
Optimistic and Efficient Concurrency Control for Asynchronous
Collaborative Systems

Haifeng Shen Yongyao Yan

School of Computer Science, Engineering and Mathematics
Flinders University, Adelaide, Australia

Email: {haifeng.shen, yan0056}@flinders.edu.au

Abstract

Concurrency control is a key issue in distributed sys-
tems. A number of techniques have been devised to
tackle the issue, but these techniques are generally
unsuitable to be used in collaborative systems, which
have the special requirements of consistency mainte-
nance, responsiveness, and unconstrained interaction.
OT (Operational Transformation) is an optimistic
concurrency control technique originally invented for
synchronous collaborative systems to meet these re-
quirements. But existing transformation control al-
gorithms are inefficient to be used in asynchronous
systems. In this paper, we present an OT-based con-
currency control solution for asynchronous collabora-
tive systems, including an efficient contextualization-
based transformation control algorithm underpinned
by operation propagation and replaying protocols to
achieve contextualization. The solution has been for-
mally verified in terms of consistency maintenance
and demonstrated by a variety of prototype collab-
orative applications.

Keywords: collaborative systems, concurrency con-
trol, consistency maintenance, operational transfor-
mation, contextualization.

1 Introduction

Interactive applications have been around for decades
and are still among the most commonly-used ones in
our work and daily lives. People use them to do vari-
ous tasks such as coding, word processing, designing,
modeling, and entertaining. Collaboration, which is
naturally needed when multiple people are involved
in the same or related tasks, remains cumbersome,
tedious, and error-prone because most of these appli-
cations are primarily single-user-oriented.

Collaborative systems facilitate and coordinate
collaboration among multiple users who are jointly
fulfilling common tasks over computer networks, par-
ticularly the Internet. They can be brand new
multi-user interactive applications built from scratch
with collaboration in mind or augmented single-
user interactive applications with additional collab-
orative functionality. Such a system typically con-
sists of three characteristic components: multiple hu-
man users, interactive applications that provide the
human-computer interfaces, and the high-latency In-
ternet backbone that connects distributed computers.

Copyright c©2011, Australian Computer Society, Inc. This pa-
per appeared at the 34th Australasian Computer Science Con-
ference (ACSC 2011), Perth, Australia, January 2011. Con-
ferences in Research and Practice in Information Technology
(CRPIT), Vol. 113, Mark Reynolds, Ed. Reproduction for aca-
demic, not-for profit purposes permitted provided this text is
included.

Concurrency control is the key to managing the
contention for distributed data resources and to en-
sure the orderly access to shared data. It is a major
issue in most distributed systems and collaborative
systems are of no exception. Over the past decades,
a number of concurrency control techniques, such
as floor control (Greenberg & Marwood 1994), lock-
ing (Knister & Prakash 1993), transactions (Bern-
stein et al. 1987), causal ordering (Raynal & Sing-
hal 1996), and serialization (Karsenty & Beaudouin-
Lafon 1993), have been devised for a variety of dis-
tributed systems. However, these techniques are gen-
erally unsuitable to be used in collaborative systems
because these characteristic components have spe-
cial concurrency control requirements (Ellis & Gibbs
1989, Sun et al. 1998).

First, human users, who interact with the interac-
tive applications to manipulate the data sources via
the human-computer interfaces, have the special re-
quirements of fast response and unconstrained inter-
action, i.e., to interact with any data objects at any
time freely and responsively. Second, as the com-
munication latency of the Internet is high, collabora-
tive systems usually achieve good responsiveness by
means of replication to hide the latency - the shared
data source is replicated across multiple collaborat-
ing sites and one only interacts with her/his own
replica. However, replication creates the special re-
quirement of consistency maintenance because incon-
sistencies may occur due to the concurrent activities
from multiple users and the non-deterministic com-
munication latency.

OT (Operational Transformation) (Ellis & Gibbs
1989, Sun & Ellis 1998) is an optimistic concurrency
control technique originally invented for synchronous
collaborative systems, where users collaborate at the
same time by instantly propagating every operation
generated at one site to others. It can achieve consis-
tency maintenance without sacrificing good respon-
siveness and unconstrained interaction. OT consists
of a set of transformation functions that transform
one operation against another, and a transforma-
tion control algorithm that ensures the invocation of
every transformation function satisfies required pre-
condition. Over the past decade or so, quite a few
transformation control algorithms have been devised
for various synchronous collaborative systems.

For OT to be used for asynchronous collaborative
systems, where users collaborate at different times
by infrequently propagating batches of operations,
an efficient transformation control algorithm is im-
perative because existing ones are catered for syn-
chronous systems only and are inefficient to be used
in asynchronous systems. In this paper, we present
an OT-based concurrency control solution for asyn-
chronous collaborative systems, including an efficient
contextualization-based transformation control algo-
rithm underpinned by operation propagation and re-

playing protocols to achieve contextualization. The
solution has been formally verified in terms of consis-
tency maintenance and demonstrated by a variety of
prototype collaborative applications.

The rest of the paper is organized as follows.
The next section introduces a consistency model
and some background about OT. After that, the
contextualization-based transformation control algo-
rithm is presented and verified. The subsequent sec-
tion presents the operation propagation and replaying
protocols to achieve contextualization. Significance
and applications of the work are discussed in the fol-
lowing section. Finally, the paper is concluded with
a summary of major contributions and future work.

2 A Consistency Model and OT

The consistency model consisting of three consistency
properties Convergence, Causality preservation, and
Intention preservation (Sun et al. 1998), has been
widely used to verify whether a concurrency control
technique can maintain consistency in collaborative
systems. The convergence property ensures the con-
sistency of the final states of the shared data source
at the end of a collaborative session. This property
can be preserved by known techniques such as serial-
ization. The causality preservation property ensures
the consistency of the execution orders of causally re-
lated operations during a collaborative session. This
property can be preserved by known techniques such
as causal ordering. OT was particularly invented for
intention preservation and extended for Convergence
as well. Alternative solutions for intention preserva-
tion are exemplified by the Mark and Retrace tech-
nique (Gu et al. 2005).

Every interactive application provides a set of AOs
(Application Operations) for a user or the API (Ap-
plication Programming Interface) to manipulate data
objects in the data source and these application-
dependent AOs can be abstracted into the following
three application-independent POs (Primitive Oper-
ations) (Sun et al. 2006):

• Insert(addr, obj) denotes an Insert operation
that creates an object obj at address addr in the
data source,

• Delete(addr) denotes a Delete operation that
removes the object at address obj in the data
source, and

• Update(addr, key, val) denotes an Update op-
eration that changes the attribute key, to the
value val, of the object at address addr in the
data source.

To use OT for intention preservation, the addr pa-
rameter used to reference a PO’s target object must
follow a data addressing model that complies with
XOTDM (eXtend Operational Transformation Data
Model) consisting of a hierarchy of addressing groups,
where each group consists of multiple independent lin-
ear addressing domains (Sun et al. 2006). The inten-
tion of an operation is the execution effect at the time
when it is generated. To preserve an operation‘s in-
tention, OT ensures the operation’s target object is
correctly addressed across all collaborating sites.

