has
the minimum average distance between the users and
their assigned servers under constraint that each user
is assigned to exactly one server and the maximum
possible numbers of users are served. To solve this
problem, this work first accelerates the initial assign-
ment computation by exploiting the geometric prop-
erties of the problem, subsequently splits the problem

Table 1: Commonly used symbols
Symbol Description

O a set of objects
Cs a coverage set
n cardinality of O
T number of k-constraint coverage sets
S number of coverage sets
oi an object in O
k capacity constraint
k-Cs a k-constraint coverage set
U two-dimensional Euclidean space
pj a service site in P

CR(pj) coverage region of pj
r radius of the coverage regions

dist() distance function

into smaller, independent ones, and then solves them
using an off-the-shelf optimal assignment algorithm.

Given a set of service sites, however, the spatial
assignment problem aims at an optimal assignment
of objects. Thus, it is not suitable for choosing the
optimal coverage problem proposed by this paper. To
the best of our knowledge, this is the first paper that
is able to return the regions in which the minimum
number of service sites are built to serve all the given
objects.

3 Problem Definition

In this section, we first summarize some preliminary
works. Then we formally define the OCC query pro-
cessing. Table 1 summarizes the commonly-used sym-
bols in this paper.

3.1 Preliminaries

We use O={o1, . . . , oi, . . . , on} to denote the set of
spatial objects. Suppose that the capacity constraints
of all service sites are fixed at k. We adopt Eu-
clidean distance for realizing distance between ob-
jects’ locations and service sites’ locations in the two-
dimensional Euclidean space U , even though our tech-
niques can also apply to higher dimensions and other
distance metrics.

To provide service for these objects, all the objects
need to be located within coverage regions of service
sites. Furthermore, the number of objects that are
assigned to each service site is not more than k. We
assume that the coverage region of every service site
is a circular disk with the center at pj and the same
radius r. If dist(oi, pj) ≤ r, an object oi is located
within the coverage region of the service site pj . We
summarize the notion of all objects that can be lo-
cated within the same coverage region as follows.

Definition 1. Given a set of objects O, a coverage
set Cs is the set of objects, which satisfies (i) Cs ⊆
O∧

dist(oi, pj) ≤ r ∀oi ∈ Cs, where pj denotes a
service site; (ii) there is not any other set C′s that
includes Cs.

As mentioned earlier, some objects located within
the coverage region of a service site can be in a cov-
erage set. Next, we discuss which objects are able to
be covered by one service site as follows.

Lemma 1. For the set of objects C, if dist(oi, oi′) ≤√
3r, ∀ oi, oi′ ∈ C, all the objects in C can be covered

by one service site.
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sets in a coverage set

Figure 2: Coverage sets

Proof. As shown in Figure 2(a), due to dist(oi, oi′) ≤√
3r, suppose that o1, o2 and o3 satisfy dist(o1, o2) =√
3r ∈ C, dist(o2, o3) =

√
3r and dist(o3, o1) =

√
3r.

O is a circle disk which passes the locations of o1, o2
and o3. For any other object o, according to the given
condition, dist(o2, o) ≤

√
3r and dist(o, o1) ≤

√
3r.

Thus, � o1oo2 ≥ � o1o3o2 = π
3
. It follows that o resides

in the circle disk O. Thereby, all the objects in C can
be covered by one service site.

Given a set of objects O, all the objects are in-
dexed by an R-tree in the space U . According to the
above lemma, we can find all the coverage sets from
the set of objects O simply. Due to the capacity con-
straints, the covered objects are unable to be served
by one service site. Set the capacity constraint as k,
if the number of objects is more than k in a coverage
set Cs, these objects cannot be served by one service
site. To ensure that some objects are served by one
service site, k-constraint coverage set is described by
the following definition.

Definition 2. Given the capacity constraint k for
each service site, a k-constraint coverage set k-Cs in-
cludes at most k objects that are in a coverage set
Cs.

Figure 2(b) shows that a coverage set Cs and some
of its k-constraint coverage sets. The set of ob-
jects {o1, o2, o3, o4, o5} can be covered by one service
site. Moreover, it is not included by other coverage
sets. According to Definition 1, {o1, o2, o3, o4, o5} is
a coverage set. Assume that the capacity of service
sites is 3. Thus, {o1, o2, o3} and {o4, o5} are both
3-constraint coverage sets of the coverage set. Com-
pared to coverage sets, all the objects in a k-constraint
coverage set can be served by one service site.

