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Abstract

As web-based applications and data continue to grow,
large caches of XML data will result in many application
domains. In sensor web applications, there are continuous
streams of sensor data being generated, converted to XML
and stored for domain queries and data mining purposes.
The main problem with these XML caches is that exist-
ing XML database queries are very slow, especially for
large databases or those with complex structures. In this
work we propose a view-based system to XML optimiza-
tion where the most popular or well-chosen queries are
materialized and fragmented to greatly improve the per-
formance of all XML queries.
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1 Introduction

The Sensor Web is a natural extension to the WWW where
small hardware devices are used to automatically generate
new data. In our research area, we are monitoring a group
of elite athletes using various personal monitors. The col-
lecting, processing and integration of data was described
in earlier research (Roantree et al. 2008). However in this
work, we made no attempt to optimize XML queries and
instead focuses on managing the sensor data.

Web-based data interfaces are used by athletes to up-
load this data where it is converted to XML, semanti-
cally enriched and integrated with other data streams.
Databases are then queried using standard XML lan-
guages such as XPath or XQuery to query and mine these
XML stores. One of the problems facing scientists and
end-users is that XML queries perform poorly when com-
pared with other database systems. There have been many
approaches to XML query optimization where SQL-based
optimizers are used (Boncz et al. 2006, Marks & Roantree
2009), advanced tree-structured indexes are created to
prune search space (Bruno et al. 2002) or XPath axis nav-
igation algorithms (Grust 2002).

Our solution to this problem is to adopt an exist-
ing approach to optimization from the relational database
world where queries are precomputed and stored as views
on data servers. Subsequent queries make use of these
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views in order to execute and generate query results in far
quicker times. The challenge is to make a solution for ta-
ble based data stores applicable in the tree-based world of
XML data.

1.1 Paper Structure

This paper is structured as follows: in the remainder of this
section we provide the motivation for this work and out-
line our contribution to research in this area followed by a
detailed discuss of related research in §2; we then provide
a brief overview of the XML view language together with
a set of sample views in §3; in §4 we introduce our Multi-
ple Fragment Materialization (MFM) view graph together
with a detailed description of its constructs, fragments and
operators; we give an example of how the MFM graph is
constructed using the sample XML views, and a summary
of the transformation between view expressions to MFM
view graph in §5; in §6 we show the experimental results
with a comparison of our approach against the traditional
full materialization approach; and finally §7 concludes the
paper and outlines future work.

1.2 Motivation

In relational database management systems (RDBMS),
materialized views are widely used for query result
caching and query answering. The impact on using ma-
terialized views for query answering is significant to the
improvement of query performance. Materialized views
are considered to be most beneficial where systems are
queried more often than updated such as in data ware-
houses. As a result, views have also been studied in XML
database management system (XDBMS). XML views are
usually formed by a subset of the XPath language denoted
by XP{[],∗,//,/}. In the context of XDBMS, materialized
XPath views can also be used to expedite the processing
of XML queries. (Arion et al. 2007, Balmin et al. 2004,
Lakshmanan et al. 2006) studies the single view-based
query answering problem. Whereas (Cautis et al. 2008,
Gao et al. 2007, Tang et al. 2008, 2009) focus on using
multiple materialized XPath views for answering queries.

In addition, there has been increasing attention on the
issue of XPath view updates and maintenance. (Sawires
et al. 2005, Lim et al. 2003) deal with synchronizing the
materialized view data with updates to the source data.
However, there is very little work that has been done
for handling updates when view definitions are changed.
This problem is referred to as the view adaptation prob-
lem, which was first introduced by Gupta, et al (Gupta
et al. 1995) in RDBMS. Padmapriya et al. (Ayyagari
et al. 2007) claimed to be the first to focus on XML
view adaptation using access rules. However in their sys-
tem, view adaptation can only take place below the out-
put node of the XPath expression or it must retrieve the
data from source. This is due to the fact that only XML
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Figure 1: Sensor Database Schema

data fragment below the output node is materialized as de-
picted in (Tang et al. 2008). Furthermore, data reusabil-
ity is rather poor as materialized data fragments cannot be
shared across views.