Consider a collaborative drawing session shown in
Figure 1, where the data source consisting of three
objects Ob0(triangle), Ob1(circle), and Ob2(square)
is replicated at two sites. For the sake of simplicity
(without loss of generality), we assume the data ad-
dressing model consists of a single linearly addressed
domain Drawings, which initially contains [Ob0, Ob1,
Ob2]. At site 1, operation Op1 = Delete([(Drawings,

0)]) is executed to remove the object at address
[(Drawings, 0)], which is Ob0 (triangle). After that,
Drawings contains [Ob1, Ob2]. At site 2, operation
Op2 = Update([(Drawings, 1)], fill, b) is executed
concurrently to fill the object at address [(Drawings,
1)], which is Ob1 (circle), with the black color. After
that, Drawings remains [Ob0, Ob1, Ob2].

If Op1 and Op2 were propagated and replayed as-
is for consistency maintenance (as depicted by the
dashed lines), inconsistency would occur in the sense
that the two replicas of the shared data source become
divergent and Op2’s intention (filling the circle with
the black color) is violated at site 1. The intention vio-
lation problem was essentially caused by the inconsis-
tent addressing of the same object Ob1(circle). At the
time when Op2 was generated at site 2, Ob1(circle)
was addressed by [(Drawings, 1)], which was also the
case at site 1 before the execution of Op1. How-
ever, after the execution of Op1 at site 1, Ob0 was
removed, and Ob1 took up Ob0’s position (index 0) in
Drawings. Consequently, Ob1 should be addressed by
the new address [(Drawings, 0)]. The wrong object
Ob2(square) would be referenced if the old address
[(Drawings, 1)] were still used.

Ob
0

Ob
1

Ob
2

Op
1
= Delete([(Drawings, 0)])

Op
2
=Update([(Drawings,1)], fill, b)

Ob
0

Ob
1

Ob
2

site 1 site 2

Drawings [Ob
0
, Ob

1
, Ob

2
] Drawings [Ob

0
, Ob

1
, Ob

2
]

Drawings [Ob
1
, Ob

2
]

Op
2

Drawings [Ob
1
, Ob

2
]

Drawings [Ob
0
, Ob

1
, Ob

2
]

Op
1

Drawings [Ob
1
, Ob

2
]

Op'

2
= IT_UD (Op

2
, Op

1
)

= Update([(Drawings,0)], fill, b)

Drawings [Ob
1
, Ob

2
]

Op'

1
= IT_DU (Op

1
, Op

2
) = Op

1

= Delete([(Drawings,0)])

Drawings [Ob
1
, Ob

2
]

Figure 1: Intention preservation of Op2 by OT

OT can solve the intention violation problem by
compensating for the impact of concurrent opera-
tions on addressing an object’s replicas. In this ex-
ample, when Op2 is propagated to site 1 (as de-
picted by the solid line from site 2 to site 1), it has
to be transformed against the concurrent operation
Op1 to include its impact on addressing the refer-
enced object Ob1 by IT_UD(Op2, Op1): Op′2 = Up-
date([(Drawings, 0)], fill, b) (IT_UD(Opa, Opb) is a
transformation function transforming an Update op-
eration Opa against a Delete operation Opb). The re-
playing of Op′2 at site 1 fills the circle with the black
color, which has preserved Op2’s intention.

Transformation function IT(Opa, Opb): Op′a (In-
clusion Transformation) transforms operations Opa
against Opb in such a way that the impact of Opb is
effectively included in the output operation Op′a. De-
pending on Opa’s and Opb’s types, there are 9 (3×3)
functions (IT_UD(Opa, Opb) is one of them). De-
tails of these functions can be found in (Sun et al.
1998, 2006).

It is noticed that the divergence problem has also
been solved by OT in the above example. In fact,
transformation functions are defined to take care of
both intention preservation and convergence (there

are conditions and properties to verify them, which
will be discussed in later sections).

3 OT-based Concurrency Control in Asyn-
chronous Collaborative Systems

To transform operation Opa against operation Opb by
the transformation function IT(Opa, Opb): Op′a, Opa
and Opb must meet a pre-condition.

Definition 1 (Operation Context)

Given an operation Op, its context, denoted by ΥOp,
is the state of the data source based on which Op is
defined.

Definition 2 (Operation Context Equivalent Rela-
tion)

Given two operations Opa and Opb, Opa is context-
equivalent to Opb, denoted by Opa t Opb, iff (if and
only if) ΥOpa

= ΥOpb
.

Definition 3 (Operation Context Preceding Rela-
tion)

Given two operations Opa and Opb, Opa is context-
preceding Opb, denoted by Opa 7→ Opb, iff ΥOpb

=
ΥOpa ` Opa, where “`” is the operation execution
operator.

ΥOpa
is the context on which Opa is defined. After

the execution of Opa on ΥOpa , the new context can
be described by ΥOpa

` Opa. If operation Opb is
defined on this new context, i.e., ΥOpb

= ΥOpa
` Opa,

then Opa is context-preceding Opb. In general, if the
initial context is Φ and n operations Op1, · · · , Opn
have been executed in sequence, then the new context
can be described by Φ ` Op1 ` · · · ` Opn. For ∀i ∈
{2, · · · , n}, Opi−1 7→ Opi because ΥOp1

= Φ and ΥOpi

= ΥOpi−1
` Opi−1.

So the pre-condition of the transformation func-
tion IT(Opa, Opb): Op′a is Opa t Opb. This pre-
condition is to ensure their addr parameters are
directly comparable since they are defined on the
same context. A few TCAs (Transformation Con-
trol Algorithms) such as GOT (Sun et al. 1998),
GOTO (Sun & Ellis 1998), adOPTed (Ressel et al.
1996), Jupiter (Nichols et al. 1995), and COT (Sun
& Sun 2006), have been devised to ensure the pre-
condition of every transformation function invocation
is satisfied in synchronous collaborative systems. The
transformation function IT(Opa, Opb): Op′a also has
a post-condition, which is Opb 7→ Op′a because Op′a
has included the impact of Opb in such a way that
the context of Op′a is defined on the one right after
the execution of Opb. Every transformation function
must be defined to ensure this post-condition.

In addition, the following OCRP (Operation Con-
text Relation Property) describes the correlation be-
tween “t” and “7→” relations.

Property 1 Operation Context Relation Property
(OCRP)

Given three operations Opa, Opb, and Opc, if Opa 7→
Opb and Opa 7→ Opc, then Opb t Opc. Proof:

1. ΥOpb
= ΥOpa

` Opa because Opa 7→ Opb,

2. ΥOpc
= ΥOpa

` Opa because Opa 7→ Opc, and

3. Opb t Opc because ΥOpb
= ΥOpc

.