Since objects can be served by one service site
in a k-constraint coverage set, we can find some k-
constraint coverage sets that satisfy

T⋃

s=1

(k-Cs) = O, (1)

where T denotes the number of k-constraint coverage
sets. For OCC queries, if we choose the minimum
number of k-constraint coverage sets satisfying Eq.(1)
and retrieve the regions to set up service sites for
these k-constraint coverage sets, an optimal coverage
scheme is returned.

3.2 Problem Formulation

To set up each service site for a k-constraint coverage
set k-Cs, we need to find the region such that any

Figure 3: The feasible region of a k-constraint cover-
age set

point in this region is a possible location at which the
service site can be built. We next describe a region
such that setting up a service site within this region
can serve any object in k-Cs, which is summarized as
follows.

Definition 3. Given a k-constraint coverage set k-
Cs, its feasible region, denoted by FRs, is defined as
a region which is composed of all points such that set-
ting up a service site p at any of these points ensures
dist(o, p) ≤ r for k-Cs.

The feasible region of a k-constraint coverage set
can be given by the intersection among the circular
disks with centers at all objects’ locations. Figure 3
illustrates the feasible region denoted as shadow re-
gion for {o1, o2, o3, o4} . Since the distance between
any point in the intersection region and the location
of any object is not more than r, building a service
site in this region can cover all the objects in a cov-
erage set.

To minimize the cost for building server sites, all
spatial objects in O should be served by the minimum
number of server sites. In fact, we need to choose
the minimum number of k-constraint coverage sets
which can include each object in O. We formally
define OCC queries that are able to return an optimal
coverage scheme that includes the minimum number
of k-constraint coverage sets and the relevant feasible
regions for building the minimum number of service
sites to serve all the objects.

Definition 4. Given a set of O, an OCC query,
OCC(O, r, k), retrieves a series of feasible regions to
build the minimum number of service sites for the k-
constraint coverage sets which include all the objects
in O. It is formally defined as

OCC(O, r, k) = {< FRs, k-Cs > |∀pj located in
FRk and ∀oi ∈ k-Cs,
(i)

⋃Min
s=1

(k-Cs) = O
(ii)¬∃T, T < Min

∧⋃T
s=1

(k-Cs) = O},
(2)

where Min denotes the minimum number of server
sites, and r is the radius of the coverage region of pj.

As mentioned in the above definition, some regions
to set up the minimum number of service sites are
retrieved by the OCC query. Due to (ii), an optimal
coverage is returned by Eq.(2). Then we will describe
the framework for the OCC query processing.
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Figure 4: The general query framework for OCC
queries

4 The Query Framework

As mentioned previously, we have presented OCC
queries which can find some feasible regions such that
setting up the minimum number of service sites within
these regions would provide service for all the given
objects. Each feasible region is searched by the ob-
jects in a k-constraint coverage set. According to the
definition of k-constraint coverage sets, any k objects
(or lower than k objects) in a coverage set can make
up a k-constraint coverage set. Thereby, the key of
answering OCC queries is finding the minimum num-
ber of k-constraint coverage sets that are able to in-
clude all the given objects. For a coverage set Cs,
hence, the number of k-constraint coverage sets ap-
proximates to Ck|Cs|, where |Cs| denotes the cardinality
of Cs. The cost of evaluating k-constraint coverage set
for all coverage sets is time-consuming so that the cost
of OCC queries raises serious practicality concerns in
realistic settings. Aiming at this problem, we devise a
general query framework for answering OCC queries
efficiently and elegantly.

As illustrated in Figure 4, the query framework
first finds all coverage sets from the given set of ob-
jects. According to Lemma 1, all the given objects are
partitioned into coverage sets in which objects can be
covered by one service site. Next, this framework pro-
poses two approaches to return the coverage schemes
and feasible regions for setting up service sites. For a
coverage set, the naive solution wishes to insure the
maximum number of service sites whose capacities are
full. Therefore, this solution approach only retrieves
the local optimum that insures the minimum number
of service sites for a coverage set.

Aiming at this problem, the other approach is
able to return a global optimum that all objects are
served by the minimum number of service sites with a
high-performance method. To improve the efficiency,
this approach refines intermediate results for OCC
queries.

5 Optimal k-Constraint Coverage Query Pro-

cessing

In the previous sections, we have formalized OCC
queries and devised the query framework for answer-
ing OCC queries. In this section, we describe OCC
query processing in details.