The view adaptation problem is well understood in re-
lational database systems. A solution by Bellahsene (Bel-
lahsene 2004) proposed a multi-fragment based approach,
where view materialization takes place on the fragment
level. Here, data reusability is significantly improved
as fragments are shared between different views. How-
ever, in order to apply this approach in an XML database,
a query transformation approach is required to convert
XML query expressions (XPath or XQuery) into SQL ex-
pressions. Since the difference between XML query lan-
guages (nested, irregular, heterogeneous and ordered) to
the SQL language (flat, regular, homogeneous and un-
ordered), the language transformation will be difficult. We
adopted the idea of the fragment approach and applied
it to XML databases. Our multi-fragment view materi-
alization approach improves the data reusability by shar-
ing common sub-expressions among views in the form of
view fragments. In this way, any change takes place in
view definition above the output node can be resolved by
searching for materialized data fragments across different
views.

1.3 Problem Description

The schema illustrated in Figure 1 represents a subset of
the HealthSense dataset, compiled in our project. We
now present a list of views, expressed in XPath, which
form part of our materialized fragments. Each are based
on the reading node (outlier, padded, value and average)
between specified times (determined by timing offsets).
We also provide a simple explanation for those readers
unfamiliar with XPath.

Example 1
Find all reading data from healthsense measurement
recorded by the sensor device where the offset exceeds
10 seconds.

//healthSense//measurement[./offset>10000]/reading

This XPath view materializes all subtrees rooted at
nodes named reading, where each reading node must
have a parent node called measurement with child offset

having values greater than 10000 (as values are recorded
in milliseconds).

Example 2
Locate sensor reading nodes where offset exceeds 5 sec-
onds.

//healthSense//measurement[./offset>5000]/reading

This XPath view materializes all subtrees rooted at the
node reading, where each must have a parent node called
measurement with a child offset with value great than
5000.

Example 3
Find sensor data with offset values between 5000 and
10000 milliseconds.

//healthSense//measurement[./offset>5000][.//offset<
10000]/reading

Example 1 demonstrates an existing XML view that
stores all measurement reading data recorded after 10000
milliseconds. If we modify the definition of the view in
Example 1 by replacing 10000 to 20000. The answer
to this new query can be computed easily from the data
that has already been stored in Example 1. This can be
achieved by removing all reading data that were measured
before 20000 milliseconds. This incremental computation
is much more efficient than recomputing the view from
scratch.

However, the change to the view definition is not al-
ways so easily computable. Assuming that we modify Ex-
ample 1 by changing the offset time to 5000, e.g., Exam-
ple 2, then the reading data measured between 5000 and
10000 are not computable using Example 1. Neverthe-
less, we can still reuse the old view (see Example 1) for
all reading data after 10000 milliseconds, and then all the
rest from the base data, XML database.

Finally, assume that Example 3 is also an existing ma-
terialized XML view. By observation, we know that Ex-
ample 2 can be answered using Example 1 and Example
3. However, existing approaches for XML query answer-
ing can make use of one materialized view at a time as
fragments cannot be shared between materialized views.
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Figure 2: Multi-Fragment View Graph

1.4 Contribution

In this paper, we present a multi-fragment based XPath
view materialization approach for an XML database that
can utilize a set of materialized fragments as opposed to a
collection of single materialized views. This approach can
be easily applied by view adaptation algorithms.

Our key contributions can be outlined as follows:

• We provide Multiple Fragments Materialization
View Graph (MFM view graph) that exploits the
materialization of common XPath subexpressions
to reduce the cost of view adaptation in terms of
multi-fragment approach. While this approach has
been previously employed in the set-based relational
model, it has never been applied to tree-based sys-
tems.