3.1 Main Issues in Applying OT to Asyn-
chronous Collaborative Systems

Existing TCAs are catered for synchronous collabora-
tive systems in the sense that every operation gener-
ated at one site needs to be individually timestamped
and instantly propagated to remote sites, and the re-
playing of every remote operation at any remote site
needs to trigger a separate TCA invocation. How-
ever, in asynchronous systems, individual timestamp-
ing and instant propagation of every operation is ei-
ther infeasible or unnecessary. On the one hand, it
is infeasible in intermittent networking environments
(e.g., wireless) because network connection is not per-
sistently available. On the other hand, it is unneces-
sary because: 1) users are more sensitive to objects
that are of their interests and therefore it makes bet-
ter sense to batch coherent operations for propagation
and replaying; 2) some micro-step operations never
need to be propagated at all because they are either
not interested by other users, or are overridden by
or merged into later operations; 3) asynchronous col-
laboration does not need instant notification of each
other’s micro-step progress; and 4) in the Internet or
wireless networking environments, where the network
resource is scarce, it is wasteful to propagate every
operation separately and instantly.

More importantly, it is rather inefficient to invoke
a separate TCA for replaying every remote operation
in asynchronous systems. Most existing TCAs used in
synchronous systems have a quadratic time complex-
ity or worse. If n remote operations arrive at a site
and every operation Op needs to invoke a TCA(Op,
C): Op′ (C is the collection of operations that have
been executed at that site and are concurrent with
Op) to derive its execution form, then the TCA will
be invoked n times and the overall time complexity
will be cubic or even worse! In synchronous systems,
the quadratic execution time of TCA is acceptable
as C is normally small (because each operation is
instantly garbage-collected after having been trans-
formed against all concurrent operations at every col-
laborating site (Sun et al. 1998)). In contrast, n and
C both tend to be big in asynchronous systems due
to the infrequent propagation of operations, which
makes the cubic time complexity unacceptable.

To apply OT to distributed asynchronous collab-
orative systems, we need to devise an efficient TCA
that does not rely on either timestamping or instant
propagation of individual operations. In the follow-
ing section, we present a new TCA that does not rely
on timestamping or instant propagation of individ-
ual operations and can efficiently transform two con-
textualized lists of operations with a quadratic time
complexity. Underpinned by an operation propaga-
tion protocol and an operation replaying protocol,
the two contextualized lists can be of random length,
making the algorithm viable for a wide spectrum of
collaboration paradigms and particularly efficient for
asynchronous collaboration, where the two lists tend
to be long.

3.2 SLOT - A Contextualization-based TCA

Definition 4 (Contextualized List of Operations).

Given a list of operations L, L is said to be contextu-
alized, iff L[i] 7→ L[i+1] (0 ≤ i < |L|-1), where L[i] is
the (i+1)th operation in L and |L| is the length of L.

Operations in a contextualized list may come from
the same site or from different sites. Take a list con-
sisting of two operations Opa and Opb as an example.
First, if Opa and Opb are consecutively generated at
the same site, then L = [Opa, Opb] is naturally con-
textualized because Opa 7→ Opb. Second, if Opa and

Opb are concurrently generated at two different sites,
and Opa t Opb, then L = [Opa, Op′b] or [Opb, Op′a],
where IT(Opb, Opa): Op′b and IT(Opa, Opb): Op′a, is
contextualized because Opb 7→ Op′a and Opa 7→ Op′b
(by the post-conditions of the two IT function invo-
cations).

Definition 5 (List Context).

Given a contextualized list L, its context, denoted by
ΨL, is the context of the first operation in L, i.e., ΨL
= ΥL[0].

Definition 6 (List Context Equivalent Relation).

Given two contextualized lists La and Lb, La is
context-equivalent to Lb, denoted by La q Lb, iff ΨLa

= ΨLb
.

Definition 7 (List Context Preceding Relation).

Given two contextualized lists La and Lb, La is
context-preceding Lb, denoted by La 99K Lb, iff ΨLb

= ΨLa
� La, where “�” is the list execution operator

(operations in La are executed in sequence on context
ΨLa

).
If La 99K Lb, then ΥLb[0] = ΥLa[0] ` La[0] ` · · ·

` La[|La|-1] and La[|La|-1] 7→ Lb[0]. Therefore, if
L is the catenation of La and Lb, denoted by L =
La�Lb, then L is also contextualized. Furthermore,
the following two properties describe the correlations
between “q” and “99K” relations.

Property 2 List Context Relation Property 1
(LCRP-1)

Given three contextualized lists La, Lb, and Lc, if La
99K Lb and La 99K Lc, then Lb q Lc. Proof:

1. ΨLb
= ΨLa � La because La 99K Lb,

2. ΨLc = ΨLa � La because La 99K Lc, and

3. Lb q Lc because ΨLb
= ΨLc

.

Property 3 List Context Relation Property 2
(LCRP-2)

Given three contextualized lists La, Lb, and Lc, if La
q Lb and Lb 99K Lc, then La q (Lb�Lc). Proof:

1. Lb�Lc is contextualized because Lb 99K Lc,

2. ΨLa
= ΨLb

because La q Lb,

3. ΨLb
= ΨLb�Lc = ΥLb[0], and

4. La q (Lb�Lc) because ΨLa
= ΨLb�Lc

.

The SLOT (Symmetric Linear Operation Trans-
formation) control algorithm, which symmetrically
transforms two context-equivalent lists La and Lb,
and returns transformed ones L′a and L′b, is defined
as follows.

Algorithm 1 SLOT(La, Lb): (L′a, L′b)

Require: La q Lb
Ensure: La 99K L′b and Lb 99K L′a

L′a ← La
L′b ← Lb

for (i = 0; i <|L′a|; i++) do
for (j = 0; j <|L′b|; j++) do

Opja,i ← L′a[i]

Opib,j ← L′b[j]

(Opj+1
a,i , Opi+1

b,j)← SIT(Opja,i, Opib,j)

L′a[i]← Opj+1
a,i

L′b[j]← Opi+1
b,j

end for
end for

return (L′a, L
′
a)

The SIT (Symmetric Inclusion Transformation)
function symmetrically transforms two context-
equivalent operations. Its pre-condition and post-
conditions are directly based on those of IT functions.

Function 1 SIT(Opa, Opb): (Op′a, Op′b)

Require: Opa tOpb
Ensure: Opa 7→ Op′b and Opb 7→ Op′a

Op′a ← IT(Opa, Opb)
Op′b ← IT(Opb, Opa)

return (Op′a, Op′b)

The SLOT control algorithm can be implemented
as a function SLOT(La, Lb): (L′a, L′b), where original
lists and transformed ones are kept separately, or as
a procedure SLOT(La, Lb), where the original lists
are replaced by transformed ones.

If the pre-condition of a SLOT algorithm invo-
cation is satisfied, the algorithm can ensure the pre-
condition of every SIT function invocation is satis-
fied. If the post-condition of every IT function invo-
cation is satisfied by the definitions of IT functions,
the post-conditions of the SLOT algorithm invoca-
tion are automatically satisfied. The post-conditions
of SLOT, La99KL′b and Lb99KL′a, have two implica-
tions. One is that La�L′b and Lb�L′a are also con-
textualized. The other is that operations in the list
L′b (or L′a) are ready to be replayed in sequence after
having taking into account the impact of La (or Lb)
by transformation.

Furthermore, to preserve convergence, IT func-
tions must meet the following TP-1 (Transformation
Property 1).

Definition 8 (List Equivalent Relation).