(a) The local optimum

(b) The global optimum

Figure 5: Different coverage schemes

5.1 Naive Solution

Based on Lemma 1, we can find which objects are
able to be covered by one service site from the given
set of spatial objects O. According to the definition
of coverage set, all the coverage sets are returned eas-
ily. We use R-tree to index the set of objects O in
the two-dimensional space U . Due to the capacity
constraint of k, any service site provides service for
at most k objects. If some objects are within a k-
constraint coverage set, we say that these objects can
be assigned to the same service site. Thereby, we find
the minimum number of coverage sets which include
all objects in O to answer the OCC query. The query
framework gives two approaches to retrieve some k-
constraint coverage sets which can cover the set of
objects O.

The main idea for the naive solution approach is
insuring the maximum number of service sites whose
capacities are full in a coverage set. For instance,
given a set of objects O = {o1, o2, o3, o4, o5, o6} and

O =
⋃

3

s=1
Cs where C1 = {o1, o2, o3, o4}, C2 =

{o2, o5}, and C3 = {o1, o6}. Assume that the capacity
constraint of each service site is fixed at 3. For ease of
presentation, the naive solution assigns objects with
IDs of objects ordering (i.e., the ID of an object oi
is i). {o1, o2, o3} are assigned to a service site, which
insures that the capacity of this service site is full
in C1. As shown in Figure 5(a), three other service
sites are required to serve o4, o5 and o6. Hence, the
naive solution approach returns four service sites to
serve {o1, o2, o3, o4} in the example. However, Figure
5(b) illustrates a better coverage scheme which needs
three service sites to serve these objects, and the three
k-constraint coverage sets are {o1, o6}, {o2, o5} and
{o3, o4} respectively.

As mentioned previously, the naive solution only
returns a local optimum that is an optimal coverage
scheme for each coverage set. Using this solution, the
objects can be served by the lowest number of service
sites in each coverage set (e.g., in C1 o1, o2, o3 and o4
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are serve by two service sites). However, all the given
objects are served by service sites whose number may
be not the lowest. The key steps of the naive solution
algorithm is illustrated in Algorithm 1.

Algorithm 1: Naive Solution Algorithm

Input : O =
⋃S
s=1
Cs and the capacity

constraint k
Output: {k-C1, . . . , k-CM} and {FR1, . . . ,FRM}

1 s←− 1
2 i←− 1
3 for each coverage set Cs do

4 while |Ci| ≥ k do

5 take k objects of Cs into k-Ci
6 Ci ←− Ci/k-Ci
7 i←− i+ 1

8 take the rest objects of Cs into k-Ci
9 O ←− O/Cs

10 for each k-Ci do
11 for each object o in k-Ci do
12 generate the circular disk with the

center at o
13 evaluate the intersection FRi

This algorithm first searches some k-constraint
coverage sets whose capacities are full and a k-
constraint coverage set whose capacity may not be
full for a coverage set (lines 4-7). In order to ensure
that objects are assigned to one service site, the al-
gorithm deletes the objects assigned to k-constraint
coverage sets (line 9). Lastly, Naive Solution Algo-
rithm evaluates all feasible regions for k-constraint
coverage sets. The naive solution can only retrieve
a local optimum that is an optimal coverage scheme
for each coverage set. To choose an optimal scheme
for all coverage sets, we propose an efficient algorithm
called Opt-C Algorithm in the next subsection.

5.2 Optimal Coverage Scheme

In this subsection, we present refinement methods for
improving the efficiency of OCC queries. Then we
discuss an optimal coverage scheme algorithm called
Opt-C Algorithm.

Using the naive algorithm to answer OCC queries,
the number of service sites that are required to be
built for serving all the objects is more than that of
the optimal coverage. If we choose an optimal cover-
age with the exhaustive method, the time cost would
become prohibitive. Aiming at this problem, we first
propose a method to refine coverage sets before choos-
ing an optimal coverage, which is summarized as fol-
lows.

Lemma 2. For OCC queries, if
⋃m Cs1 ⊂

⋃m′
(k-

C′s2) ∧m ≥ m′, m coverage sets {C1, . . . , Cm} can be
refined safely.

