
PULSE: a Pluggable User-space Linux Security Environment

A.P. Murray D.A. Grove

Defence Science Technology Organisation
PO Box 1500, Edinburgh, South Australia 5111

Email: {alex.murray, duncan.grove}@dsto.defence.gov.au

Abstract

The discretionary access controls (DAC) employed by
traditional operating systems only provide system ad-
ministrators and users with a loose ability to spec-
ify the security policies of the system. In contrast,
mandatory access controls (MAC) provide a stronger,
finer-grained mechanism for specifying and enforcing
system security policies. A related security concept
called the principle of least authority (POLA) states
that subjects should only have access to the spe-
cific resources that they absolutely require to function
properly at any given time.

Although a number of existing projects (Plash
and Polaris) seek to provide POLA implementations,
these are not enforced using strong MAC. Conversely,
existing MAC implementations (SELinux and Ap-
pArmor) do not provide rigorous POLA because they
do not provide an effective mechanism for dynamic
policy modification based on user preferences.

This paper presents our solution to fill this void,
called the Pluggable User-space Linux Security En-
vironment (PULSE), which implements a MAC en-
forced, dynamic, user-level POLA implementation.
Through the use of user-space plug-ins to specify se-
curity policy, PULSE provides a high degree of dy-
namism, flexibility and usability which is not avail-
able in existing security architectures.

Keywords: POLA, MAC, RBAC, LSM, Linux.

1 Introduction

The past two decades have seen globally networked
computing systems become ubiquitous. These sys-
tems run a variety of failure prone software from a
wide range of sources, many of which cannot be fully
trusted. Unfortunately, these two conditions violate a
primary assumption about the access control models
of traditional operating systems (including Windows,
Linux and UNIX), namely that users only need to be
protected from one another and not the software that
they use (Loscocco et al. 1998). Despite this, main-
stream operating systems mostly employ a technique
called discretionary access control (DAC) to imple-
ment basic system security (Nat 1987). In this model
it is up to the ‘owner’ of a file to specify the security
policy for that file, such as who can access or modify
it. In general this often grants users and applications
more authority than they really require, which when
coupled with malicious or failure prone software can
lead to security and reliability problems.

Copyright c©2008, Commonwealth of Australia. This paper
appeared at the Australasian Information Security Conference
(AISC2008), Wollongong, Australia, January 2008. Confer-
ences in Research and Practice in Information Technology (CR-
PIT), Vol. 81. Ljiljana Brankovic and Mirka Miller, Eds.

Mandatory Access Control (MAC) systems seek
to further limit the authority granted to subjects
within a system, and so provide a higher level of se-
curity. MAC requires all security policy to be ex-
plicitly specified and non-bypassable, enforcing any
restrictions upon all users of the system (including
the super-user) (Virijevich 2005). A related concept
is the Principle Of Least Authority (POLA) (Miller
& Shapiro 2003), which specifies that subjects (users
and/or processes) should only have access to the spe-
cific resources that they absolutely require to function
properly at any given time. A strong security imple-
mentation should enforce POLA via MAC, to ensure
that it cannot be bypassed.

In Sections 2 and 3 we describe some existing
POLA and MAC implementations. As we explain in
Section 4, none of these systems fully integrate both
concepts to provide a true, MAC-enforced POLA
computing environment. We present our solution to
this problem in Section 5 and analyse its performance
and security properties in Section 6. We conclude
with a discussion of several issues we have identified
that seem to hamper the development of MAC and
POLA systems and present some potential directions
for future research.

2 Experimental POLA Implementations

A small number of research projects are exploring
ways of adding POLA enforcement to existing com-
puting platforms. These generally rely on the con-
cept of capabilities. Capabilities are tokens that com-
bine, in one indivisible entity, the designation of a
resource with the authority required to perform ac-
tions on it (Dennis & Horn 1966).

2.1 Plash

Plash (Seaborn 2007) is a set of tools for implement-
ing practical least authority within Linux operating
systems. Plash can enforce POLA over file opera-
tions for an existing application by running it in a
chroot() ‘jail’, which prevents it from directly ac-
cessing the normal file-system. Instead, applications
are linked to modified versions of libc and some other
common system libraries so that any file open() op-
erations are mediated by a trusted server that, based
on policy, may perform the operation on the applica-
tion’s behalf. Any resultant file-descriptors are passed
(like capabilities) back to the calling program, thus
enabling it to continue execution without any further
special intervention.