Given two lists La and Lb, where La q Lb, La is
equivalent to Lb, denoted by La ≡ Lb, iff ΨLa � La
= ΨLb

� Lb.

Property 4 Transformation Property 1 (TP-1)

Given two operations Opa and Opb, where Opa t Opb,
if SIT(Opa, Opb): (Op′a, Op′b), then [Opa, Op′b] ≡
[Opb, Op′a].

Given two operations Opa and Opb concurrently
generated at two collaborating sites and propagated
to each other for consistency maintenance, TP-1 is to
ensure convergence in the sense that ΥOpa ` Opa `
Op′b = ΥOpb

` Opb ` Op′a. Although the two opera-
tions are executed in different orders at the two sites,
IT functions must ensure an identical context after
both operations have been executed at the two sites.

To use SLOT to control transformation in asyn-
chronous collaborative systems, each collaborating
site needs to maintain two linear buffers: OB (Outgo-
ing Buffer) for storing unpropagated local operations
and IB (Incoming Buffer) for storing unreplayed re-
mote operations. The following example illustrates
how the SLOT control algorithm preserves conver-
gence and the intentions of operations by means of
OT. As shown in Figure 2, consider a collaborative
drawing session involving two sites, where the shared
data source initially consists of three objects: Ob0(a
triangle), Ob1(a circle), and Ob2(a square), and the
data addressing domain Drawings initially contains

[Ob0, Ob1, Ob2]. The two buffers at the two sites,
namely OB1 and IB1 (OB and IB at site 1), OB2
and IB2 (OB and IB at site 2), are all empty initially.

At site 1, operation Op1 = Delete([(Drawings,
1)]) is executed to remove the object at address
[(Drawings, 1)], which is Ob1 (circle). After that,
Drawings contains [Ob0, Ob2], OB1 contains [Op1],
and IB1 remains empty. Concurrently at site 2, op-
erations Op2 = Delete([(Drawings, 0)]) and Op3 =
Update([(Drawings, 1)], fill, b) are executed in se-
quence to first remove the object at address [(Draw-
ings, 0)], which is Ob0(rectangle) and then fill the ob-
ject at address [(Drawings, 1)], which is Ob2(square),
with the black color. After that, Drawings contains
[Ob1, Ob2], OB2 contains [Op2, Op3], and IB2 re-
mains empty.

Ob
0

Ob
1

Ob
2

Op
1
= Delete([(Drawings, 1)]) Op

2
= Delete([(Drawings, 0)])

Ob
0

Ob
1

Ob
2

site 1 site 2

Drawings [Ob
0
, Ob

1
, Ob

2
] Drawings [Ob

0
, Ob

1
, Ob

2
]

Drawings [Ob
1
, Ob

2
]

Op
3
= Update([(Drawings,1)], fill, b)

Drawings [Ob
1
, Ob

2
]

OB
2
 = [Op

2
]

OB
2
 = [Op

2
, Op

3
]

Drawings [Ob
0
, Ob

2
]

OB
1
 = [Op

1
]

➔Propagate list [Op
2
,

Op

3
]

➔Empty OB
2

OB
2
 = [

]

IB
1
 = [Op

2
, Op

3
]

Drawings [Ob
2
]

Op2

1
 = Delete([(Drawings, 0)])

Drawings [Ob
2
]

➔Invoke SLOT([Op
1
], [Op

2
, Op

3
])

➔Propagate list [Op2

1
]

➔Empty OB
1

IB
2
 = [

]

IB
2
 = [

]

IB
2
 = [

]

IB
1
 = [

]

OB
1
 = [Op

1
]

IB
1
 = [Op1

2
, Op1

3
] OB

1
 = [

]

OB
2
 = [

] IB

2
 = [

Op2

1
]

OB
2
 = [

] IB

2
 = [

]

Op1

2
 = Delete([(Drawings, 0)])

Op1

3
 = Update([(Drawings,0)], fill, b)

OB
1
 = [

]IB

1
 = [

]

 Legend
 : execute/replay an operation
 : propagate a list

Figure 2: Consistency maintenance by SLOT

At site 2, because IB2 is empty, list [Op2, Op3]
from OB2 are propagated as-is to site 1 and OB2 is
emptied. When the list arrives at site 1, it is ap-
pended to IB1. At site 1, because IB1 is not empty,
to propagate list [Op1] from OB1 to site 2, procedure
SLOT([Op1], [Op2, Op3]) needs to be invoked as fol-
lows. The pre-condition of this procedure invocation
has been satisfied, i.e., [Op1] q [Op2, Op3], because
Ψ[Op1] = Ψ[Op2,Op3] = Drawings[Ob0, Ob1, Ob2].

1. SIT(Op1, Op2): (Op11, Op12), where
IT_DD(Op1, Op2): Op11 = Delete([(Drawings,
0)]) and IT_DD(Op2, Op1): Op12 =
Delete([(Drawings, 0)]). The pre-condition
is satisfied, i.e., Op1 t Op2 because ΥOp1

= ΥOp2
= Drawings[Ob0, Ob1, Ob2]. The

post-conditions are Op1 7→Op12 and Op2 7→Op11.

2. SIT(Op11, Op3): (Op21, Op13), where
IT_DU(Op11, Op3): Op21 = Delete([(Drawings,
0)]) and IT_UD(Op3, Op11): Op13 = Up-
date([(Drawings, 0)], fill, b). Because Op2 7→
Op11 and Op2 7→ Op3, by Property 1: OCRP,
the pre-condition is also satisfied, i.e., Op11 t
Op3. The post-conditions are Op11 7→ Op13 and
Op3 7→ Op21.

After the SLOT invocation, OB1 = [Op21] and IB1

= [Op12, Op13]. The post-conditions of the SLOT in-
vocation are satisfied, i.e., [Op2, Op3] 99K [Op21] (or

Op2 7→ Op3 7→ Op21) and [Op1] 99K [Op12, Op13] (or
Op1 7→ Op12 7→ Op13), because:

1. Op2 7→ Op3 and Op3 7→ Op21 (by the post-
conditions of the second SIT invocation), and

2. Op1 7→ Op12 (by the post-conditions of the first
SIT invocation) and Op12 7→ Op13 (by the follow-
ing deduction:)

(a) ΥOp1
3

= ΥOp1
1
` Op11 because Op11 7→ Op13

(by the post-conditions of the second SIT
invocation);

(b) ΥOp1
1

= ΥOp2
` Op2 because Op2 7→ Op11

(by the post-conditions of the first SIT in-
vocation);

(c) ΥOp2 ` Op2 ` Op11 = ΥOp1 ` Op1 ` Op12
(by TP-1 of the first SIT invocation); and

(d) Op12 7→ Op13 because ΥOp1
3

= ΥOp1
1
` Op11

(by step a) = ΥOp2
` Op2 ` Op11 (by step b)

= ΥOp1
` Op1 ` Op12 (by step c).

Then the list [Op21] is propagated to site 2 and
OB1 is emptied. When the list arrives at site 1,
it is appended to IB2. At site 2, because [Op2,
Op3] 99K [Op21] and OB2 is empty, the remote op-
eration Op21 in IB2 can be replayed as-is on the cur-
rent context (i.e., the context right after the execu-
tion of local operations Op2 and Op3). When Op21 =
Delete([(Drawings, 0)]) is replayed, the object at ad-
dress [(Drawings, 0)], which is Ob1(circle), is removed.
After that, IB2 is emptied.

