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Abstract 
We show that the hierarchical cubic network, an alternative to 
the hypercube, is hamiltonian-connected using Gray codes. A 
network is hamiltonian-connected if it contains a hamiltonian 
path between every two distinct nodes. In other words, a hamil-
tonian-connected network can embed a longest linear array be-
tween every two distinct nodes with dilation, congestion, load, 
and expansion equal to one. We also show that the hierarchical 
cubic network contains cycles of all possible lengths but three 
and five. Since the hypercube contains cycles only of even 
lengths, it is concluded that the hierarchical cubic network is 
superior to the hypercube in hamiltonicity. Our results can be 
applied to the hierarchical folded-hypercube network as well.. 

Keywords: Embedding, Gray code, hamiltonian-connected, hi-
erarchical cubic network, hierarchical folded-hypercube net-
work, hypercube, pancyclic. 

1 Introduction 
The hierarchical cubic network (HCN for short), which 
was proposed by Ghose and Desai (1995) as an alterna-
tive to the hypercube, consists of 2n basic components, 
named clusters. Each cluster is an n-dimensional hyper-
cube (n-cube for short). If each cluster is viewed as a sin-
gle node, then the HCN appears as a 2n-node complete 
graph. The HCN can emulate a comparable hypercube 
(i.e. a hypercube of the same number of nodes) in con-
stant time, but with only about half as many links per 
node. The average internode distances in the HCN under 
random and localized traffic patterns are the same as a 
comparable hypercube. When message generation rates 
are moderate, the average message transit delays in the 
HCN are slightly better than a comparable hypercube. 
This is a consequence of the fact that the HCN has a 
smaller maximum routing distance than a comparable 
hypercube. 

Chang and Chen (1996) and Yun and Park (1995, 1998) 
have derived a shortest-path routing algorithm for the 
HCN. Chang and Chen (1996) have demonstrated a 
broadcasting algorithm. Ghose and Desai (1995) have 
developed some parallel algorithms. Yun and Park (1995, 
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1998) have shown that the diameter is about two-thirds 
the diameter of a comparable hypercube. Chiang and 
Chen (1996) and Yun and Park (1995) have constructed 
hamiltonian cycles. Fu and Chen (2001) have derived that 
the wide-diameter and fault-diameter are also about 
two-thirds those of a comparable hypercube. 

Suppose that W is an interconnection network (network 
for short). The pancycle problem on W asks, for every in-
teger 3≤l≤|W|, whether or not W contains a cycle of length 
l, where |W| is the number of nodes contained in W. The 
pancycle problem was solved on a lot of networks, e.g., 
the twisted cube (Chang, Wang, and Hsu 1999), the but-
terfly graph (Hwang and chen 2000), the hyper Petersen 
network (Das, Öhring, and Bganerjee 1995), the folded 
Petersen cube network (Öhring and Das 1996), the ar-
rangement graph (Day and Tripathi 1993), the hypercom-
plete network (Chen, Fu, and Fang 2000), and the alter-
nating group graph (Jwo, Lakshmivarahan, and Dhall 
1993). If W contains cycles of lengths ranging from three 
to |W|, then W is called pancyclic. The arrangement graph 
(Day and Tripathi 1993), the hypercomplete network 
(Chen, Fu, and Fang 2000), the supercube (Auletta, Re-
scigno, and Scarano 1995), and the alternating group 
graph (Jwo, Lakshmivarahan, and Dhall 1993) were 
shown pancyclic. Throughout this paper, network and 
graph are used interchangeably. 

A path in W is called a hamiltonian path if it contains 
every node of W exactly once. W is called hamilto-
nian-connected if there is a hamiltonian path between 
every two distinct nodes of W. The hypercomplete net-
work (Chen, Fu, and Fang 2000), the alternating group 
graph (Jwo, Lakshmivarahan, and Dhall 1993), and the 
arrangement graph (Lo and Chen 2001) were shown 
hamiltonian-connected. Apparently, a bipartite graph is 
not hamiltonian-connected. Instead, Wong (1995) intro-
duced the concept of hamiltonian-laceability for bipartite 
graphs.  

A bipartite graph G=(V1, V2, E) with |V1|=|V2| is called 
hamiltonian-laceable if there is a hamiltonian path be-
tween every node of V1 and every node of V2, where V1 
and V2 are the two partite sets of G. Further, G is strongly 
hamiltonian-laceable if it has the additional property that 
there is a path of length |V1|+|V2|−2 between every two 
distinct nodes of the same partite set (Hsieh, Chen, and 
Ho 2000). Wong (1995) and Hsieh, Chen, and Ho (2000) 
have shown that the butterfly graph and the star graph are 
hamiltonian-laceable and strongly hamiltonian-laceable, 



respectively. Following conventional usage, every path 
(or cycle) in this paper contains no repeated node. 

We first solve the pancycle problem on the HCN. The 
HCN contains cycles of all possible lengths but three and 
five. Then we show that the HCN is hamiltonian-    
connected. According to our results, the HCN can embed 
rings of all possible lengths but three and five, and a 
longest linear array between every two distinct nodes, all 
with dilation, congestion, load, and expansion equal to 
one. Since the hypercube is bipartite, every cycle it con-
tains has even length. Hence, it can be concluded that the 
HCN is superior to the hypercube in hamiltonicity. Our 
results can be applied to the hierarchical folded-      
hypercube network (Duh, Chen, and Fang 1995) as well. 
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In the next section, the HCN is formally defined in 
graph-theoretic terms. Besides, Gray codes are reviewed 
and some fundamental properties are derived. They will 
be used in subsequent cycle construction and path con-
struction. 