2.2 Polaris

Polaris (Stiegler et al. 2004) is package for Windows
XP which allows users to configure applications to
be launched with minimal authority. It provides the



ability to statically allocate authority, allowing appli-
cations access to their required system libraries, as
well as dynamic authority allocation when the user
chooses to open files. Applications are launched using
the Windows RunAs command in unique restricted
accounts, which are configured to only have the re-
quired least authority. This allows Polaris to utilise
the existing security mechanisms provided by the op-
erating system to enforce containment of the applica-
tion.

3 Existing MAC Implementations

There are a number of existing MAC implementations
for Linux, the majority of which are based upon the
Linux Security Modules (LSM) framework (Bovet &
Cesati 2006).

3.1 Linux Security Modules (LSM) Frame-
work

The Linux Security Modules (LSM) interface was de-
veloped to provide a general and flexible security
framework within the Linux kernel. It allows a num-
ber of different access control models to be imple-
mented as loadable kernel modules (Wright et al.
2002). These access control modules interface with
the LSM infrastructure to mediate access to objects
within the kernel by using ‘hooks’ which are executed
after existing DAC checks but before the kernel would
normally grant access to the requested object.

Access control can be exercised over a number of
different object types including inodes, files and
sockets, and allow modules to control certain actions
such as the granting of POSIX capabilities (Lin 2005)
to processes. One example is the socket create()
hook, which is passed the parameters int family,
int type, int protocol, int kern. The first three
parameters correspond directly to the values passed
to the socket() (Lin 2004a) system call. The fourth
parameter kern is used to indicate whether the socket
is a kernel socket or not, and finally the return value
is used to allow or deny access.

The LSM interface is utilised by a number of
existing MAC implementations for Linux including
SELinux (Smalley et al. 2006) and AppArmor (open-
SUSE 2006). A number of other projects also use the
LSM interface for security related purposes including
TuxGuardian (da Silva 2006), DigSig (Apvrille et al.
2004) and Dazuko (Ogness 2006).

3.2 SELinux

Initially conceived by the NSA, SELinux (Loscocco
& Smalley 2001) is an implementation of the
Flask (Spencer et al. 2000) security architecture for
Linux. It implements MAC by assigning labels to
objects (files, sockets, processes, etc) and controls
the interactions between objects based on a secu-
rity policy, which in turn revolves around the con-
cepts of type enforcement and role-based access con-
trol (Runge 2004). Type enforcement labels processes
as belonging to a particular domain. Each domain
restricts processes by constraining them so they can
only access objects within their own or other specif-
ically listed domains. Role-based access control re-
stricts which domains a user may access, although
users can have multiple roles.

The combination of object types and user roles
provides an expressive and comprehensive model for
specifying security policies. So far, however, the com-
plexity involved in effectively managing the exten-
sively detailed security policies that result from this

approach has limited SELinux’s wide-spread adop-
tion (Virijevich 2005).

3.3 AppArmor

Novell’s AppArmor (Nov 2005) provides an easy to
use MAC system for restricting the authority of ap-
plications that connect to the network, which min-
imises the damage that can be done in the event that
such an application is compromised (Leitner 2006).
In contrast to SELinux’s very complex policies, Ap-
pArmor policies are stored in short text files that can
be easily understood and modified.

A policy file lists the path to the executable of
the application to protect, along with the actions
the program is allowed to perform. Any actions not
listed in the policy file are denied. The types of ac-
tions that the policy can control include file accesses
and the granting of POSIX capabilities. For file ac-
cesses, the full path to the files that the application
is allowed to access are listed (although there has
been some criticism of this because path names do
not necessarily correspond exactly with the underly-
ing file-system (Brindle 2006)) along with the type of
access allowed (read, write and/or execute). Shell-
style pattern matching can also be used, for exam-
ple /home/*/.firefox/* specifies access to all files
within the .firefox directory of all users home di-
rectories.

In addition to this very familiar means of specify-
ing access AppArmor also provides a number of tools
to aid in the development of policies that allow the
system to ‘learn’ the normal behaviour of an applica-
tion. A policy file can then be generated that lists the
authority needed to allow the application to function
normally.