Back to site 1, because [Op1] 99K [Op12, Op13] and
OB1 is empty, remote operations Op12 and Op13 in IB1
can be replayed in sequence as-is on the current con-
text (i.e., the context right after the execution of local
operation Op1). When Op12 = Delete([(Drawings,
0)]) is replayed, the object at address [(Drawings, 0)],
which is Ob0(rectangle), is removed. Subsequently,
when Op13 = Update([(Drawings, 0)], fill, b) is re-
played, the object at address [(Drawings, 0)], which
is Ob2(square), is filled with the black color. After
that, IB1 is emptied. It is clear that the intentions
of all operations are preserved and the two sites are
convergent at the end of the collaborative session.

3.3 Verification of the SLOT TCA

The above example has shown that the SLOT con-
trol algorithm can preserve convergence and the in-
tentions of operations. To systematically prove its
correctness, we need to verify it against the inten-
tion preservation and convergence consistency prop-
erties. However, due to space limitation, we only for-
mally verify the intention preservation property. The
causality preservation property has nothing to do with
SLOT and will be discussed in a later section.

Transformation function IT(Opa, Opb): Op′a can
preserve the intention of Opa by including the impact
of Opb into Op′a, provided that the pre-condition Opa
t Opb is satisfied. Therefore, to prove SLOT control
algorithm can achieve intention preservation, we only
need to prove it can ensure the pre-condition of every
SIT function invocation is satisfied, as described by
Theorem 1.

Theorem 1 Given two lists La and Lb, where La q
Lb, SLOT(La, Lb) ensures the pre-condition of every
SIT function invocation is satisfied.

Proof: Assume that La = [Opa,0, · · · , Opa,m−1] (m
= |La|) and Lb = [Opb,0, · · · , Opb,n−1] (n = |Lb|).
Furthermore, Opka,i (0 ≤ i < m and 0 ≤ k ≤ n)
denotes the transformed Opa,i that has been trans-
formed against the first k operations in Lb, and Oplb,j
(0 ≤ j < n and 0 ≤ l ≤ m) denotes the transformed
Opb,j that has been transformed against the first l
operations in La. In particular, Op0a,i = Opa,i (0 ≤ i

< m) and Op0b,j = Opb,j (0 ≤ j < n).

SLOT(La, Lb) needs to perform m×n SIT func-

tion invocations, namely, SIT(Opja,i, Opib,j): (Opj+1
a,i ,

Opi+1
b,j), where i = 0,· · · ,m-1 and j = 0,· · · ,n-1. We

need to prove that for ∀i ∈ {0, · · · ,m-1} and ∀j ∈
{0, · · · ,n-1}, Opja,i t Opib,j holds.

For m = 1, La = [Opa,0], and SLOT(La, Lb)
needs to perform n SIT function invocations, namely
SIT(Opja,0, Opb,j): (Opj+1

a,0 , Op1b,j), where j = 0, · · · ,
n-1. The theorem holds, i.e., for ∀j ∈ {0, · · · ,n-1},
Opja,0 t Opb,j holds, because:

• for n = 1, Lb = [Opb,0], Opa,0 t Opb,0 obviously
holds because La q Lb,

• for n = N , hypothesize that for ∀j ∈
{0, · · · ,N-1}, Opja,0 t Opb,j holds(�),

• for n = N+1, one more SIT(OpNa,0, Opb,N):

(OpN+1
a,0 , Op1b,N) invocation is required, and by

Property 1: OCRP, OpNa,0 t Opb,N also holds
because:

1. Opb,N−1 7→ Opb,N as Lb is contextualized;
and

2. Opb,N−1 7→ OpNa,0 as a result of the

post-conditions of SIT(OpN−1a,0 , Opb,N−1):

(OpNa,0, Op1b,N−1) invocation, which is legit-

imate since OpN−1a,0 t Opb,N−1 (by the in-

duction hypothesis�), and

• further based on the induction hypothesis�, for
∀j ∈ {0, · · · , N}, Opja,0 t Opb,j holds, and there-
fore by the induction argument, for any n and for
∀j ∈ {0, · · · ,n-1}, Opja,0 t Opb,j holds.

For m = M , hypothesize that the theorem holds,
i.e., for ∀i ∈ {0, · · · ,M-1} and ∀j ∈ {0, · · · ,n-1},
Opja,i t Opib,j holds(†).

For m = M+1, n more SIT invocations are
required, namely, SIT(Opja,M , OpMb,j): (Opj+1

a,M ,

OpM+1
b,j), where j = 0, · · · , n-1. For ∀j ∈ {0, · · · ,n-1},

Opja,M t OpMb,j holds because:

• for n = 1, Lb = [Opb,0], and by Property 1:
OCRP, Opa,M t OpMb,0 holds because:

1. Opa,M−1 7→ Opa,M as La is contextualized;
and

2. Opa,M−1 7→ OpMb,0 as a result of the

post-conditions of SIT(Opa,M−1, OpM−1b,0):

(Op1a,M−1, OpMb,0) invocation, which is legit-

imate since Opa,M−1 t OpM−1b,0 (by the in-

duction hypothesis†),

• for n = N , hypothesize that for ∀j ∈
{0, · · · ,N-1}, Opja,M t OpMb,j holds(>), and

• for n = N+1, one more SIT(OpNa,M , OpMb,N):

(OpN+1
a,M , OpM+1

b,N) is required, and OpNa,M t
OpMb,N also holds because:

1. OpMb,N−1 7→ OpNa,M as a result of the

post-conditions of SIT(OpN−1a,M , OpMb,N−1):

(OpNa,M , OpM+1
b,N−1), which is legitimate since

OpN−1a,M t OpMb,N−1 (by the induction hypoth-

esis>);

2. OpN−1a,M−1 7→ OpMb,N−1 and OpM−1b,N−1 7→
OpNa,M−1 as the results of the post-

conditions of SIT(OpN−1a,M−1, OpM−1b,N−1):

(OpNa,M−1, OpMb,N−1), which is legitimate

since OpN−1a,M−1 t OpM−1b,N−1 (by the induction

hypothesis†);

3. OpNa,M−1 7→ OpMb,N as a result of the

post-conditions of SIT(OpNa,M−1, OpM−1b,N):

(OpNa,M−1, OpMb,N−1), which is legitimate

since OpNa,M−1 t OpM−1b,N (by the induction

hypothesis†);

4. ΥOpM−1
b,N−1

` OpM−1b,N−1 ` OpNa,M−1 =

ΥOpN−1
a,M−1

` OpN−1a,M−1 ` OpMb,N−1 (by TP-1

of SIT(OpN−1a,M−1, OpM−1b,N−1): (OpNa,M−1,

OpMb,N−1));

5. ΥOpM
b,N

= ΥOpN
a,M

because ΥOpM
b,N

=

ΥOpM−1
b,N−1

` OpM−1b,N−1 ` OpNa,M−1 (by step

2 and 3, and the definition of “7→”) =

ΥOpN−1
a,M−1

` OpN−1a,M−1 ` OpMb,N−1 (by step

4) = ΥOpN
a,M

(by step 1 and 2, and the def-

inition of “7→”); and

6. further based on the induction hypothesis>,
for ∀j ∈ {0, · · · ,N}, Opja,M t OpMb,j holds,
and therefore by the induction argument,
for any n and for ∀j ∈ {0, · · · ,n-1}, Opja,M
t OpMb,j holds.