2 Preliminaries 
We denote the HCN containing 2n clusters, where each 
cluster is an n-cube, HCN(n). HCN(n) can be defined: 

Definition 1. The node set of the HCN(n) is {(X, Y) | X 
and Y are two binary sequences of length n}. Each node 
(X, Y) is adjacent to: 

(1) (X, Y (k)) for all 1≤k≤n, where Y (k) is an adjacent node 
of Y in an n-cube which differs from Y at the kth bit 
position (from the left),  

(2) (Y, X) if X≠Y, and 

(3) ( X , Y ) if X=Y, where X  and Y  are the bitwise 
complements of X and Y, respectively. 

The cluster where a node (X, Y) resides is denoted by X, 
and its location in the cluster is denoted by Y. Links (1) 
are contained within clusters, whereas links (2) and (3) 
connect two clusters. Links (2) and (3) are referred to as 
nondiameter links and diameter links, respectively. The 
HCN(n) is regular of degree n+1. Figure 1 shows the 
HCN(3). Unless specified otherwise, we assume n≥3 
throughout this paper. 

Conveniently, an n-cube can be represented with = 
*

876n

**...*
n, where * ∈ {0, 1}. Hence, *

n−11 and *
n−10, which con-

tain the nodes with rightmost bits 1 and 0, respectively, 
represent two disjoint (n−1)-cubes. We use dH(X, Y) to 
denote the Hamming distance between X and Y, which is 
the number of different bits between X and Y. A path 
from X to Y is abbreviated to an X-Y path. Malluhi and 
Bayoumi (1994) showed that there is a hamiltonian X-Y 
path in an n-cube if dH(X, Y) is odd. The result can be 
generalized as follows. 

Lemma 1. Suppose dH(X, Y)=d≥1. There are X-Y paths in 
an n-cube whose lengths are d, d+2, d+4, …, c, where 
n≥1, c=2n−1 if d is odd, and c=2n−2 if d is even. 

Proof. We proceed by i
holds for n=1, 2. Assum
n=k+1:  

Without loss of gene
Y=y1y2…yk1. We let Z=
dH(X, Z (k+1))=dH(X (k+1), Z
{d−2, d}. By our ass
lengths 1, 3, …, 2k−1 in
d, d+2, …, c' in *

k0,
c'=2k−2 if d is even. 

Now let us consider X-Y
⇒ Y. Throughout this 
and ⇒ to denote a pa
paths have lengths d+2,
odd and c=2k+1−2 if d i
length d. This complete

As a consequence of Le
hamiltonian-laceable. 

Lemma 2. Suppose tha
of an n-cube and dH(A, 
are disjoint A-B and X-Y
2n−1−1. 
Figure 1. HCN(3)
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Proof. Suppose A=a1a2…an, B=b1b2…bn, X=x1x2…xn, and 
Y=y1y2…yn. There exists 1≤k≤n so that ak=bk= kx = ky . 

Hence, A ∈ *
k−1ak*

n−k, B ∈ *
k−1ak*

n−k, X ∈ *
k−1

ka *
n−k, and  

Y ∈  *
k−1

ka *
n−k. This lemma holds because of Lemma 1.  

A Gray code (Chen and Shin 1987) of n bits contains 2n 
distinct code words, denoted by G(0), G(1), …, G(2n−1), 
so that each code word is an n-bit binary sequence and 
G(i) differs from G((i+1) mod 2n) at exactly one bit posi-
tion, where 0≤i≤2n−1. For example, 000, 001, 011, 010, 
110, 111, 101, and 100 constitute a Gray code of three 
bits. There is a recursive method to generate a Gray code 
as follows. Initially, let G(0)=0 and G(1)=1 be a Gray 
code of one bit. For n≥1, a Gray code of n+1 bits can be 
generated as 0G(0), 0G(1), …, 0G(2n−1), 1G(2n−1), …, 
1G(1), 1G(0). A Gray code thus obtained is called a re-
flected Gray code. In the rest of this paper, we use GR(0), 
GR(1), …, GR(2n−1) to denote a reflected Gray code of n 
bits. It is not difficult to see GR(0)=0n, GR(2n−1−2)= 
010n−31, GR(2n−1−1)=010n−2, GR(2n−2)=10n−21, and GR(2n− 
1)=10n−1. Moreover, they possess the following proper-
ties. 

(P1) The leftmost bit of GR(i) is 0 if 0≤i≤2n−1−1, and 1 if 
2n−1≤i≤2n−1. 

(P2) dH(GR(2n−1), GR(2n−1))=1.  

(P3) dH(GR(i), GR(2j−1−i))=1 for all 0≤i≤2j−1 and 1≤j≤n. 

(P4) dH(GR(0), GR(2k−2))=2 for all 2≤k≤n. 

We define Su,v(x1x2…xn)=x1…xu−1xvxu+1…xv−1xuxv+1…xn, 
where 1≤u≤v≤n. That is, Su,v(x1x2…xn) swaps xu and xv of 
x1x2…xn. When u=v, Su,v(x1x2…xn)=x1x2…xn. Since 
dH(G(i), G(j))=dH(Su,v(G(i)), Su,v(G(j))) for any two code 
words G(i) and G(j), we have the following lemma. 

Lemma 3. Suppose that G(0), G(1), …, G(2n−1) are a 
Gray code of n bits with the property (P2) (or (P3) or 
(P4)). Then, Su,v(G(0)), Su,v(G(1)), …, Su,v(G(2n−1)) are a 
Gray code of n bits with the property (P2) (or (P3) or 
(P4)) as well, where 1≤u≤v≤n. 

Similarly, we have the following lemma. 

Lemma 4. Suppose that G(0), G(1), …, G(2n−1) are a 
Gray code of n bits with the property (P2) (or (P3) or 
(P4)), and Y is an n-bit binary sequence, where n≥1. 
Then, Y⊕ G(0), Y⊕ G(1), …, Y⊕ G(2n−1) are a Gray code 
of n bits with the property (P2) (or (P3) or (P4)) as well, 
where ⊕  performs a bitwise exclusive-OR operation. 