3.4 TuxGuardian

TuxGuardian is an application based firewall that al-
lows the system administrator to control which ap-
plications can access the network (da Silva 2006). It
utilises the LSM infrastructure to control an applica-
tion’s ability to create and listen on network sockets.
Policy is contained within a configuration file that
lists the path to an executable binary along with its
MD5 hash and the permissions granted to the appli-
cation (i.e. whether it can create sockets, and act as
a server).

TuxGuardian comprises three components: an
LSM kernel module to intercept network access
events, a root daemon that provides the policy to
the LSM module for each access event and a graphi-
cal front-end. The graphical front-end is designed to
make the system more usable by alerting the admin-
istrator when an application is trying to perform a
network operation for which no policy has been de-
fined. The administrator can then allow or deny the
access and also specify whether the decision should
be stored in the policy file for future reference.

4 Limitations of Existing POLA/MAC Im-
plementations

Both Plash and Polaris implement POLA by using
capability-like semantics to designate authority. Un-
fortunately, however, the overall security benefits de-
rived from both of these systems are reduced because
each requires the application to be launched within
the specific restricted environment to allow POLA
enforcement. If the user instead chooses to lauch the
application directly these systems will be bypassed,
since their POLA mechanisms are not built on top
of a strong, kernel enforced MAC layer. SELinux



and AppArmor on the other hand do use a strong
MAC layer for authority checks. In their cases, how-
ever, although they both provide POLA to some de-
gree, neither provides an effective means to modulate
when authority is given. Both SELinux and AppAr-
mor allocate too much authority “just-in-case” it is
needed, when it would be better to allocate it “just-
in-time” (Miller et al. 2005). The root cause of this
deficiency is that neither system provides users (as
opposed to specialised security administrators) with
a simple and direct means to control the authority
that is granted to their applications.

TuxGuardian does provide a degree of interactiv-
ity by allowing new policy to be created as needed,
but it does not provide an easy means of revoking
that policy if it becomes necessary to do so in the
future. Furthermore, because TuxGuardian’s interac-
tive front-end runs as the root user it does not allow
policy to be specified on a per-user basis. SELinux
and AppArmor also suffer from this problem because
they do not differentiate which user actually executes
a specific program. In general this results in secu-
rity policies that allocate too much authority so that
programs can operate under all conceivable circum-
stances. Consider the Firefox example for AppArmor
from Section 3.3, for example, which specifies access
to the .firefox directory in all users home direc-
tories instead of only for any particular user who is
running the application.

The design of TuxGuardian also includes a funda-
mental flaw since the graphical front-end is designed
to be run as the root user, but can in fact be run as
a non-privileged user. Since the daemon does not au-
thenticate the front-end, there is no means to prevent
non-privileged users from controlling the security pol-
icy for the entire system. Although our system (which
we present in Section 5) is similar to TuxGuardian in
a number of ways, the design is such that we avoid
many of the fore-mentioned limitations.

5 Pluggable User-space Linux Security Envi-
ronment

The Pluggable User-space Linux Security Environ-
ment (PULSE) provides the basis for a modular,
dynamic, user-centric security framework for Linux
operating systems. Although PULSE enforces poli-
cies from kernel-space using the LSM framework for
MAC, authorisation decisions can be mediated by
user-level components. As a result, PULSE can be
user-interactive, and allow both the system adminis-
trator and users to dynamically control the authority
that is granted to their applications. It consists of
three main components:

pulsek is a loadable kernel module that hooks into
the existing LSM infrastructure to intercept ac-
cess requests.

pulsed is a system wide daemon running in user-
space that acts as an intermediary between pulsek
and the user-space plug-ins.

plug-ins running as distinct user-space processes im-
plement the desired access control model. They
can be asked by pulsed (on behalf of pulsek) to
authorise or deny access control actions on behalf
of the system.

An illustration of the system is shown in Figure 1,
which presents the case where a user-level process has
tried to create a socket via the socket() system call.
The standard error and discretionary access control
checks are performed, and assuming no error occurs,
the LSM hook is invoked. Since pulsek is hooked into

Figure 1: An overview of the PULSE architecture.

the LSM framework and provides a function to per-
form the access control check, the pulsek module will
then query the user-space daemon pulsed, which in
turn will query one of the plug-ins. The result is prop-
agated back to pulsek and will be used as the return
value for LSM.