Further based on the induction hypothesis†, for
m =M+1, the theorem also holds, i.e., for ∀i ∈
{0, · · · ,M} and ∀j ∈ {0, · · · ,n-1}, Opja,i t Opib,j
holds. By the induction argument, the theorem holds,
i.e., for any m and n, and for ∀i ∈ {0, · · · ,m-1} and

∀j ∈ {0, · · · ,n-1}, Opja,i t Opib,j holds. The theorem
has hereby been proved.

4 Protocols for Achieving Contextualization

If the pre-condition of every SLOT invocation is sat-
isfied, intention preservation and convergence can be
achieved by OT (e.g., by Theorem 1). The question
is how to ensure the pre-condition of every SLOT in-
vocation, i.e., the two lists to be transformed must be
contextualized and context-equivalent.

To facilitate asynchronous collaboration, each col-
laborating site maintains an OB and an IB to sepa-
rate local and remote operations, where OB stores un-
propagated local operations and IB stores unreplayed
remote operations. On the one hand, operations gen-
erated at a local site are executed instantly to gain
good responsiveness and then appended to OB, wait-
ing to be propagated via an operation propagation

protocol. On the other hand, operations propagated
from remote sites are appended to IB, waiting to be
replayed locally via an operation replaying protocol.
The two protocols are essential to ensure OB and IB
at any site are contextualized and context-equivalent.

4.1 CCOP: A Coordinated Operation Prop-
agation Protocol

Most synchronous systems do not use coordinated op-
eration propagation protocols. In these systems, any
site can freely propagate new operations upon genera-
tion without coordinating propagation requests from
other sites. For example GOT, GOTO, adOPTed,
and COT rely on timestamping individual operations
with state vectors to capture causal/concurrent re-
lationships among operations. Some systems adopt
coordinated propagation protocols for the purpose of
reducing the complexity of TCAs or relaxing some
constraints on transformation functions. Jupiter fall
into this category.

We adopt a coordinated operation propagation
protocol to achieve contextualization and list context
equivalence. Enforced by a coordination rule, a site
can only initiate a new propagation (of a list of oper-
ations) when there are no outstanding propagations,
in other words, when all preceding propagations have
been received by all designated sites. The coordina-
tion rule can be warranted by employing a sequencer
or a token manager, or by running a centralized or
distributed synchronization protocol.

At site s, to propagate all operations from OBs,
the CCOP (Coordinated Contextualized Operation
Propagation) protocol is executed as follows.

Protocol 1 CCOP

1. Start the protocol by following the coordination
rule.

2. Skip this step if IBs is empty. Otherwise, trans-
form the list from OBs with the one from IBs
by SLOT(OBs, IBs).

3. Propagate the list from OBs to designated sites
and empty OBs.

4. Append the propagated list to IBt when the
propagation arrives at a designated site t.

5. End the protocol when the propagation has ar-
rived at all designated sites.

To ensure good local responsiveness, new local op-
erations are allowed to be generated at any time, even
during the execution of the CCOP protocol. Oper-
ations generated in the meantime are first stored in
a temporary buffer and then moved to OBs after the
protocol is ended. The protocol may take a while
to end, especially when the number of collaborating
sites is big or the propagated list is big, but the pro-
tocol execution time has nothing to do with the local
responsiveness (it only affects when local operations
are to be replayed at remote sites).

It is worth pointing out that coordinated oper-
ation propagation may become a performance bot-
tleneck in synchronous systems with a large number
of collaborating sites. However, it is generally not
a problem in asynchronous systems because: 1) the
frequency of propagations is normally not high; 2)
consequently, cases where multiple sites request for
propagating operations at the same time are not com-
mon; and 3) even some cases do exist, postponement
of some propagations would not affect the system per-
formance as synchronous notification of each other’s
progress is not expected. Nevertheless, for the SLOT

control algorithm to be used in synchronous systems,
the propagation protocol can be optimized in vari-
ous ways. For example, The SCOP protocol used by
the NICE collaborative editing system adopts a notifi-
cation server to synchronize concurrent propagations
before broadcasting them to destination sites (Shen
& Sun 2002).

4.2 ACOR: An Adaptive Operation Replay-
ing Protocol

At any collaborating site, when local operations are to
be propagated from OB, the CCOP protocol ensures
contextualization of OB and IB and context equiva-
lence between them . Similarly, when remote opera-
tions are to be replayed from IB, an operation replay-
ing protocol is required to ensure contextualization of
OB and IB and context equivalence between them.

Because local and remote operations modify the
same shared data source, execution of local operations
and replaying of remote operations must be mutually
exclusive. Furthermore, in case of contention between
local and remote operations, local operations must
be given the priority to ensure a good local respon-
siveness. Therefore, remote operations are ideally to
be replayed when no local operations are being ex-
ecuted. However, it is infeasible to predict when a
user is going to issue operations. In synchronous sys-
tems, remote operations arrive at a site one-by-one
and each remote operation is replayed when no local
operation is being executed at that site. If the user at
that site issues an operation in the meantime when a
remote operation is being replayed, execution of the
local operation will be delayed until replaying of the
remote operation is over. Postponement of the local
operation execution by one remote operation replay-
ing time would not affect local responsiveness much
as replaying one remote operation usually takes very
little time.

However, in asynchronous systems, remote opera-
tions arrive at a site batch-by-batch and each batch
could consist of as many as hundreds of operations.
If all operations in IB at that site were replayed as a
continual stream, local operations would suffer starva-
tion, resulting in poor local responsiveness. To tackle
this issue, after replaying a remote operation from IB,
the operation replaying protocol should give local op-
erations a chance to execute (if any) before replaying
the next one.

At site t, to replay all operations from IBt, the
ACOR (Adaptive Contextualized Operation Replay-
ing) protocol is executed as follows.

Protocol 2 ACOR

1: s← 0;
2: if (|OBt|> s) then
3: e←|OBt| −1;
4: SLOT(IBt, OBt[s, e]);
5: s← e + 1;
6: end if
7: while (|IBt|> 0) do
8: give_way();
9: acquire_lock();
10: if (|OBt|> s) then
11: e←|OBt| −1;
12: SLOT(IBt, OBt[s, e]);
13: s← e + 1;
14: end if
15: Op← IBt[0];
16: replay_operation(Op);
17: remove_operation(IBt, 0);
18: release_lock();
19: end while

When site t is in the process of executing ACOR
to replay remote operations from IBt, it can still re-
ceive remote operations, which are first temporarily
buffered and then moved to IBt after the protocol is
ended. This implies that IBt will not grow during
the protocol execution, and newly arrived remote op-
erations will be replayed in the subsequent ACOR
protocol execution. In contrast, OBt may grow and
the protocol must ensure operations in IBt are trans-
formed with all operations in OBt no matter when
these operations are generated and appended to OBt
(lines 2-6 or 10-14).