3 The pancycle problem 
In this section, the pancycle problem on the HCN(n) is 
explored. We show that the HCN(n) contains cycles of 
lengths ranging from 4 to 22n, exclusive of length 5. There 
is no cycle of length three or five in the HCN(n). Our re-
sults can be applied to the hierarchical folded-hypercube 
network (Duh and Chen 1995) which has a structure 
similar to the HCN(n).  

Yun and Park (1995) showed that the HCN(n) contains 
cycles of even lengths ranging from 4 to 22n. Cycles of 

odd lengths can be constructed as follows. Suppose that 
(X, Y1) → (X, Y2) → (X, Y3) → (X, Y4) → (X, Y1) is an ar-
bitrary cycle of length four in a cluster. There are the fol-
lowing cycles in the HCN(n). 

(Y1, Y3) → (Y3, Y1) ⇒ (Y3, Y2) → (Y2, Y3) → (Y2, Y4) → 
(Y2, Y1) → (Y1, Y2) ⇒ (Y1, Y3).  

By Lemma 1, (Y3, Y1) ⇒ (Y3, Y2) and (Y1, Y2) ⇒ (Y1, Y3) 
have lengths 1, 3, 5, …, 2n−1. Hence these cycles have 
odd lengths ranging from 7 to 2n+1+3. On the other hand, 
using a reflected Gray code of n−1 bits, cycles of odd 
lengths ranging from 2n+1+3 to 22n−1 can be obtained in 
the HCN(n) as follows. 

(0GR(0), 0GR(2n−1−2)) ⇒ (0GR(0), 1GR(1))  
→ (1GR(1), 0GR(0)) ⇒ (1GR(1), 0GR(1)) 
→ (0GR(1), 1GR(1)) ⇒ (0GR(1), 1GR(2))  
→ (1GR(2), 0GR(1)) ⇒ (1GR(2), 0GR(2))  
→ (0GR(2), 1GR(2)) ⇒ (0GR(2), 1GR(3))  
→ …  
→ (0GR(2n−1−3), 1GR(2n−1−3) ⇒ (0GR(2n−1−3), 1GR(2n−1−2) 
→ (1GR(2n−1−2), 0GR(2n−1−3)) ⇒ (1GR(2n−1−2), 0GR(2n−1−2)) 
→ (0GR(2n−1−2), 1GR(2n−1−2)) ⇒ (0GR(2n−1−2), 1GR(2n−1−1))  
→ (1GR(2n−1−1), 0GR(2n−1−2)) ⇒ (1GR(2n−1−1), 0GR(2n−1−1))  
→ (0GR(2n−1−1), (1GR(2n−1−1)) ⇒ (0GR(2n−1−1), 1GR(0))  
→ (1GR(0), 0GR(2n−1−1)) ⇒ (1GR(0), 0GR(2n−1−2))  
→ (0GR(2n−1−2), 1GR(0)) ⇒ (0GR(2n−1−2), 0GR(0))  
→ (0GR(0), 0GR(2n−1−2)). 

There are a total of 2n+1 paths above, which are denoted 
by ⇒. Figure 2 depicts the cycles in the HCN(3). The 
property (P3) can assure dH(GR(1), GR(2n−1−2))=1. Hence 
dH(0GR(2n−1−2), 1GR(1))=2. By Lemma 1, (0GR(0), 
0GR(2n−1−2)) ⇒ (0GR(0), 1GR(1)) has lengths 2, 4, 6, …, 
2n−2. By Lemma 2, (0GR(2n−1−2), 1GR(2n−1−2)) ⇒ 
(0GR(2n−1−2), 1GR(2n−1−1)) and (0GR(2n−1−2), 1GR(0)) ⇒ 
(0GR(2n−1−2), 0GR(0)) can be made disjoint with lengths 
1, 3, 5, …, 2n−1−1. The other paths have lengths 1, 3, 5, 
…, 2n−1. Consequently, these cycles have odd lengths 
ranging from 2n+1+3 to 22n−1. 

There is no cycle of length three or five in the HCN(n), as 
explained below. Since the hypercube is bipartite, every 
cycle inside a cluster has even length. On the other hand, 
every cycle passing two clusters has length 2n+2 at least 
because it contains one diameter link and one nondiame-

⇒ ⇒ ⇒ ⇒ 

⇒ ⇒ ⇒ ⇒ 
⇐  

0G (0) 1G (1) 0G (1) 1G (2) 

0GR(2) 1GR(3) 0GR(3) 1GR(0) 

R R R R

Figure 2. Cycles in the HCN(3) with lengths 19,
21, …,63. 



ter link. Every cycle passing r≥3 clusters has length 2r≥6 
at least. 

(X, Y) 
(X, A)

(X', Y') (X', A') 

X 

(A, X) (A', X')

A A'

Path 

Link
It is easy to see that the HCN(1) forms a cycle of length 
four and the HCN(2) contains cycles of lengths ranging 
from 4 to 16, exclusive of length 5. According to the dis-
cussion above, we have the following theorem, which 
solves the pancycle problem on the HCN(n). 

Theorem 1. The HCN(n) contains cycles of lengths 
ranging from 4 to 22n, exclusive of length 5, where n≥1. 
There is no cycle of length three or five in the HCN(n). 

Duh, Chen, and Fang (1995) proposed a two-level net-
work, called the hierarchical folded-hypercube network 
(HFN), which is a modification of the HCN. We use 
HFN(n) to denote the HFN that contains 2n clusters, 
where each cluster is an n-dimensional folded hypercube 
(n-fcube for short) (El-Amawy and S. Latifi 1991). The 
n-fcube is obtained by augmenting the n-cube with 2n−1 
complement links. Each complement link connects two 
nodes whose addresses are the binary complement of 
each other. The HFN(n) can be obtained from the 
HCN(n) by removing the diameter links and replacing 
n-cubes with n-fcubes as clusters. The HFN(n) has the 
same node set as the HCN(n).  