5.1 pulsek Kernel Module

The pulsek kernel module facilitates this entire pro-
cess of delegating access control decisions to user-
space by performing three main functions:

Rule Based Access Control by hooking into the
LSM infrastructure to intercept access control
decisions.

Rule Management as plug-ins request the addi-
tion, modification or removal of rules.

Rule Evaluation using the list of rules to evaluate
access control requests.

5.1.1 Rule Based Access Control

PULSE uses the concept of rules to specify the access
control policy for a system. Rules are created by the
user-space plug-ins and used by pulsek to determine
the access control action to take for a given event.
This rule based approach provides a simple yet effec-
tive framework for expressing a dynamic, user-centric
security policy. If desired, the user-space plug-ins can
interact directly with the user to dynamically create
or modify rules. This allows access control decisions
to be made in real-time based on prevailing require-
ments and hence provides a very strict POLA frame-
work (Miller & Shapiro 2003).

In the current implementation of PULSE, ac-
cess control rules are matched against access control
events based on processes and users. Access control
rules can specify four types of information:

Executable path name of the process being exe-
cuted.

Process ID of the process being executed.

User ID of the owner of the process.

Type of event to match, corresponding to each
type of LSM hook.

Since each LSM hook takes a number of param-
eters, ‘type of event’ rules can specify any or all of
these parameters. Any criteria can also be specified



as ‘wild’ such that they will match any value. Rules
are then dynamically evaluated for each intercepted
access control action, which provides an expressive
means of reacting to access control events. The life-
time of a rule within the kernel begins when it is re-
ceived by pulsek from the plug-ins (via pulsed) and
ends when it is deleted due to either a request from
the plug-in, termination of the process which it spec-
ifies via process ID, or the removal of pulsek. Rules
also specify one of three possible actions to take when
they are matched:

Ask for the decision to be delegated to user-space.

Allow the access immediately.

Deny the access immediately.

Plug-ins can use the ask action to request that
they are consulted about whether an event should be
allowed or denied, which will be evaluated in real-
time. Currently, if no rule matches a given event
then the access will be implicitly allowed. Techni-
cally speaking this introduces a loophole in strict
MAC-POLA enforcement, but it does allow extant
programs to continue operating as normal until more
complete policy specifications can be generated. De-
ployed systems would choose to operate either in this
lower security compatibility mode or, where reason-
ably complete policy specifications are available, in a
very secure ‘default deny’ mode for the price of slight
performance and usability overheads.

Allow rules in compatibility mode and conversely
deny rules in high-security mode may initially seem
redundant, but this is not actually the case. Coupled
with wild-card matching they may be used to facili-
tate low-overhead, fine-grained control policies using
overrides. In compatibility mode, for example, a gen-
eral ask rule could exist to match a particular access
event for any processes executing as a particular user.
The results from each ask event can then be stored
as specific rules for each application as it matches the
general rule. This ensures future events for those ap-
plications are matched by their specific rules, while all
other applications are matched by the more general
rule.

For our initial version of PULSE, we decided that
a single LSM hook would be sufficient to illustrate the
potential functionality of the system. We chose the
socket create hook, which is called when a process
tries to create a socket of any kind (Torvalds 2007).
This provides the basis for implementing network ac-
cess control and thus a simple dynamic firewall using
the PULSE infrastructure. It also allows for a basic
re-creation of the functionality of TuxGuardian but
on a per-user basis and with improved performance
because rules are cached in the kernel.

5.1.2 Rule Management

Although rule additions, modifications or deletions
originate from user-space plug-ins, for performance
reasons the rules themselves are always stored within
the pulsek kernel module. This allows initial rule pro-
cessing to be carried out quickly within the kernel,
instead of in user-space. In addition, any allow or
deny actions associated with a rule can be cached in
the kernel, although ask rules must always be dele-
gated to user-space.

The rules are stored within a multi-level index.
The first level data structure is a hash-table keyed
by the ‘owner’ of the rule, based on the user ID of
the plug-in that created the rule. At the next level,
secondary structures are used to store the rules for
that user, including:

Process ID hash-table for indexing rules that apply
to a specific process ID.

Executable Path Name ordered tree for rules that
apply to specific executables.

Remaining Rules ordered trees that apply for a
given user ID or LSM event type.