• We present a specialized set of operators and frag-
ments for constructing the MFM view graph.

• Our experimental evaluation demonstrates that sig-
nificant performance improvement over the more tra-
ditional single-fragment approach can be achieved.

2 Related Research

Early efforts on view adaptation focused on keeping the
materialized view up-to-date in response to query changes
(Gupta et al. 1995). In this work, the authors demonstrate
how the view adaptation problem differs from the problem
of query rewriting by showing the new view to not always
being equivalent to existing views. The view adaptation
problem will only apply a sequence of local changes, such
as add an attribute or delete a base relation. They also
claim that this problem is closely related to the systems
that are queried more frequently than updated. They show
how these views can be adapted using an existing materi-
alization for the cases where it is possible to do so. They
identify extra information that can be kept with a materi-
alization to facilitate redefinition.

In (Bellahsene 2004), the authors presented a fragment
based view adaptation approach for the relational data
model. They exploit materialization of common subex-
pressions to reduce the cost of view adaptation in the
fragment-based approach. Nevertheless, the data indepen-
dence is preserved for the views that are not affected by
the change. In doing so, they provide the ability to reuse
all the materialized fragments in the system to reduce the
number of access commands on source data. However,
to apply this approach to a semi-structured data model, a
query transformation approach is required to convert the

XML query languages into the SQL language. Due to the
difference between XML query languages and SQL, this
requires a new set of operations to manage fragments and
materialization.

In the area of semi-structured data, view updates with
changes to source data has been studied by a number of re-
search teams, e.g., (Sawires et al. 2005, Lim et al. 2003).
However, the view adaptation problem in XML has at-
tracted little focus. Recently, a related approach, access
control view, has gained an increasing interest in sup-
porting fine-grained XML access control (Damiani et al.
2000). Towards this end, techniques such as XPath secu-
rity views (Fan et al. 2004, Kuper et al. 2005, Stoica &
Farkas 2002, Ayyagari et al. 2007) are being used. How-
ever, (Ayyagari et al. 2007) are among the first to provide
a solution for view adaptation in XML databases. They
provide XPath access-control views with a set of com-
prehensive incremental view adaptation techniques. Ma-
terialized data is represented to the users according to a
set of access control rules (XPath expressions). Based on
these rules, data representation is restricted and dynami-
cally changed for different users. However, this technique
only operates when view adaptation starts from the output
node of a query to its subtree. This is due to XPath seman-
tics where only the XML fragment of the output node will
be materialized.

We differ from these approaches as we adapted an idea
from (Bellahsene 2004) utilizing multiple view fragment
to efficiently maintain both common or uncommon frag-
ments of different views in semi structured data. Due
to sharing of materialized fragments, view adaptation can
theoretically take place at any point in the view construct.
Although our main focus is not to provide a solution to the
access controls views, our approach can be easily modified
to deal with the XPath security views mentioned above.

3 Introducing Sample Views

Existing research on XML views focused mainly on a sub-
set of XPath expressions, XP{/,//,[],∗}. / and // indicate
the parent-child and ancestor-descendant relationships re-
spectively, additionally, they are also the abbreviation of
the child and descendant axes defined in XPath query lan-
guage. [] is a predicate and * is the wildcard that repre-
sents all type of nodes. While we support all of these ex-
pressions, we also include attribute axis (@), string value
comparison and number comparison.

To assist the rest of this discussion, we provide the no-
tation that will be used throughout the paper. An XML
document can be modeled as a rooted, ordered and node-
labeled tree, T . Let Σ denotes the alphabet of all distinct
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Fragment Name Description

RF Root Fragment represents the starting point
in a view model, a single node

FF Filter Fragment represents a node sequence
after an select operation

DF Dependency Join Fragment represents a node sequence
after an d-join operation

SF Source Fragment a sequence of V-typed
within nodes an XML tree

VF View Fragment a sequence of nodes indicating
the result of a view

Table 1: MFM Fragments

tag names in T . We treat all nodes v1, v2, · · · , vn with
same label (tag-name) as type V , where vi ∈ T (0 ≤ i ≤
n), V ∈ Σ. vi is called a V-typed node.