Figure 3. The construction of a hamiltonian (X,
Y)-(X', Y') path in the HCN(n) when
X=X'. 

The HFN(1) forms a path of length three. It is not diffi-
cult to check that the HFN(2) contains cycles of lengths 
ranging from 3 to 22n, exclusive of length 5. When n≥3, 
the HFN(n) contains all the cycles that were obtained 
above for the HCN(n), because they do not contain di-
ameter links. There is no cycle of length three contained 
in the HFN(n) if n≥3. The HFN(4) also contains a cycle 
of length five because such a cycle can be found in a 
4-fcube. There is no cycle of length five contained in the 
HFN(n) if n≠4. We have the following corollary, which 
solves the pancycle problem on the HFN(n).  

Corollary 1. The HFN(n) contains cycles of lengths 
ranging from 4 to 22n, exclusive of length 5, where n≥2. 
Moreover, the HFN(n) contains a cycle of length three (or 
five) if and only if n=2 (or n=4). 

4 Hamiltonian-connectedness 
In this section, a hamiltonian path is constructed between 
two arbitrary distinct nodes (X, Y) and (X', Y') of the 
HCN(n). The construction depends on whether (X, Y) and 
(X', Y') belong to the same cluster or not. Section 4.1 as-
sumes that they belong to the same cluster. Section 4.2 
assumes that they belong to two different clusters. 

4.1 When (X, Y) and (X', Y') belong to the same 
cluster 

We have X=X'. Suppose X=x1x2…xn=X', Y=y1y2…yn, 
Y'=y'1y'2…y'n, A=a1a2…an, and A'=a'1a'2…a'n. A hamilto-
nian (X, Y)-(X', Y') path can be obtained with the follow-
ing three steps (refer to Figure 3).  

Step 1. Determine A≠X and A'≠X' so that dH(Y, A) is odd, 
dH(Y', A') is odd, and yi=ai= iy' = ia'  for some 
1≤i≤n. 

Step 2. Construct two disjoint (X, Y)-(X, A) and (X', 
A')-(X', Y') paths inside the cluster X that contain 
all nodes of the cluster X.  

Step 3. Construct an (X, A)-(X', A') path in the HCN(n) 
that contains all nodes of the other clusters.  

Step 1 is crucial to the success of Step 2 and Step 3. With 
A and A', Step 2 can be completed as follows. Since Y and 
A belong to *

i−1yi*
n−i and Y' and A' belong to *

i−1
iy' *

n−i, 
by Lemma 1 there are an (X, Y)-(X, A) path of length 
2n−1−1 in *

i−1yi*
n−i and an (X, Y')-(X, A') path of length 

2n−1−1 in *
i−1

iy' *
n−i. The two paths are disjoint, and they 

contain all nodes of the cluster X. On the other hand, Step 
3 requires a Gray code G(0), G(1), …, G(2n−1) of n bits 
with some properties. By its aid, the (X, A)-(X', A') path 
can be obtained.  

In the rest of this section, we focus our attention on how 
to determine A and A', how to generate G(0), G(1), …, 
G(2n−1), and how to construct the (X, A)-(X', A') path. 
Section 4.1.1 assumes dH(Y, Y') odd, and Section 4.1.2 
assumes dH(Y, Y') even. Since X=X', we have Y≠Y'. 
Without loss of generality, we assume y1≠y'1 (i.e., y1= 

1y' ). Besides, we assume x1=y1. If x1≠y1, then x1=y'1. The 
discussion for x1=y'1 is very similar to the discussion for 
x1=y1. 

4.1.1 When dH(Y, Y') is odd 

Suppose Y (r)≠X for some 2≤r≤n. Let A=Y (r) and A'=Y (r) (1) 
(≠X'), where Y (r) (1) is an adjacent node of Y (r) in an n-cube 
which differs from Y (r) at the first bit position. Then, 

1a' =a1=y1= 1y' , dH(Y, A)=1, dH(Y, A')=2, and dH(Y', A') is 
odd (as a consequence of dH(Y, Y') odd and dH(Y, A') 
even). 



G(0), G(1), …, G(2n−1) are required to have the follow-
ing properties: G(0)=A, G(2n−1−1)=A', X ∈  {G(2n−1), 
G(2n−1+1), …, G(2n−1)}, and the properties (P2) and (P3). 
They can be generated as follows. Suppose xv≠av (i.e., 
xv= va ) for some 2≤v≤n (recall X≠A and x1=y1=a1). For all 
0≤i≤2n−1, let G(i)=A⊕ S1,2(GR(i)) if v=2, and G(i)=A⊕  
S1,2(S1,v(GR(i))) if v>2. 

When v=2, G(0)=A⊕ S1,2(GR(0))=A⊕ S1,2(0n)=A⊕ 0n=A and 
G(2n−1−1)=A⊕ S1,2(GR(2n−1−1))=A⊕ S1,2(010n−2)=A⊕ 10n−1= 
A(1). Since A=Y (r) and A'=Y (r) (1), we have G(2n−1−1)=A(1)= 
A'. By the property (P1), the second bit of S1,2(GR(j)) is 0 
if 0≤j≤2n−1−1, and 1 if 2n−1≤j≤2n−1. Hence the second bit 
of G(j)=A⊕ S1,2(GR(j)) is a2 if 0≤j≤2n−1−1, and 2a  if 2n−1≤ 

j≤2n−1. Since x2= 2a , we have X ∈ {G(2n−1), G(2n−1+1), 
…, G(2n−1)}. The Gray code has the properties (P2) and 
(P3), as a consequence of Lemma 3 and Lemma 4. When 
v>2, we have G(0)=A, G(2n−1−1)=A', and X ∈ {G(2n−1), 
G(2n−1+1), …, G(2n−1)}, similarly. Besides, the properties 
(P2) and (P3) hold. 