These data structures provide computationally ef-
ficient mechanisms for rule evaluation, which is dis-
cussed in the following section. In particular, finding
the rules that match a specific plug-in user ID and
target process ID is just O(1), while finding the rules
that match an executable path name or other remain-
ing rule is only O(log n).

5.1.3 Rule Evaluation

Rule evaluation takes place whenever a PULSE LSM
hook is invoked. pulsek searches through the list of
available rules to find those that match the current
event and hence what action should be taken. Since
a number of rules may match, a specific order of
precedence is used to ensure consistent and secure
behaviour. This is shown in Figure 2 and described

Figure 2: Flow-chart of rule evaluation within pulsek

further below.
Rules created by the system administrator (i.e.

where the plug-in user ID is ‘0’) have precedence over
rules created by regular users. This allows the system
administrator to set mandatory policies that may not
be overridden. Users may only further restrict any
authority that has already been given to them.



Precedence relations also exist for the various cri-
teria specified by rules. Consider, for example, the
case where two rules match a given access control
event, the first specifying only the executable path
name and a second specifying only the process ID.
The rule matching on process ID has greater prece-
dence because it is more specific: it applies to a unique
process, whereas the executable path can match a
number of processes. In the case where multiple plug-
ins specify identical rules but with different actions,
the result of the individual rule evaluations are com-
bined via the boolean AND operation to determine
the final action (where ‘0’ represents deny and ‘1’
represents allow). Consequently any plug-ins’ deny
action is treated emphatically, overriding any other
permissive rules and thus assuring fail-secure seman-
tics.

For each access control check that results in dele-
gation to user-space (as the result of an ask rule), the
calling process must wait for the delegate’s response
before continuing execution. To ensure that the pro-
cess requesting the access does not impact on the ex-
ecution of other processes in the system, it is put to
sleep until the policy decision has been made. It is
then woken up using the Linux kernel’s completion
mechanism, a semaphore construct designed specifi-
cally for this sort of process synchronisation (Corbet
et al. 2005).

5.2 pulsed User-space Daemon

The pulsed daemon provides the link between the ac-
cess control infrastructure within the kernel and the
access control policy provided by the plug-ins. Com-
munication between pulsek and pulsed is carried over a
Netlink socket (Lin 1999), which provides a dynamic,
bidirectional communications channel. On the other
side of the equation, pulsed listens for connections
from plug-ins over a named UNIX domain socket.
pulsed then multiplexes / demultiplexs any commu-
nication between the plug-ins and the kernel. It can
also limit the authority of plug-ins because it has the
opportunity to process any data before it is sent to
the kernel.

To protect the integrity of the rules database,
pulsed requires that plug-ins provide their credentials
(process and user ID) whenenver they initiate a con-
nection. Secure credential exchange is guaranteed by
the kernel, which ensures that credentials passed over
a UNIX domain socket are accurate (Lin 2004b). This
entire process ensures that any future rules that the
plug-in creates specify the correct user ID; any rule
that does not is dropped. Plug-ins running as the
super-user (i.e. plug-in user ID is ‘0’), however, are
exempt from this check and are allowed to create rules
that apply to all users. This allows the system admin-
istrator to create rules that affect all users’ processes,
but limits users to creating rules that affect only their
own processes.

5.3 User-space Plug-ins

The plug-ins provide the most novel elements of
PULSE: a framework for completely dynamic and
user-centric authority delegation. Since the plug-
ins run as separate processes they can implement
any security model of their choice, including user-
interaction.

To illustrate user intervention we created a sam-
ple plug-in that uses the libnotify package (Hammond
2006), which provides a simple means of user interac-
tion through notification messages that appear on the
user’s desktop. An example of a notification created
by the sample plug-in is shown in Figure 3.

Figure 3: Notification message created by a sample
plug-in.

Upon initialisation the plug-in will register itself
with pulsed, providing its process, user and group ID.
It creates an example rule that will ask for access con-
trol authorisation when the Firefox application cre-
ates an AF INET (IPv4) socket. The plug-in will
then notify the user of any ask request it receives in
response to this rule and present them with a number
of options to either allow or deny the access, and to
specify whether this decision should be remembered
in the future. Hence the user is able to prevent the
application from using the network by denying it the
ability to create sockets.