Proof. For number m of coverage sets, ∀oi oi ∈⋃m Cs1. According to the definition of coverage sets,
oi can be covered by numberm of service sites that are
set up for these coverage sets. For k-constraint cover-
age sets of these coverage sets, at least m service sites
are required to serve all the objects in

⋃m Cs1. Since⋃m Cs1 ⊂
⋃m′

(k-C′s2), oi ∈
⋃m′

(k-C′s2). Note that,
these objects are can also be served by number m′ of
service sites. Due to m ≥ m′, these objects can be
served by a lower number of service sites. Therefore,

o1

o3 o4

o2

o5

o6

Figure 6: Refining coverage sets

p1

other objects

Figure 7: Refining objects

for our queries, {C1, . . . , Cm} cannot generate any op-
timal coverage and they should be refined safely.

From the above refinement method, we can refine
coverage sets which are unable to generate any opti-
mal coverage schemes. This method reduces coverage
schemes that are certainly not the optimal coverage
schemes to improve the query efficiency. As shown in
Figure 6, for the set of objects {o1, o2, o3, o4, o5, o6},
the coverage sets are {o1, o2, o5, o6}, {o2, o3, o5, o6}
and {o3, o4, o6}. This figure illustrates a coverage
scheme that objects {o1, o2, o5} are assigned to a ser-
vice site and objects {o3, o4, o6} are assigned to an-
other service site, where the capacity constraint of
each service site is equal to 3. Thus, the scheme re-
quires two 3-constraint coverage set. According to
Lemma 2, {o1, o2, o5}, {o2, o3, o5, o6} and {o3, o4, o6}
can be refined since any coverage scheme requires at
least two service sites over this set of objects.

To further improve the efficiency of OCC queries,
another refinement method is proposed to reduce the
number of objects.

Lemma 3. For an OCC query, if some objects are
only within a coverage set Cs and the number of these
objects is not more than the capacity constraint k,
then the set of these objects is certain to be included
by an optimal coverage.

Proof. Since some objects are only within a coverage
set Ok, we suppose that a service site pj is set up
to serve these objects. Due to |Cs| ≤ k, all objects
covered by pj are within a k-constraint coverage set,
denoted by k-Ck. It follows that these objects are cer-
tain to be served by one service site. Therefore, the
set of these objects is included by an optimal cover-
age.

As mentioned in the above lemma, some objects
satisfying this lemma can be taken into a k-constraint
coverage set which are included by an optimal cover-
age. Thus, the number of objects that have not been
assigned to any service sites is reduced, which results
in the number of k-constraint coverage sets decreases.
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Figure 9: Effect of data size on running time
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Figure 8: An example of choosing an optimal coverage
scheme

Figure 7 illustrates the case in details. Objects o1
and o2 are only within a coverage set C1. Because o1
and o2 are not in any other coverage set, they are as-
signed a service p1 which can be built at the shadow
region. Using Lemma 3, some coverage sets can be
the results for an optimal coverage without complex
computation. Hence, the cost of OCC queries can be
reduced with this refinement method. For instance,
C1 is a result for an optimal coverage in Figure 7 be-
cause C1 can be represented as a k-constraint coverage
set (k = 3).

Next, to answer OCC queries, we present an ef-
fective algorithm for retrieving an optimal cover-
age. To find the global optimum, all the possible
coverage scheme is needed to be considered. We
use Opt-C[n,Min] to represent an optimal coverage
scheme, which represents numberMin of service sites
to serve number n of objects. Note that, an optimal
coverage scheme is defined as

Opt-C[n,Min] = Opt-C[n−m,Min−s]
⋃

(∪sj=1
(k-Cj)),

(3)
where

⋃
(∪sj=1

(k-Cj)) denotes k-constraint coverage
sets including some objects which is not included
by the union of a lower number of coverage sets.
Thus, Opt-C[n,Min] insures that number n of ob-
jects are served by the minimum number of ser-
vice sites. From Eq.(3), an optimal coverage scheme
Opt-C[n,Min] can be evaluated with Dynamic Pro-
gramming method. For any objects, this method is
able to serve them with the minimum number of k-

constraint coverage sets. We propose Opt-C Algo-
rithm representing the above processing, which is il-
lustrated in Algorithm 2.