Suppose X=G(2n−1+m), where 0≤m≤2n−1−1. Define G'(j)= 
G(2n−1+((m+j) mod 2n−1)) for all 0≤j≤2n−1−1. The mapping 
from {G(2n−1), G(2n−1+1), …, G(2n−1)} to {G'(0), G'(1), 
…, G'(2n−1−1)} is shown in Figure 4. 

The following is an (X, A)-(X', A') path in the HCN(n).  

(X, A) (=(G'(0), G(0))  
→ (G(0), G'(0)) ⇒H (G(0), G'(1))  

→ (G'(1), G(0)) ⇒H (G'(1), G(1))  
→ (G(1), G'(1)) ⇒H (G(1), G'(2))  
→ (G'(2), G(1)) ⇒H (G'(2), G(2))  
→ …  
→ (G(2n−1−1), G'(2n−1−1)) ⇒H (G(2n−1−1), G'(0))  
→ (G'(0), G(2n−1−1)) (=(X, A')), 

where ⇒H denotes a hamiltonian path for a cluster. 

The (X, A)-(X', A') path traverses clusters G(0), G'(1), 
G(1), …, G'(2n−1−1), G(2n−1−1), sequentially. By the 
properties (P2) and (P3), we have dH(G(i), G((i+1) mod 
2n−1))=1 and dH(G'(i), G'((i+1) mod 2n−1))=1 for all 
0≤i≤2n−1−1. Lemma 1 can assure the existence of the 
hamiltonian paths denoted by ⇒H. The (X, A)-(X', A') 
path contains all nodes of the clusters, exclusive of G'(0) 
(=X). 

4.1.2 When dH(Y, Y') is even 
Both dH(X, Y) and dH(X, Y') are odd or even, as a conse-
quence of dH(Y, Y') even. Two cases are discussed below. 

Case 1. dH(X, Y) and dH(X, Y') are odd. Let A=X (n) (2) and 
A'=X (n) (1). Then, 1a' =a1=x1=y1= 1y' . We have dH(Y, A) 
odd because dH(X, Y) is odd and dH(X, A)=2. We have 
dH(Y', A') odd, similarly. 

G(0), G(1), …, G(2n−1) are required to have the follow-
ing properties: G(0)=X, G(2n−1−2)=A', G(2n−2)=A, and 
the properties (P2) and (P3). They can be generated as 
follows: G(i)=X⊕ S1,2(GR(i)) for all 0≤i≤2n−1. It is not dif-
ficult to verify G(0)=X, G(2n−1−2)=A', and G(2n−2)=A. 
They have the properties (P2) and (P3), as a consequence 
of Lemma 3 and Lemma 4.  
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Define G'(j)=G(2n−1−j) for all 0≤j≤2n−1−1. The mapping 
from {G(2n−1), G(2n−1+1), …, G(2n−1)} to {G'(0), G'(1), 

G(0) 

G(1) 
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Figure 5. The mapping from {G(2n−1), G(2n−1+1),
…, G(2n−1)} to {G'(0), G'(1), …,
G'(2n−1−1)} when dH(X, Y) and dH(X, Y')
are odd. 

Figure 4. The mapping from {G(2n−1), G(2n−1+1),
…, G(2n−1)} to {G'(0), G'(1), …,
G'(2n−1−1)} when dH(Y, Y') is odd. 



…, G'(2n−1−1)} is shown in Figure 5. 

The following is an (X, A)-(X', A') path in the HCN(n). 

(X, A) (=(G(0), G(2n−2))=(G(0), G'(1))) 
→ (G'(1), G(0)) ⇒H (G'(1), G(1))  
→ (G(1), G'(1)) ⇒H (G(1), G'(2))  
→ (G'(2), G(1)) ⇒H (G'(2), G(2))  
→ … 
→ (G(2n−1−3), G'(2n−1−3)) ⇒H (G(2n−1−3), G'(2n−1−2))  
→ (G'(2n−1−2), G(2n−1−3)) ⇒H (G'(2n−1−2), G(2n−1−2))  
→ (G(2n−1−2), G'(2n−1−2)) ⇒ (G(2n−1−2), G'(2n−1−1))  
→ (G'(2n−1−1), G(2n−1−2)) ⇒H (G'(2n−1−1), G(2n−1−1)  
→ (G(2n−1−1), G'(2n−1−1)) ⇒H (G(2n−1−1), G'(0))  
→ (G'(0), G(2n−1−1)) ⇒H (G'(0), G(2n−1−2))  
→ (G(2n−1−2), G'(0)) ⇒ (G(2n−1−2), G(0))  
→ (G(0), G(2n−1−2)) (=(X, A')), 

where (G(2n−1−2), G'(2n−1−2)) ⇒ (G(2n−1−2), G'(2n−1−1)) 
and (G(2n−1−2), G'(0)) ⇒ (G(2n−1−2), G(0))  are two 
disjoint paths of length 2n−1−1 in the cluster G(2n−1−2). 

The (X, A)-(X', A') path traverses clusters G'(1), G(1), 
G'(2), G(2), …, G'(2n−1−2), G(2n−1−2), G'(2n−1−1), 
G(2n−1−1), G'(0), G(2n−1−2), sequentially (G(2n−1−2) is 
traversed twice). By the properties (P2) and (P3), we have 
dH(G(i), G'(i))=1, dH(G(i), G((i+1) mod 2n−1))=1, and 
dH(G'(i), G'((i+1) mod 2n−1))=1 for all 0≤i≤2n−1−1. Lemma 
1 can assure the existence of the hamiltonian paths de-
noted by ⇒H. Lemma 2 can assure the existence of the 
two disjoint paths in the cluster G(2n−1−2). The (X, A)-(X', 
A') path contains all nodes of the clusters, exclusive of 
G(0) (=X). Figure 6 shows a hamiltonian (100, 011)-(100, 
101) path in the HCN(3). 