The MFM view graph is a combination of XPath
views, where common subexpressions of XPath views are
displayed once. XPath views are represented by a set of
fragments (§4.1) and operators (§4.2) in the MFM view
graph.

We now introduce a set of XPath views based on the
schema given in Figure 1. In Example 4, raw values are
returned where the offset is 1000 and the key attribute
contains the value Timer1. In other words, all Timer1
values with 1000 offset are contained in view V F1.

Example 4 (VF1)
//healthSense/sensorData/sections/sect
ion/measurement[./@offset=1000]//reading
[./key=’Timer1’]/raw-value

Outliers are heart rate values that are most likely
to be incorrectly determined by the sensors (often impos-
sible heart rate values) and are generally removed before
analysis can begin. In Example 5, view V F2 returns all
average time where offsets exceed 8000 milliseconds.

Example 5 (VF2)
//healthSense/sensorData/sections/sect
ion/measurement[./@offset>8000]//read
ing/average/time

In Example 6, V F3 returns all reading data (outlier,
padded, value and average) between specified times (de-
termined by timing offsets).

Example 6 (VF3)
//healthSense/sensorData/sections/sect
ion/measurement[./@offset>8000][./@off
set<15000]//reading

In Example 7, V F4 contains all key and value at-
tributes (of parameter) where the name attribute con-
tains the value Params.

Example 7 (VF4)
//healthSense/sensorData/sections/sect
ion[./@name=’Params’]/parameter

The common parts between queries are listed once in
the graph as shown in Figure 2, and the intermediate re-
sults are represented by the fragments. Fragments in gray
represented materialized fragments and are selected man-
ually for the purpose of illustration. The focus of this pa-
per is to provide a fragment-based materialisation and au-
tomatic selection forms part of our current work.

4 View Fragments and Operators

In this section, we introduce the fragment set that provides
the constructs for the Multiple Fragments Materialization
(MFM) View Graph. A number of operators are then used
to represent different XPath commands within the MFM
graph.

4.1 MFM Fragments

Fragments are categorized into 5 types as illustrated in Ta-
ble 1. Each fragment (except Source Fragment) represents
the result of a single step in an XPath expression, and it is
these fragments that can be shared across XML views.

All fragments contain a set of V-typed instances for
each node label V . In the case of RF and SF fragments,
this will be the entire set of instances for V . For the re-
maining fragments, there will generally be some subset of
V generated for the fragment.

• Root Fragment (RF) - A Root Fragment rep-
resents a node sequence containing a single node,
which is the root node of an XML tree T (also known
as the document node). It always represents the start-
ing point of a MFM view graph. While a view graph
will contain multiple query representations, they are
all joined by the same root fragment, as shown in Fig-
ure 2 (for example, RF with rectangle box).

• Filter Fragment (FF) - A filter fragment
(e.g., FF1 in Figure 2) represents the node se-
quence produced by a select operation. In our view
model, the select operation always contains a pred-
icate used to filter an input node sequence. e.g.,
@name=’Params’ in Figure 2 represents the filter
operation that results FF1.

• Dependency Join Fragment (DF) - A De-
pendency Join Fragment (e.g., DF1 in Figure 2) rep-
resents the node sequence resulting from a d-join op-
eration described in §4.2, e.g., the ./−→ before DF1 rep-
resents a dependency join operation.

• Source Fragment (SF) - A Source Fragment
represents the full set of V-typed nodes. The major
difference between this fragment and all others is that
it cannot be reused and merely acts as an operand in
a d-join operation. An example of a source fragment
is shown in Figure 2 with dashed boxes.