Algorithm 2: Opt-C Algorithm

Input : O =
⋃S
s=1
Cs and the capacity

constraint k
Output: {k-C1, . . . , k-CMin} and {FR1, . . . ,FRMin}

1 i←− 1
2 for each object oi in O do

3 take oi into a set O′
4 if O′ ⊆ ∪sj=1

(k-Cj) then
5 r ←− 1
6 if r > s then

7 r ←− s
8 i←− i+ 1

9 Min←− r
10 while s ≤Min do

11 take (k-Cj) into result set
12 s←− s+ 1

13 for each k-Cj do
14 for each object o in k-Cj do
15 generate the circular disk with the

center at o
16 evaluate the intersection FRj

Before Opt-C Algorithm, we can use refinement
methods to reduce intermediate results for OCC
queries. As mentioned in Algorithm 2, this algorithm
returns an optimal coverage which is the global opti-
mum instead of the local optimum. At first, it initial-
izes the set of objects and coverage sets. Then this
algorithm insures that some objects are within the
minimum number of k-constraint coverage sets (lines
4-8). Finally, it chooses an optimal coverage scheme
and returns the results for an OCC query (lines 13-
16).

Compared to the naive solution, Opt-C Algorithm
chooses the minimum number of k-constraint cov-
erage sets. Figure 8 illustrates an example for an
OCC query. As mentioned in Section 1, we consider
a set of objects {o1, o2, o3, o4, o5, o6, o7, o8}. Accord-
ing to Lemma 1, these objects can be transformed
into some coverage sets, C1 = {o2, o8, o9}, C2 =
{o1, o3, o9}, C3 = {o2, o3, o9}, C4 = {o2, o7, o8}, C5 =
{o4, o5, o7}, C6 = {o6, o5, o7} and C7 = {o4, o5, o6}.
Assume that the capacity of each service sits is set
as 3. The sets {o4, o5, o6} and {o2, o7, o8} are both
3-constraint coverage sets. Since C5

⋃ C6
⋃ C7 ⊂

{o4, o5, o6}
⋃{o2, o7, o8}, C5, C6 and C7 can be refined
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Figure 10: Effect of k on running time

Figure 11: Effect of data size on |P|

by Lemma 2. Next, if some objects are only within a
coverage set (e.g., o1 in C2), the 3-constraint coverage
set {o1, o3, o9} is certain to be included by an optimal
coverage due to Lemma 3. Because these coverage
sets (or k-constraint coverage sets) are refined by the
refinement methods, the efficiency of OCC queries
would be improved considerably.

As shown in Figure 8, an optimal coverage scheme
represents that all the objects can be within the min-
imum number of 3-constraint coverage sets (e.g., O =
{o1, o3, o9}

⋃{o2, o7, o8}
⋃{o4, o5, o6}), where each 3-

constraint coverage set can be served by a service
sites. The feasible regions are retrieved by the in-
tersections among the circular disks with the centers
at the locations of objects.

6 Experiments

In this section, we present results from an extensive
empirical study over several datasets to illustrate the
performance of our proposed methods.

6.1 Experimental settings

All the experiments were conducted on a PC with
a 2.6GHz Processor and 2GB main memory. We
use two real world datasets “Los Angeles (LA)”and
“Greece (Gr)”, which were also available in Topolog-
ically integrated geographic encoding and referencing
(tiger) system1. Furthermore, one synthetic dataset
(SYN ) was generated by Uniform distribution in the
two-dimensional Euclidean space. The range of the
space is standardized in 1000 × 1000. We used R-
tree to index these datasets respectively. In order to
evaluate methods exactly, we randomly generated 20
queries and computed the expectation for each query
evaluation. We describe the three datasets in detail.

LA Dataset: LA dataset, a two-dimensional real
dataset, is composed of 60K geographical objects de-
scribed by ranges of longitudes and latitudes. We

1
http://www.census.gov/geo/www/tiger/.

used the centers to represent the locations of these
objects.

Gr Dataset: Gr dataset contains 5, 922 cities
and villages in Greece. For the cities and villages, we
also used the spatial objects to represent the locations
of the cities and villages.

SYN Dataset: SYN dataset is composed of 10K
spatial objects. Each object is generated by Uniform
distribution in the whole space.

Alternative Techniques Considered. The aim
of the experiments is to study the time cost and the
number of required service sites for the algorithms
to solve the optimal coverage problem under vari-
ous settings. To the best of our knowledge, there is
no reference method to solve this optimal problem.
Therefore, we contrast Opt-C Algorithm returning
the global optimum with the naive solution return-
ing the local optimum.