Case 2. dH(X, Y) and dH(X, Y') are even. Let A=X (2) and 
A'=X (1). Then, 1a' =a1=x1=y1= 1y' . We have dH(Y, A) odd 
because dH(X, Y) is even and dH(X, A)=1. We have dH(Y', 
A') odd, similarly. 

G(0), G(1), …, G(2n−1) are required to have the follow-
ing properties: G(0)=X, G(2n−1−1)=A, G(2n−1)=A', and 
the properties (P2) and (P3). They can be generated as 
follows: G(i)=X⊕ GR(i) for all 0≤ i≤2n−1. It is not difficult 
to verify G(0)=X, G(2n−1−1)=A, and G(2n−1)=A'. They 
have the properties (P2) and (P3), because of Lemma 4.  

Define G'(0), G'(1), …, G'(2n−1−1) all the same as Case 1. 
The following is an (X, A)-(X', A') path in the HCN(n). 

(X, A) (=(G(0), G(2n−1−1))) 
→ (G(2n−1−1), G(0)) ⇒ (G(2n−1−1), G(1))  
→ (G(1), G(2n−1−1)) ⇒ (G(1), G(2n−1−2))  
→ (G(2n−1−2), G(1)) ⇒ (G(2n−1−2), G'(1))  

→ (G'(1), G(2n−1−2)) ⇒H (G'(1), G(1))  
→ (G(1), G'(1)) ⇒ (G(1), G'(2))  
→ (G'(2), G(1)) ⇒H (G'(2), G(2))  
→ (G(2), G'(2)) ⇒H (G(2), G'(3))  
→ …  
→ (G(2n−1−3), G'(2n−1−3)) ⇒H (G(2n−1−3), G'(2n−1−2)) 
→ (G'(2n−1−2), G(2n−1−3)) ⇒H (G'(2n−1−2), G(2n−1−2)) 
→ (G(2n−1−2), G'(2n−1−2)) ⇒ (G(2n−1−2), G'(2n−1−1))  
→ (G'(2n−1−1), G(2n−1−2)) ⇒H (G'(2n−1−1), G(2n−1−1)) 
→ (G(2n−1−1), G'(2n−1−1)) ⇒ (G(2n−1−1), G'(0))  
→ (G'(0), G(2n−1−1)) ⇒H (G'(0), G(0))  
→ (G(0), G'(0)) (=(G(0), G(2n−1))=(X, A')) 

The (X, A)-(X', A') path traverses clusters G(2n−1−1), G(1), 
G(2n−1−2), G'(1), G(1), G'(2), G(2), …, G(2n−1−3), 
G'(2n−1−2), G(2n−1−2), G'(2n−1−1), G(2n−1−1), G'(0), se-
quentially (G(1), G(2n−1−2), and G(2n−1−1) are traversed 
twice). There are (G'(u), G(u−1)) ⇒H (G'(u), G(u)) for all 
2≤u≤2n−1−2, (G(v), G'(v)) ⇒H (G(v), G'(v+1)) for all 
2≤v≤2n−1−3, and two disjoint paths of length 2n−1−1 in the 
clusters G(1), G(2n−1−2), and G(2n−1−1). Similarly, by the 
aid of the properties (P2) and (P3), Lemma 1, and Lemma 
2, the (X, A)-(X', A') path contains all nodes of the clus-
ters, exclusive of G(0) (=X). Figure 7 shows a hamilto-
nian (100, 111)-(100, 010) path in the HCN(3). 
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4.2 When (X, Y) and (X', Y') belong to different 
clusters 

We have X≠X'. A hamiltonian (X, Y)-(X', Y') path can be 
obtained with the following three steps (refer to Figure 8). 

Step 1.  Determine A≠X and A'≠X' so that dH(Y, A) is odd 
and dH(Y', A') is odd. 

Step 2.  Construct a hamiltonian (X, Y)-(X, A) path for 
the cluster X and a hamiltonian (X', A')-(X', Y') 
path for the cluster X'. 

Step 3.  Construct an (X, A)-(X', A') path in the HCN(n) 
that contains all nodes of the other clusters. Figure 6. A hamiltonian (100, 011)-(100, 101) path 

in the HCN(3). Different A and A' are needed for different cases. Since 
dH(Y, A) and dH(Y', A') are odd, by Lemma 1 there are a 
hamiltonian (X, Y)-(X, A) path for the cluster X and a 
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hamiltonian (X', A')-(X', Y') path for the cluster X'. The 
construction of the (X, A)-(X', A') path requires a Gray 
code G(0), G(1), …, G(2n−1) of n bits with the following 
properties: G(0)=X, X' ∈ {G(2n−1), G(2n−1+1), …, 
G(2n−1)}, and the properties (P2), (P3), and (P4). They 
can be generated as follows. Suppose xu≠x'u, where 
X=x1x2…xn, X'=x'1x'2…x'n, and 1≤u≤n. Let G(i)=X⊕  
S1,u(GR(i)) for all 0≤i≤2n−1. It is not difficult to verify 
G(0)=X and X' ∈ {G(2n−1), G(2n−1+1), …, G(2n−1)}. Be-
sides, they have the properties (P2), (P3), and (P4), be-
cause of Lemma 3 and Lemma 4. 

Path 

Link 

Figure 8. The construction of a hamiltonian (X,
Y)-(X', Y') path in the HCN(n) when
X≠X'. 

Figure 7. A hamiltonian (100, 111)-(100, 010) path 
in the HCN(3). 

In the rest of this section, we focus our attention on how 
to determine A and A' and how to construct the (X, A)-(X', 
A') path. Subsequent discussion depends on whether 
dH(X, Y') is even or odd and whether dH(X', Y) is even or 
odd. 