We realise, however, that forcing users to make
such decisions is frustrating and interrupts their work-
flow. As a result it may cause even knowledge-
able users to be dismissive of such security prompts
and unhelpfuly teach them that security issues ob-
struct their normal tasks and should be ignored (Yee
2004). While PULSE supports such fine-grained user-
selected security decisions, this is not the only possi-
ble source for security policy. A better alternative
for a security system that employs user-interaction
may be to try and infer authority from the user’s be-
haviour. If a user launches their web-browsing appli-
cation for example, it is clear that they wish to access
the Internet and so the browser should be implicitly
granted this authority. Such a rule could easily be
specified by an appropriate plug-in. In a more sys-
tematic approach, rule creation could be controlled
via the shell (either command-line or GUI) that was
used to launch the browser, which would create rules
dynamically in response to the user’s actions. For ex-
ample, in the GNOME Desktop Enviroment, the user
launches applications from a graphical menu. The
list of applications, including their name, description,
icon and executable path, are specified in Desktop
Entry (Brown et al. n.d.) files. As an extension,
default policies for applications could also be listed in
these files and the menu application could plug-in to
PULSE. The menu itself would now dynamically cre-
ate rules to grant the specified authority only when
the application was launched, and only for that spe-
cific instance of the application. Not only would this
provide a true POLA implementation, but it would
also have a high degree of usability.

User interaction plug-ins are not the only security
policies that can be implemented in PULSE. Since
plug-ins run in user-space, they provide an extremely
flexible security policy framework. Another source
of security policy that could be used was foreshad-
owed in Figure 1, which depicted a trusted hard-
ware device with a complementary PULSE plug-in.
Some real-world examples of such devices are the Aus-
tralian Government Defence Science Technology Or-
ganisation’s Codestick (Anderson 2004, Grove et al.
2007), which is a personal high assurance credential
exchange device, or smartcard systems. In the case
of the Codestick, for example, an appropriate PULSE
plug-in could allow security policy stored on the de-
vice to oversee access control decisions on the user’s
PC. In a typical scenario a user would authenticate
themselves to the Codestick using biometrics, via a
fingerprint scanner, which would then authenticate



the user to their machine and log them in. On top
of this, PULSE would then query the security poli-
cies stored on the Codestick whenever the user at-
tempted to access certain restricted resources. One
example, perhaps in a bank, may be that a certain
power user’s Codestick would allow them to access
the Internet, while another user may only be autho-
rised to access the corporate intranet. In other cases,
for example where a government department such as
Defence has hired an on-site contractor, this could be
reversed so that they have access to the Internet but
not the internal corporate network. Other examples
could be policies that allowed particular users access
to nominated file servers, directories or printers, or to
only obtain access at certain times. Because of the
way Codesticks communicate with each other, these
security policies could be updated in person by a se-
curity administrator using peer to peer transfers, or
securely distributed across a network using a related
security device from the same product family, called
the MiniSec (Grove et al. 2007). Less high assurance
but less expensive versions of this framework could
use NIS+ or LDAP to distribute PULSE security poli-
cies across a local area network. Another research-
oriented security plug-in that we have in mind to de-
velop is an artificial intelligence based plug-in that
can learn and enforce security policies, for example
based on actions selected by a user through the user
interaction mechanism.

6 Discussion

PULSE allows rule-based security policies to be cre-
ated or removed at any time, which allows plug-ins
to dynamically control the authority of other pro-
cesses. It is enforced using LSM, a strong, kernel
implemented MAC layer. These features provide the
basis for a rigorously enforced, true POLA imple-
mentation, where each user can moderate the au-
thority of their own processes in real-time. Further-
more, as a result of the design of LSM, the author-
ity specified by any PULSE plug-ins is a strict sub-
set of the authority granted by the standard UNIX
security model (Wright et al. 2002). A plug-in can
only deny an access that would otherwise have been
granted, hence the maximum authority that a plug-in
can ‘grant’ is that which is normally provided by the
standard discretionary access control model.

PULSE ensures its own internal security and in-
tegrity by protecting the communication links be-
tween its components, although a small amount of
work is still required to implement authentication be-
tween pulsed to pulsek and to mitigate against the
potential denial of service if their Netlink connection
fails. While not implemented in a systematic man-
ner, controlling which applications are able to specify
the security policy (and hence act as PULSE plug-
ins), could easily be achieved by utilising the exist-
ing PULSE infrastructure to allow or deny applica-
tions from connecting to the UNIX socket of pulsed.
PULSE also ensures that the authority given to the
plug-ins is limited, in that they can only create rules
that affect other processes run by the same user. This
is a marked improvement over TuxGuardian, where a
single front-end is used to provide access control deci-
sions for all applications, even if the front-end is run
by an unprivileged user.