6.2 Experimental Results

We first study the effect of data size on the
performance of Opt-C Algorithm, Opt-C Algo-
rithm with the refinement method (Opt-C Algo-
rithm+Refinement) and the naive solution method
under different datasets. We fix the radius r of each
service site’s coverage region at 5, the capacity con-
straint k of each service site at 200, and vary the size
of datasets. We observe the running time and the
number of service sites that provide service for all the
objects in the datasets.

Figure 9 shows the running time by the naive so-
lution method, Opt-C algorithm and Opt-C Algo-
rithm+Refinement algorithm in the three datasets.
For any dataset, with the refinement method, Opt-C
algorithm is more efficient than any other methods.
The reason is that the refinement method improves
the efficiency of answering OCC queries by reducing
unnecessary k-constraint coverage sets.

We also observe that the effect of the capacity con-
straint k on the running time of these algorithms.
We fix the radius r of each service site’s coverage re-
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Figure 12: Effect of r on running time

Figure 13: Effect of r on utilization rate

gion at 5. As shown in Figure 10, the running time
of all the algorithms first increases and then reduces
along with increasing k. This is because the number
of k-constraint coverage sets for a coverage set C ap-
proximates CkC whose value first increases and then
reduces along with increasing k. In addition, the run-
ning time of Opt-C Algorithm+Refinement is lower
than the running time of the others.

Then we compare the number of service sites |P|
that provides service for all the objects in these
datasets with different algorithms. We fix the ra-
dius r of each service site’s coverage region at 5. As
shown in Figure 11 obviously, more service sites are
required with the size of datasets increasing. Further-
more, Opt-C Algorithm can cover these objects with
less number of service sites than that of the naive so-
lution for all datasets. It can be explained that the
naive solution which chooses a local optimum that
needs more number of service sites to serve these ob-
jects. Therefore, Opt-C Algorithm is more effective
than the naive solution.

Next, we examine the effect of the radius r of each
service site’s coverage region on the running time of
different algorithms under the three datasets. We
fix the capacity of each service site at 200. As de-
scribed in Figure 12, for all the datasets, Opt-C Al-
gorithm+Refinement is more efficient than the other
two algorithms. When r raises from 1 to 20, the run-
ning time first decreases and then increases. The ef-
ficiency of these algorithms is lower with larger r or
smaller r, since larger r results in more objects for
each coverage set and smaller r generates more cov-
erage sets, which would reduce the efficiency.

We study the utilization rate of service sites under
different capacity constraints with Opt-C Algorithm
and the naive solution. The rate is equal to dividing
k by the average number of objects served by a ser-
vice site. For any dataset, we vary the radius r from
1 to 20. Figure 13 illustrates that the utilization rate
of Opt-C Algorithm is much higher than that of the

naive solution. The reason is that Opt-C Algorithm
returns an optimal coverage scheme that has the min-
imum number of service sites. Therefore, the average
number of objects served by a service site is higher.

Finally, we test the performance of our refinement
methods under the three datasets. The refinement
methods can refine massive k-constraint coverage sets
before implementing Opt-C Algorithm. We fix the
radius r of each service site’s coverage region at 5
and 10 respectively, and vary k from 100 to 500. As
shown in Figure 14, our refinement methods reduce
the number of k-constraint coverage sets for all the
datasets effectively. Furthermore, the reducing rate
is not lower than 30%.

7 Conclusions

In this paper, we have proposed a new type of spatial
queries called Optimal k-Constraint Coverage (OCC )
queries. Given a set of objects, these queries are able
to return an optimal coverage scheme and a series
of regions such that setting up the minimum number
of service sites within these regions would guaran-
tee all the objects to be served, where each service
site has the capacity constraint and the coverage re-
gion in which the service site only can provide ser-
vice for at most k objects. To answer OCC queries
efficiently, we have presented a general query frame-
work. In the framework, we first have proposed the
naive solution algorithm for choosing an optimal cov-
erage in each coverage set, which retrieves the local
optimum. To improve it, we have addressed another
algorithm called Opt-C Algorithm that can choose an
optimal coverage scheme. Using this algorithm, all
the objects can be included by the lowest number of
k-constraint coverage sets. Furthermore, two refine-
ment methods have been developed to reduce mas-
sive k-constraint coverage sets before answering OCC
queries. Finally, we have studied the performance of
the proposed methods through the theoretical analy-
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Figure 14: The refinement rate of k-constraint cover-
age sets

sis and extensive experiments with synthetic and real
datasets.
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