Case 1. dH(X, Y') is even and dH(X', Y) is even. Suppose 
X'=G(2n−1+m), where 0≤m≤2n−1−1. Define G'(j) all the 
same as Section 4.1.1 (refer to Figure 4). Then X'=G'(0). 
Let A=G'(1) and A'=G(2n−1−1). We have dH(Y, A) odd 
because dH(X', Y) is even and dH(X', A)=dH(G'(0), G'(1))= 
1. We have dH(Y', A') odd, similarly. The following is an 
(X, A)-(X', A') path in the HCN(n). 

(X, A) (=(G(0), G'(1)))  
→ (G'(1), G(0)) ⇒H (G'(1), G(1))  
→ (G(1), G'(1)) ⇒H (G(1), G'(2))  
→ …  
→ (G(2n−1−1), G'(2n−1−1)) ⇒H (G(2n−1−1), G'(0))  
→ (G'(0), G(2n−1−1)) (=(X', A')) 

The (X, A)-(X', A') path traverses clusters G'(1), G(1), …, 
G'(2n−1−1), G(2n−1−1), sequentially. Similarly, by the aid 
of the properties (P2) and (P3) and Lemma 1, the (X, 
A)-(X', A') path contains all nodes of the clusters, exclu-
sive of G(0) (=X) and G'(0) (=X'). 

Case 2. dH(X, Y') is odd and dH(X', Y) is odd. Suppose 
X'=G(2n−1+m), where 0≤m≤2n−1−1. Define G'(0), G'(1), …, 
G'(2n−1−1) all the same as Case 1. We have X'=G'(0). Let 
A=G'(2) and A'=G(2n−1−2). We have dH(X', A)=dH(G'(0), 
G'(2))=2. By the property (P4), dH(X, A')=dH(G(0), 
G(2n−1−2))=2. Hence both dH(Y, A) and dH(Y', A') are odd 
because dH(X', Y) is odd and dH(X, Y') is odd. The follow-
ing is an (X, A)-(X', A') path in the HCN(n). 

(X, A) (=(G(0), G'(2)))  
→ (G'(2), G(0)) ⇒ (G'(2), G(1))  
→ (G(1), G'(2)) ⇒H (G(1), G'(1))  
→ (G'(1), G(1)) ⇒H (G'(1), G(2))  
→ (G(2), G'(1)) ⇒H (G(2), G'(2))  
→ (G'(2), G(2)) ⇒ (G'(2), G(3))  
→ (G(3), G'(2)) ⇒H (G(3), G'(3))  
→ (G'(3), G(3)) ⇒H (G'(3), G(4)) 
→ … 
→ (G(2n−1−3), G'(2n−1−4)) ⇒H (G(2n−1−3), G'(2n−1−3))  
→ (G'(2n−1−3), G(2n−1−3)) ⇒H (G'(2n−1−3), G(2n−1−2))  
→ (G(2n−1−2), G'(2n−1−3)) ⇒ (G(2n−1−2), G'(2n−1−2))  
→ (G'(2n−1−2), G(2n−1−2)) ⇒H (G'(2n−1−2), G(2n−1−1))  
→ (G(2n−1−1), G'(2n−1−2)) ⇒H (G(2n−1−1), G'(2n−1−1))  
→ (G'(2n−1−1), G(2n−1−1)) ⇒H (G'(2n−1−1), G(2n−1−2))  
→ (G(2n−1−2), G'(2n−1−1)) ⇒ (G(2n−1−2), G'(0))  
→ (G'(0), G(2n−1−2)) (=(X', A')) 
The (X, A)-(X', A') path traverses clusters G'(2), G(1), 
G'(1), G(2), G'(2), G(3), G'(3), …, G(2n−1−3), G'(2n−1−3), 
G(2n−1−2), G'(2n−1−2), G(2n−1−1), G'(2n−1−1), G(2n−1−2), 
sequentially (G'(2) and G(2n−1−2) are traversed twice). 
There are (G(u), G'(u−1)) ⇒H (G(u), G'(u)) and (G'(u), 
G(u)) ⇒H (G'(u), G'(u+1)) for all 3≤u≤2n−1−3, and two 
disjoint paths of length 2n−1−1 in the clusters G'(2) and 
G(2n−1−2). Similarly, the (X, A)-(X', A') path contains all 
nodes of the clusters, exclusive of G(0) (=X) and G'(0) 
(=X'). Figure 9 shows a hamiltonian (100, 100)-(110, 
101) path in the HCN(3). 
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Figure 9. A hamiltonian (100, 100)-(110, 101) path in 

the HCN(3). 

Case 3. dH(X, Y') is even and dH(X', Y) is odd. Two cases, 
dH(X, X') odd or even, need to be discussed below. 

Case 3.1. dH(X, X') is odd. Let A=A'=G(2n−1−1). We have 
dH(X', A) even because dH(X, X') is odd and dH(X, A)= 
dH(G(0), G(2n−1−1))=1 (by the property (P3)). Hence 
dH(Y, A) is odd, as a consequence of dH(X', Y) odd and 
dH(X', A) even. Similarly, dH(Y', A') is odd. 

Recall X' ∈ {G(2n−1), G(2n−1+1), …, G(2n−1)} and G(i)= 
X⊕ S1,u(GR(i)), where xu≠x'u. Clearly, the uth bit of G(2n−1), 
G(2n−1+1), …, G(2n−1) is ux . In other words, {G(2n−1), 
G(2n−1+1), …, G(2n−1)} constitutes the node set of 

*
u−1

ux *
n−u. Since dH(X, G(2n−2))=dH(G(0), G(2n−2))=2 

(by the property (P4)) and dH(X, X') is odd, we have 
dH(G(2n−2), X') odd. By Lemma 1, there is a hamiltonian 
G(2n−2)-X' path for *

u−1
ux *

n−u.  