• View Fragment (VF) - A view fragment (e.g.,
VF1 in Figure 2) represents the result of a view. It
always follows a deep project operation (§4.2), e.g.,
ΠD before VF1 indicates a deep project operation.

Each fragment within a particular view is referenced by
a corresponding VF fragment that represents the context
view. For example, DF6 is referenced by VF1, VF2 and
VF3 as it is shared by all whereas DF8 is referenced only
by VF1. The fragmentation approach is used to facilitate
this sharing of fragments across views as each fragment
indicates a potential end point (materialization candidate)
for a view.

4.2 MFM Operators

Within our MFM view graph, fragments such as DF, FF,
and VF are connected by one of a number of operators (see
Table 2). We now present a description of these operators
and explain why they are necessary.

Before we discuss the operations, we first introduce
some notations that used for describing the operations.
An XPath expression can be divided into several steps.
Generally speaking, each step within an XPath expres-
sion contains an Axis and a NameTest, and it produces a
sequence of nodes as an intermediate result to the next
step in an XPath expression. A node sequence that re-
sults from a step si is denoted by Sk(Vi), where k indi-
cates the number of nodes in the sequence, k ≤ |S(Vi)|.
S(Vi) is a sequence of all nodes labeled to Vi. For in-
stance, S(reading) contains all nodes labeled reading
within an XML document, whereas, S3(reading) indi-
cates a sequence of reading nodes, where the size of the
sequence is 3.
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Operator Name Description Operands Operation Type

./−→ d-join perform a dependency join operation SF and 1 of DF, binarybetween two sequences of nodes FF, RF

σpred select perform a select operation over a DF, FF unaryset of nodes with a specified condition

ΠD dproject perform a deep project operation on DF, FF unarya node sequence

Table 2: Algebraic Operators

4.2.1 Dependency Join

An XPath expression is represented by a chain of depen-
dency joins (d-joins), represented by the algebraic opera-
tor ./−→. The output is another sequence of nodes resulting
from the axis operation and predicate filtering. In VF2,
there are numerous dependency joins, for example, be-
tween healthSense and sensorData, and between
sensorData and section.

Definition 1 (d-join operator)
A d-join operation is a binary operation written as S(Vi−1)
./−→ S(Vi). The result of a d-join operation is a sequence of
nodes Sk(Vi) which fulfills the dependency condition (d-
cond) between si−1 and si, where k ≤ |S(Vi)|.

The result node sequence is generated using two steps:
i) generates a set of 2-tuple sequences, where each satis-
fies the dependency condition; ii) projects only nodes (Vi)
from tuples within the set. The semantics of a dependency
join is listed below:

S(Vi−1)./−→S(Vi) = Πm({(n,m)| n ∈ S(Vi−1),m ∈
S(Vi)),REL(n,m)→ d-cond}

= Sk(Vi), where k ≤ |S(Vi)|

where S(Vi) is dependent on S(Vi−1) in terms of d-cond
and, the method REL returns the relationship between two
nodes n and m.

4.2.2 Select

A step within an XPath expression may contain an op-
tional set of predicates. Each predicate performs a fil-
tering operation over the context node sequence together
with a selection operation which selects nodes satis-
fying the predicate. In VF1, the select operation is
[./key=’Timer1’].

Definition 2 (select operator)
A select operation is an unary operation written as
σpred(S(Vi)) where pred is a condition of the selection.
This operation selects a sequence of nodes in S(Vi) for
which pred holds.

The result of a select operation is a subsequence of the
input sequence containing the same typed nodes. The se-
mantics of the operation are:

σpred(S(Vi))
= {n | n ∈ S(Vi), n satisfy pred}
= Sk(Vi), where k ≤ |S(Vi)|

4.2.3 Deep Project

A Project operation returns a specified set of attributes.
When an XPath expression generates its final set of re-
sult nodes, it will always return the entire subtree beneath
each node. For this reason, we use a deep project oper-
ation (dproject) to project the entire subtree content of

each node in a node sequence. In VF2, the dproject op-
eration returns the value for a single node as with a nor-
mal project operation. However, if averages was the
requested node (see Figure 1), the Deep Project operation
would return the entire averages subtree.