To minimize the impact on local responsiveness,
each remote operation should “give way” to local op-
erations (line 8). The give_way() procedure halts the
protocol execution until the data source is not being
modified by any local operation. Checking the state of
the data source is done by a thread, which alternates
between checking and sleeping (if the data source is
unavailable) until the data source becomes available.
The sleeping time is adaptive in the sense that it is
dynamically calculated according to the type of the
local operation being executed and the frequency in
which recent local operations have been generated.

When a remote operation is ready to be replayed,
the protocol will first exclusively lock the data source
to prevent it from being modified by local operations
(line 9). During the locking period, raw local events
such as keystrokes may be buffered for the genera-
tion of new local operations. Then operations in IBt
must be transformed (line 10-14) with new local op-
erations (generated in the meantime when the remote
operation was giving way). Finally, after the remote
operation is replayed (line 16), it is removed from IBt
(line 17) and the lock on the data source is released
(line 18). After that, the next operation in IBt will
look for its chance to be replayed and the protocol
proceeds until IBt becomes empty.

4.3 Verification of the CCOP and ACOR
Protocols

The example in Figure 2 has actually used the
CCOP protocol to propagate local operations and
the ACOR protocol to replay remote operations. It
has shown that intention preservation and conver-
gence have been achieved by using the two proto-
cols in a collaborative session involving two sites. To
systematically prove the two protocols together can
maintain consistency in a distributed collaborative
session involving arbitrary number of collaborating
sites (two or more), we need to verify them against
the three consistency properties.

For causality preservation, we need to prove that
given any two operations Opa and Opb, if Opa is
causally before Opb, then Opa must be executed be-
fore Opb at all sites. For intention preservation, we
need to prove that all SLOT invocations in CCOP
and ACOR have satisfied their pre-conditions. For
convergence, we need to prove that the context of the
shared data source is identical across all sites after all
operations have been executed at all sites. However,
due to space limitation, we only formally verify the
causality preservation, as described by Theorem 2.

Theorem 2 Given any two operations Opa and Opb,
if Opa is causally before Opb, then Opa must be exe-
cuted before Opb at all collaborating sites.

Proof: There are two possibilities. One is that Opa
is generated before Opb at the same site, e.g., site i.
If Opb is generated before the propagation of Opa,
Opa will be positioned before Opb in OBi. There
are two cases in propagating Opa and Opb. First, if
Opa and Opb are propagated in the same list (i.e.,

in one CCOP protocol execution), for any remote
site t, Opa and Opb will arrive at site t and be ap-
pended to IBt at the same time, where Opa is still
positioned before Opb. Then the execution of ACOR
protocol at site t ensures Opa is replayed before Opb.
Second, if Opa and Opb are propagated in two lists
(i.e., in two CCOP protocol executions), the execu-
tion of two CCOP protocols in sequence ensures the
propagation containing operation Opa arrives at any
remote site before the one containing operation Opb
does. At any remote site, Opa is always replayed be-
fore Opb no matter whether they are replayed in one
ACOR protocol execution or in two ACOR protocol
executions in sequence. If Opb is generated after the
propagation of Opa, it will be the same as the second
case.

Another possibility is that Opa and Opb are gen-
erated at two sites, e.g., site i and j respectively, and
Opb is generated after the execution of Opa at site
j. This implies that the propagation containing op-
eration Opa must have arrived at site j before Opb
is generated. According to the CCOP protocol, the
propagation containing operation Opb cannot be ini-
tiated before the one containing operation Opa has
arrived at all sites. This ensures the propagation con-
taining operation Opa must arrive at any remote site
before the one containing operation Opb does. Fur-
thermore, at any remote site, Opa is always replayed
before Opb no matter whether they are replayed in
one ACOR execution or in two ACOR executions
in sequence. The theorem has hereby been proved.

5 Significance and Applications

First of all, most TCAs designed for synchronous
systems, such as dOPT, GOT, GOTO, adOPTed,
and COT, require every operation to be times-
tamped with a state vector in order to capture their
causal/concurrent relationships. The SLOT control
algorithm, specifically designed for asynchronous sys-
tems, does not require operations to be timestamped
because their causal/concurrent relationships are cap-
tured by separating local and remote operations in
two buffers (OB and IB) and by enforcing operation
propagation and replaying protocols (CCOP and
ACOR) to achieve contextualization and list context
equivalence.

Second, most TCAs designed for synchronous sys-
tems avoid using ET (Exclusion Transformation)
functions (Sun et al. 1998) because it is difficult to de-
sign ET functions that satisfy the Reversibility Prop-
erty - ET(IT(Opa, Opb), Opb) = Opa (Sun & Sun
2006, ?). Function ET(Opa, Opb) transforms Opa
against Opb in such a way that the impact of Opb is
effectively excluded in the output operation Op′a. ET
functions are required by algorithms, such as GOT,
GOTO, and SOCT3, which are based on a single lin-
ear history buffer to store all executed local and re-
mote (transformed) operations. The SLOT control
algorithm has also avoided using ET functions.

Third, in addition to Property 4: TP-1, which
is essential for preserving convergence, IT functions
need to satisfy Transformation Property 2 (TP-2),
which requires IT functions to be defined in such a
way that transformation of an operation against a
set of mutually concurrent operations is irrelevant of
the order in which the set of operations are mutually
transformed (Sun & Ellis 1998).

Property 5 Transformation Property 2 (TP-2)

Given three concurrent operations Opa, Opb, and
Opc, if Op′a = IT(Opa, Opb) and Op′b = IT(Opb,
Opa), then IT(IT(Opc, Opa), Op′b) = IT(IT(Opc,
Opb), Op′a).

While it is relatively easy to satisfy TP-1, it is
rather difficult to design IT functions and verify them
against TP-2 that is also essential for preserving con-
vergence. The violation of TP-2 is mainly caused
by uncoordinated operation propagation, where the
same set of concurrent operations may arrive at dif-
ferent collaborating sites in different orders and hence
may be transformed in different orders. TCAs subject
to TP-2 include dOPT, GOTO, and adOPTed.

As it is non-trivial to satisfy TP-2, some TCAs
choose to break its pre-condition either by turning to
coordinated operation propagation, which forces the
same set of concurrent operations to arrive at all col-
laborating sites in the same order or by re-ordering
the set of concurrent operations according to a total
order so that they are transformed in the same or-
der at all sites. Jupitor belongs to the first category,
while GOT and COT belong to the second category.
Some work takes a different approach that solves the
TP-2 problem instead of avoiding it. For example,
SDT solved the problem by fixing problems in IT
functions (Li & Li 2004) and a new OT framework
was proposed to tackle TP-2 and other OT-related
problems (Li & Li 2007). SLOT belongs to the first
category because CCOP ensures the same set of op-
eration lists arrive at different collaborating sites in
the same order. Furthermore, because SLOT is only
invoked between the lists in OB and IB at the same
site, it is never possible for a list in OB to be trans-
formed with lists in multiple IBs and in different or-
ders.