Another advantage of PULSE over TuxGuardian
is its improved performance because access control
rules are cached in the kernel, although the extent of
the benefit will vary widely depending on the rules
created by the plug-ins. If the plug-ins create many
ask rules then there will be a large number of de-
ferrals to user-space with a considerable performance

cost. The impact that PULSE has upon the normal
operation of the system can be minimised, however,
by preferring allow and deny rule types, which cache
results within the kernel.

It is important to remember, however, that the se-
curity provided by the PULSE architecture is only as
good as the access controls implemented by the plug-
ins. Even though plug-ins are limited to dictating
policy for processes run by the same user, they must
still correctly enumerate that user’s security policy.
For example, if a plug-in requires user interaction to
authorise or deny an access control decision it is im-
perative that the user is knowledgeable enough to en-
sure they make the correct decision. Whether this is
reasonable is debatable. Even if a plug-in does not
require user-interaction, however, it must still ensure
that the security policy it provides is correct and se-
cure. Non-interactive security policy plug-ins should
therefore be stringently programmed and verified in
accordance to appropriate standards and methodolo-
gies, such as the Common Criteria security evalua-
tion and validation scheme (Common Criteria Portal
2007).

Even though it is a long way off, PULSE clearly
suggests that it may be possible to implement a com-
plete, MAC enforced, user-level POLA system. Dur-
ing our research, however, is has become apparent
that trying to claw back any excess authority that
has already been granted, as must be done to retrofit
POLA to any traditional discretionary access control
based software, results in staggeringly complex secu-
rity policies. This is clearly apparent in SELinux, the
most mature of the existing MAC implementations.
We are aware that a complete POLA implementation
using PULSE would suffer from a similar explosion
in the size of its security policy, perhaps rendering
it infeasible. We fervently believe, therefore, in the
need for access control frameworks that directly em-
body the principles of MAC and POLA. A strong con-
tender for this must surely be capability-based soft-
ware, where the operations a subject can perform are
defined by those those that they are explicitly autho-
rised to carry out, rather than those they are explic-
itly disallowed from taking.

7 Conclusion and Future Work

In Section 1 we outlined the need for MAC enforced
POLA security in modern computing environments.
Sections 2 and 3 presented a number of existing
POLA and MAC implementations. Each of these
have shortcomings, which we covered in Section 4. We
presented our response to this problem called PULSE
in Section 5, which provides a strong basis upon which
to build enforceable, dynamic, user-centric and there-
fore POLA-based security policies. Finally, Section 6
analysed the performance and security properties of
PULSE, discussed several issues we have identified
that seem to hamper the development of MAC and
POLA systems, and presented some potential direc-
tions for future research.

The flexibility of the PULSE architecture allows
for a number of future developments. Further work
on adding support for other LSM hooks and integrat-
ing these into the existing plug-in would provide a
marked improvement in the current functionality of
PULSE, and could be done with minimal effort due
to the flexibility of the system. Development of addi-
tional plug-ins to integrate PULSE with existing user
security devices is also planned.



References

Anderson, M. (2004), ‘Credential communication de-
vice’. WIPO International Publication Number
WO 2004/109973 A1.

Apvrille, A., Gordon, D., Hallyn, S., Pourzandi, M.
& Roy, V. (2004), DigSig: Run-time authentication
of binaries at kernel level, in ‘18th Large Installa-
tion System Administration Conference’, USENIX,
pp. 59–66.

Bovet, D. P. & Cesati, M. (2006), Understanding the
Linux Kernel: From I/O Ports to Process Manage-
ment, O’Rielly.

Brindle, J. (2006), ‘Security anti-pattern:
Path based access control’. http:
//securityblog.org/brindle/2006/04/
19/security-anti-pattern-path-b%
ased-access-control/.

Brown, P., Blandford, J., Taylor, O., Untz, V.
& Bastian, W. (n.d.), ‘Desktop entry specifi-
cation’. http://standards.freedesktop.org/
desktop-entry/latest.