Definition 3 (dproject operator)
A deep project operation is a unary operation written as
ΠD(S(Vi)). This operation projects the entire subtree con-
tent of nodes within S(Vi).

The result of a dproject is a union of subtrees that are
rooted at nodes of type Vi. The semantic of a dproject
operation is listed below. We use the method SUB to re-
turns the subtree of a node.

ΠD(S(Vi))
= Πt1,...,tn(SUB(v)), where v ∈ S(Vi), ti ∈ SUB(v)

= {c | ∀c ∈ SUB(v), v ∈ S(Vi)}

=
n⋃

k=1

SUB(vk), where vk ∈ S(Vi)

5 Constructing the View Graph

In this section, we first describe a set of rules to be fol-
lowed during MFM view graph construction. We then
provide a detailed description of how the view graph is
built using the fragments and operators introduced in §4.

5.1 Construction Rules

As the MFM graph is constructed from XPath queries, the
following is a set of rules used to derive the graph struc-
ture.

1. Any number of views may be defined on a database
but they must all contain the same root (RF) frag-
ment.

2. The RF fragment indicates the node sequence con-
taining the document node (the root node of T ) and
must always be the first fragment in the view model.
It can be followed only by a d-join operator.

3. A deep project operator can never be applied to a RF
fragment as the result is the entire XML document.

4. A select operator can never be applied to a RF frag-
ment. This is because applying a predicate to a doc-
ument node always results in the entire XML docu-
ment.

5. A VF fragment always occurs after an operation node
representing the deep project operator.

6. A VF fragment is always the final fragment in the
view model as it contains the final result set.

7. A SF fragment always occurs as the right operand of
a dependency join operation.
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Figure 3: Add DF fragments
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Figure 4: Add FF fragments

Assuming the four views introduced in §3 will com-
prise the view graph, the first step is to define a common
root for views. We use the document root of the context
XML document, ROOT(T ), to represent RF fragment. By
observation, we can see that healthSense is the com-
mon part to all views in the first step. Therefore, as shown
in Figure 2 healthSense is joined with ROOT(T ) (d-
join). healthSense is represented by SF1 containing
all instances of healthSense nodes, and DF1 indicates
the result node set generated by the dependency join oper-
ation between RF and SF1. sensorData (SF2) is then
joined with the result generated by the first d-join opera-
tion (DF1). This then generates DF2.

The d-join operation is repeated for all views until
section (SF4) is encountered, which results in DF4.
At this point, a select operation is performed for VF4
on name attribute (@name=’Params’). A d-join op-
eration is performed on VF1, VF2 and VF3, which joins
section to measurement (SF6). As shown in Figure
2, this step produces a set of nodes represented by DF6.

The d-join and select operations are repeated until the
output nodes are located for all views. DF5 represents a
set of instances for the output node for VF4. A dproject
operation can be performed on DF5, which retrieves all in-
stance of output nodes together with their subtree content.

The transformation between XPath expressions and
MFM view graph can be summarized by the following
transformation rules.

5.2 D-join Transformation

Transformation 1 shows the mapping from a d-join opera-
tion to our MFM view graph.

Transformation 1 (djoin)

F

Vi−1
⇐⇒S(Vi−1)./−→S(Vi) = Sk(Vi)

./−→
SF

Vi

DF

Vi

The transformation comprises the following steps:

1. ./−→ is transformed into the operation d-join⇒
./−→

2. S(Vi−1) is represented by a fragment,

S(Vi−1)⇒ F
Vi−1

, F ∈ {V F,DF, FF}
3. S(Vi) is represented by a source fragment,

S(Vi)⇒ SF
Vi

4. Sk(Vi) is represented by a dependency join fragment,

Sk(Vi)⇒ DF
Vi

5.3 Select transformation

The mapping between a select operation and our MFM
graph is shown in Transformation 2.