Lying on the operation propagation and replaying
protocols to achieve contextualization and list con-
text equivalence, the SLOT control algorithm can
be used in a wide range of distributed collaborative
systems. It is particularly more efficient than other
algorithms when used in asynchronous systems. This
OT-based concurrency control solution, including the
SLOT algorithm, and CCOP and ACOR protocols
have been implemented in a few prototype collabora-
tive systems, e.g. the CoEclipse system that supports
collaborative programming.

Check
Online
Users

Connect
to Server

Propagate
Operations

(a)

(b)

(c)

Figure 3: CoEclipse

Eclipse is well-known for the Java IDE (Integrated
Development Environment). We developed CoEclipse
to support collaborative programming in Java - a
group of programmers can code the same Java project
or source code file asynchronously or synchronously.

As shown in Figure 3(a), CoEclipse appears as three
plug-in buttons on the Eclipse user interface, which
are Connect to Server, Check Online Users, and Prop-
agate Operations from left to right.

To propagate operations made on the shared
source code to other programmers online, one needs
to first connect to the collaboration server by push-
ing the Connect to Server button. The server is to
manage the list of online programmers and to facili-
tate running the operation propagation protocol. Fig-
ure 3(b) shows the dialog box before the connection is
made. If the propagation method is set to MANUAL,
each propagation has to be initiated by pushing the
Propagate Operations button and the collaboration
mode is asynchronous. If the propagation method is
set to AUTOMATIC with a short interval, the col-
laboration mode is synchronous instead. One has the
flexibility of choosing online programmers to whom
her/his operations will be propagated by pushing the
Check Online Users button. As shown in Figure 3(c),
one may choose to propagate to all online program-
mers or only some of them.

6 Conclusions and Future Work

A collaborative system differs from other distributed
systems by three characteristic components: multi-
ple human users, interactive applications, and the
high-latency Internet. Concurrency control is the key
to managing the contention for distributed data re-
sources and to ensure the orderly access to shared
data. It is a major issue in most distributed systems
and collaborative systems are of no exception. How-
ever, concurrency control techniques devised for dis-
tributed systems are generally unsuitable for collab-
orative systems because these characteristic compo-
nents have special concurrency control requirements.

OT is a concurrency control technique originally
invented for synchronous collaborative systems to
meet those special requirements. However, to apply
OT to asynchronous systems, a major technical chal-
lenge is to devise an efficient transformation control
algorithm because existing algorithms are catered for
synchronous systems only and are inefficient to be
used in asynchronous systems.

Our major contribution in this paper is a novel,
efficient, contextualization-based transformation con-
trol algorithm SLOT underpinned by an operation
propagation protocol CCOP and an operation re-
playing protocol ACOR to achieve contextualization
and list context equivalence. This algorithm is par-
ticularly more efficient than existing ones when used
in asynchronous systems, and can also be used to
support a wide spectrum of collaboration paradigms
because it is as efficient when used in synchronous
systems. Furthermore, the algorithm has most of the
merits that some of existing algorithms have achieved,
such as no timestamping of operations, no ET func-
tions, and free of TP-2.

The correctness of the algorithm and protocols in
terms of consistency maintenance has been formally
verified. The usefulness of the algorithm and proto-
cols has been demonstrated by a variety of prototype
collaborative applications. We are currently investi-
gating other collaborative techniques such as collabo-
rative undo and asymmetric collaboration, by extend-
ing the solution presented in this paper.

Acknowledgment

The authors wish to thank Ms Lijuan Geng for the
initial development of the CoEclipse prototype at
Nanyang Technological University in Singapore.

References

Bernstein, P., Goodman, N. & Hadzilacos, V. (1987),
Concurrency Control and Recorvery in Database
Systems, Addision-Welsley.

Ellis, C. & Gibbs, S. (1989), Concurrency control
in groupware systems, in ‘Proceedings of ACM
SIGMOD Conference on Management of Data’,
pp. 399–407.

Greenberg, S. & Marwood, D. (1994), Real time
groupware as a distributed system: concurrency
control and its effect on the interface, in ‘Proceed-
ings of ACM Conference on Computer Supported
Cooperative Work’, ACM Press, pp. 207–217.

Gu, N., Yang, J. & Zhang, Q. (2005), Consistency
maintenance based on the mark and retrace tech-
nique in groupware systems, in ‘Proceedings of
the ACM Conference on Supporting Group Work’,
ACM Press, pp. 264–273.

Karsenty, A. & Beaudouin-Lafon, M. (1993), An al-
gorithm for distributed groupware applications, in
‘Proceedings of 13th Conference on Distributed
Groupware Computing Systems’, pp. 195–202.

Knister, M. & Prakash, A. (1993), ‘Issues in the de-
sign of a toolkit for supporting mulitple group edi-
tors’, Journal of Usenix Association 6(2), 135–166.

Li, D. & Li, R. (2004), Ensuring content and inten-
tion consistency in real-time group editors, in ‘Pro-
ceedings of the IEEE International Conference on
Distributed Computing Systems’, pp. 748–755.

Li, R. & Li, D. (2007), ‘A new operational transforma-
tion framework for real-time group editors’, IEEE
Transactions on Parallel and Distributed Systems
18(3), 307 – 319.

Nichols, D. A., Curtis, P., Dixon, M. & Lamping, J.
(1995), High-latency, low-bandwidth windowing in
the jupiter collaboration system, in ‘Proceedings
of the ACM Symposium on User Interface Soft-
ware and Technology’, Distributed User Interfaces,
pp. 111–120.

Raynal, M. & Singhal, M. (1996), ‘Logical time:
capturing causality in distributed systems’, IEEE
Computer Magazine 29(2), 49–56.

Ressel, M., Nitsche-Ruhland, D. & Gunzenbauser, R.
(1996), An integrating, transformation-oriented ap-
proach to concurrency control and undo in group
editors, in ‘Proceedings of ACM Conference on
Computer Supported Cooperative Work’, ACM
Press, pp. 288–297.

Shen, H. & Sun, C. (2002), Flexible Notification for
Collaborative Systems, in ‘Proceedings of ACM
Conference on Computer-Supported Cooperative
Work’, ACM Press, pp. 77–86.

Sun, C. & Ellis, C. (1998), Operational transforma-
tion in real-time group editors: Issues, algorithms,
and achievements, in ‘Proceedings of ACM Confer-
ence on Computer Supported Cooperative Work’,
pp. 59–68.

Sun, C., Jia, X., Zhang, Y., Yang, Y. & Chen,
D. (1998), ‘Achieving convergence, causality-
preservation, and intention-preservation in real-
time cooperative editing systems’, ACM Transac-
tions on Computer-Human Interaction 5(1), 63 –
108.

Sun, C., Xia, S., Sun, D., Chen, D., Shen, H. & Cai,
W. (2006), ‘Transparent adaptation of single-user
applications for multi-user real-time collaboration’,
ACM Transactions on Computer-Human Interac-
tion 13(4), 531–582.

Sun, D. & Sun, C. (2006), Operation context and
context-based operational transformation, in ‘Pro-
ceedings of ACM Conference on Computer Sup-
ported Cooperative Work’, pp. 279–288.