Common Criteria Portal (2007). http://www.
commoncriteriaportal.org/.

Corbet, J., Rubini, A. & Kroah-Hartman, G. (2005),
Linux Device Drivers, 3rd edn, O’Rielly and Asso-
ciates.

da Silva, B. C. (2006), ‘TuxGuardian - documen-
tation’. http://tuxguardian.sourceforge.net/
documentation.php.

Dennis, J. B. & Horn, E. C. V. (1966), ‘Program-
ming semantics for multiprogrammed computa-
tions’, Communications of the ACM 9(3), 143–155.

Grove, D., Murray, T., Owen, C., North, C., Jones, J.,
Beaumont, M. & Hopkins, B. (2007), An overview
of the Annex system, in ‘submitted to the Annual
Computer Security Applications Conference’.

Hammond, C. (2006), ‘Galago project home-
page’. http://www.galago-project.org/news/
index.php.

Leitner, A. (2006), ‘Counterpoint: AppArmor vs
SELinux’, Linux Magazine (69), 40–42.

Lin (1999), Netlink - Communication between kernel
and user - Manual Page.

Lin (2004a), socket - Linux socket interface - Manual
Page.

Lin (2004b), unix, PF UNIX, AF UNIX,
PF LOCAL, AF LOCAL - Sockets for local
inter-process communication - Manual Page.

Lin (2005), Linux Capabilities - Manual Page
(2.6.14).

Loscocco, P. & Smalley, S. (2001), Integrating flexible
support for security policies into the Linux operat-
ing system, in ‘Proceedings of the FREENIX Track:
USENIX Annual Technical Conference’.

Loscocco, P., Smalley, S., Muckelbauer, P., Taylor,
R., Turner, S. & Farrell, J. (1998), The inevitabil-
ity of failure: The flawed assumption of security
in modern computing environments, in ‘21st Na-
tional Information Systems Security Conference’,
National Security Agency.

Miller, M. S. & Shapiro, J. (2003), Paradigm re-
gained: Abstraction mechanisms for access control,
in ‘Advances in Computing Science, ASIAN 2003
Programming Languages and Distributed Compu-
tation’, Vol. 2896, pp. 224–242.

Miller, M. S., Tulloh, B. & Shapiro, J. S. (2005), The
structure of authority: Why security is not a sep-
arable concern, in P. V. Roy, ed., ‘Multiparadigm
Programming in Mozart/Oz’, pp. 2–20.

Nat (1987), A Guide To Understanding Discretionary
Access Control In Trusted Systems.

Nov (2005), Protecting Systems with Novell AppAr-
mor.

Ogness, J. (2006), ‘About Dazuko’. http://www.
dazuko.de/about.shtml.

openSUSE (2006), ‘AppArmor detail’. http://en.
opensuse.org/AppArmor_Detail.

Runge, C. (2004), SELinux: A new approach to se-
cure systems, Technical report, Red Hat, Inc.

Seaborn, M. (2007), ‘Plash: tools for least privelege’.
http://plash.beasts.org/.

Smalley, S., Vance, C. & Salamon, W. (2006), Im-
plementing SELinux as a Linux Security Module,
Technical report, NAI Labs.

Spencer, R., Smalley, S., Loscocco, P., Hibler, M.,
Andersen, D. & Lepreau, J. (2000), The Flask se-
curity architecture: System support for diverse se-
curity policies, in ‘Proceedings of the 8th USENIX
Security Symposium’, pp. 123–139.

Stiegler, M., Karp, A. H., Yee, K.-P. & Miller, M.
(2004), Polaris: Virus safe computing for Windows
XP, External HPL-2004-221, HP Labs.

Torvalds, L. (2007), ‘Linux kernel source code’. http:
//www.kernel.org.

Virijevich, P. (2005), ‘Securing Linux with manda-
tory access controls’. http://security.linux.
com/article.pl?sid=05/02/11/2017218.

Wright, C., Cowan, C., Morris, J., Smalley, S. &
Kroah-Hartman, G. (2002), Linux Security Mod-
ules: General security support for the Linux ker-
nel, in ‘Proceedings of the 11th USENIX Security
Symposium’.

Yee, K.-P. (2004), ‘Aligning security and usability’,
Security and Privacy Magazine, IEEE 2(5), 48–55.