Transformation 2 (Select)

σpred(S(Vi)) = Sk(Vi) ⇐⇒ F

Vi σpred
FF
Vi

The transformation is achieved through the following
steps:
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Figure 5: Delete DF fragments
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Figure 6: Delete FF fragments

1. σpred is transformed into the operation σpred ⇒
σpred

2. S(Vi) is represented by the fragment

S(Vi)⇒ F
Vi

, F ∈ {DF, FF}

3. Sk(Vi) is represented by the fragment Sk(Vi)⇒ FF
Vi

5.4 dproject transformation

The mapping from the dproject operation to our MFM
view graph is shown below.

Transformation 3 (dproject)

ΠD(S(Vi)) =
⋃n

k=1 SUB(vk)

⇐⇒ F

Vi ΠD

VF
Vi

The following steps are achieved to represent a dproject
operation in our MFM view graph:

1. ΠD is encapsulated into an operation node, ΠD ⇒
ΠD

2. S(Vi) is encapsulated into an fragment,

S(Vi)⇒ F
Vi

, F ∈ {DF, FF}

3.
⋃n

k=1 SUB(vk) is encapsulated into an fragment,⋃n
k=1 SUB(vk)⇒ VF

Vi

6 Experimental Analysis

Our fragment-based approach is well suited to the XPath
view adaptation problem. We now demonstrate the perfor-
mance of view adaptation using our fragment-based ma-
terialization approach and the traditional full materializa-
tion method. The experiment is initialized by materializ-
ing XPath views with data obtained from a remote XML
server. For the traditional approach, views are required
to be recomputed for materialization with new data ob-
tained from this remote server. Our Multi-Fragment ap-
proach uses data from materialized fragments currently
shared across queries. Clearly there are occasions when
our multi-fragment approach may also need to obtain data
from the remote server. This happens when query or
view adaptation takes place in the steps before all mate-
rialized fragments. Concerning the query processing cost,
the full materialisation approach clearly outperformed the
fragment-based approach since some fragments are still
virtual (not materialised). However, we show that when
considering the global cost, including the query plus view
maintenance costs, our fragment-based approach provides
superior optimization. Our experiment demonstrates the
general costs of adapting existing fragments in response
to the view redefinition changes take place to the existing
materialised XPath views.

6.1 Logistics

Two servers were deployed for this experiment: a remote
(XML database) eXist server and a local eXist server. The
remote server contains all XML source data, and the local
server stores all materialized views and their fragments.
We use eXist version 1.2.5 build 8668 for both remote and
local eXist servers. The remote eXist server is distributed
on an Intel Core(TM)2 Duo 2.66GHz workstation running
Windows XP. The local eXist server is installed on an Intel
Core(TM)2 Duo CPU 3.00GHz Windows XP workstation.
The second server contains all XPath materialized views
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Figure 7: Modify FF fragments

with data obtained from the remote site. An actual dataset
collected from heart monitors placed on a various groups
of athletes, resulting in 230MB of data, was used as the
underlying database.

6.2 Performance

The cost of view adaptation is computed as the total cost of
query processing (query recomputing) and network com-
munication between servers (data transformation between
servers). In practical terms, we will always see an im-
provement as each example assumes that the change in
view definition will always be accommodated in our view
graph. This issue is discussed in our conclusions.

6.2.1 Adaptation: Reducing View Sizes

Adding an extra step to the XPath query, with or with-
out predicates, normally requires deletion of some view
data. Using the traditional approach, there is no way
to determine which part of the materialized data that is
now redundant. Therefore, this method requires a com-
plete recomputation of the view and the extraction of data
from the remote eXist server. With our multi-fragment
approach, adding an extra step with optional set of predi-
cates means that an additional DF fragment with optional
FF fragments are inserted into the MFM graph. The multi-
fragment approach can achieve rematerialization using the
existing materialized fragments shared between different
views.

Assume that FF4 and DF10 have been selected
for materialization in Figure 2, where FF4 is material-
ized by view V F3 and DF10 is materialized by view
V F2. We would like to set a new condition after FF4,
name=”Data”, in V F2. In this case, DF10 must be
adapted to fulfill the new condition. V F2 must be rema-
terialized using the traditional approach as the result are
restricted by the new condition. However, our approach
needs only to rematerialize DF10. Rather than retrieve
more data from the server, this can be achieved by using
the existing materialized fragment FF4 in V F3.

Improvements in performance of our approach are il-
lustrated in Figure 3a. This is in comparison with the full
materialization approach(TFM) where entire views are al-
ways materialized. Figures 3a and 4a show that although
query recomputing time is very close for both approaches,
the network communication cost increases significantly
for the traditional approach when the number of nodes in
the sequence is increased (Figure 3b, 4b). As shown in
Figure 3c and 4c, the multi-fragment approach requires
approximately 50% of the time used in the traditional ap-
proach.

6.2.2 Adaptation: Increasing View Sizes

Deleting a step from an XPath query expression should re-
sult in a request for more data from the database server as
the result is less restricted. The traditional approach must
obtain the data from the remote eXist server. However,

this change does not effect the multi-fragment approach,
as deleting a step from a view definition indicates that a
DF fragment and FF fragments are deleted from the MFM
graph.

Assume that DF4 is materialised for view V F4, and
FF5 is materialized for view V F3. If we were to delete
FF4 from V F3, this indicates that the result of V F3 be-
comes less restricted as the condition @offset>8000 is re-
moved. In the traditional approach, it is necessary to re-
compute the view but in our approach, we rematerialize
only FF5 by using DF4 in V F4.

The result is that the multi-fragment approach retrieves
additional data from existing fragments. As shown in Fig-
ure 5c and 6c, reusing existing data from different frag-
ments is significantly faster than the traditional approach.
In a worst case scenario, retrieving 59,928 nodes by the
traditional approach takes approximately 3 times that of
the multi-fragment approach.

6.2.3 Adaptation: Predicate changes

Changing view predicates could result in either more or
less data required for the view. In either circumstance, the
view must be rematerialized by the traditional approach.
This is because only the node sequence produced by the
last step is materialized. Therefore, any modification to
the previous steps will always lead to view rematerializa-
tion. Using our approach, this requires a change to a single
FF fragment. The multi-fragment approach can utilize ex-
isting materialized fragments to avoid gathering data from
remote server as data has already been materialized within
the fragments. As shown in Figure 7, the multi-fragment
approach outperforms the traditional approach for all situ-
ations, and more so, for larger node quantities.

Assuming again that onlyDF4 is materialised by view
V F2, and FF5 is materialised by view V F3. If we
were to change the condition from @offset<15000 to
@offset<10000 in V F3, the new predicate restricts the
result of V F3. To update the materialized data for V F3,
the traditional approach must access new data from the
database server. Our approach updates the FF5 by re-
trieving the data from DF4 in V F2.

7 Conclusions

In this paper, we presented a multi-fragment materializa-
tion approach that works with semi-structured data. Frag-
ments can be shared by multiple views, which improves
the data reusability and reduces duplication involved in
the traditional materialization approach. For the research
described in this paper, we selected the view fragments
for materialization by hand to show those query types that
benefit from the multi-fragment approach. Our current fo-
cus is on developing a cost-based view selection algorithm
and view adaptation algorithms to work with the multi-
fragment platform created here. This will provide full
automation of our view materialization system and with
further analytical capabilities for scientists working with
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the increasing volumes of data generated in today’s sensor
web.
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