Define G'(i) to be the (i+1)th node in the hamiltonian 
G(2n−2)-X' path, where 0≤i≤2n−1−1. That is, G'(0) 
(=G(2n−2)) → G'(1) → G'(2) → … → G'(2n−1−1) (=X') is 
the hamiltonian G(2n−2)-X' path. The following is an (X, 
A)-(X', A') path in the HCN(n). 

(X, A) (=(G(0), G(2n−1−1)))  
→ (G(2n−1−1), G(0)) ⇒ (G(2n−1−1), G(1))  
→ (G(1), G(2n−1−1)) ⇒ (G(1), G(2n−1−2))  
→ (G(2n−1−2), G(1)) ⇒ (G(2n−1−2), G'(0))  
→ (G'(0), G(2n−1−2)) ⇒H (G'(0), G(1))  
→ (G(1), G'(0)) ⇒ (G(1), G'(1))  
→ (G'(1), G(1)) ⇒H (G'(1), G(2))  
→ (G(2), G'(1)) ⇒H (G(2), G'(2))  
→ …  
→ (G(2n−1−3), G'(2n−1−4)) ⇒H (G(2n−1−3), G'(2n−1−3))  
→ (G'(2n−1−3), G(2n−1−3)) ⇒H (G'(2n−1−3), G(2n−1−2))  

→ (G(2n−1−2), G'(2n−1−3)) ⇒ (G(2n−1−2), G'(2n−1−2))  
→ (G'(2n−1−2), G(2n−1−2)) ⇒H (G'(2n−1−2), G(2n−1−1))  
→ (G(2n−1−1), G'(2n−1−2)) ⇒ (G(2n−1−1), G'(2n−1−1))  
→ (G'(2n−1−1), G(2n−1−1)) (=(X', A')) 

The (X, A)-(X', A') path traverses clusters G(2n−1−1), G(1), 
G(2n−1−2), G'(0), G(1), G'(1), G(2), …, G(2n−1−3), 
G'(2n−1−3), G(2n−1−2), G'(2n−1−2), G(2n−1−1), sequentially 
(G(1), G(2n−1−2), and G(2n−1−1) are traversed twice). 
There are (G'(u), G(u)) ⇒H (G'(u), G(u+1)) for all 1≤u≤ 
2n−1−3, (G(v), G'(v−1)) ⇒H (G(v), G'(v)) for all 2≤v≤ 
2n−1−3, and two disjoint paths of length 2n−1−1 in the 
clusters G(1), G(2n−1−2), and G(2n−1−1). Similarly, the (X, 
A)-(X', A') path contains all nodes of the clusters, exclu-
sive of G(0) (=X) and G'(2n−1−1) (=X'). Figure 10 shows a 
hamiltonian (110, 110)-(001, 101) path in the HCN(3). 

Case 3.2. dH(X, X') is even. Let A=G(2n−1−2) and 
A'=G(2n−1−1). We have dH(X, A)=dH(G(0), G(2n−1−2))= 2 
by the property (P4). dH(Y, A) is odd, as a consequence of 
dH(X, A) even, dH(X, X') even, and dH(X', Y) odd. Simi-
larly, dH(Y', A') is odd. 

Since dH(X, G(2n−1))=dH(G(0), G(2n−1))=1 and dH(X, X') 
is even, we have dH(G(2n−1), X') odd. Similar to Case 3.1, 
there is a hamiltonian G(2n−1)-X' path for *

u−1
ux *

n−u. 
Define G'(0), G'(1), …, G'(2n−1−1) all the same as Case 
3.1. That is, G'(0) (=G(2n−1)) → G'(1) → G'(2) → … → 
G'(2n−1−1) (=X') is the hamiltonian G(2n−1)-X' path. The 
following is an (X, A)-(X', A') path in the HCN(n). 

(X, A) (=(G(0), G(2n−1−2)))  
→ (G(2n−1−2), G(0)) ⇒ (G(2n−1−2), G'(0))  
→ (G'(0), G(2n−1−2)) ⇒H (G'(0), G(1))  
→ (G(1), G'(0)) ⇒H (G(1), G'(1))  
→ (G'(1), G(1)) ⇒H (G'(1), G(2))  
→ …  
→ (G(2n−1−3), G'(2n−1−4)) ⇒H (G(2n−1−3), G'(2n−1−3))  
→ (G'(2n−1−3), G(2n−1−3)) ⇒H (G'(2n−1−3), G(2n−1−2))  
→ (G(2n−1−2), G'(2n−1−3)) ⇒ (G(2n−1−2), G'(2n−1−2))  
→ (G'(2n−1−2), G(2n−1−2)) ⇒H (G'(2n−1−2), G(2n−1−1))  
→ (G(2n−1−1), G'(2n−1−2)) ⇒H (G(2n−1−1), G'(2n−1−1))  
→ (G'(2n−1−1), G(2n−1−1)) (=(X', A')).  

where (G(2n−1−2), G(0)) ⇒ (G(2n−1−2), G'(0)) and 
(G(2n−1−2), G'(2n−1−3)) ⇒ (G(2n−1−2), G'(2n−1−2)) are two 
disjoint paths of length 2n−1−1 in the cluster G(2n−1−2). 
The (X, A)-(X', A') path traverses clusters G(2n−1−2), 
G'(0), G(1), G'(1), …, G(2n−1−3), G'(2n−1−3), G(2n−1−2), 
G'(2n−1−2), G(2n−1−1), sequentially (G(2n−1−2) is trav-
ersed twice). Similarly, the (X, A)-(X', A') path contains 
all nodes of the clusters, exclusive of G(0) (=X) and 
G'(2n−1−1) (=X').  

Case 4. dH(X, Y') is odd and dH(X', Y) is even. Similar to 
Case 3. 

The following theorem summarizes the main result of this 
section. 

Theorem 2. The HCN(n) is hamiltonian-connected, 
where n≥3. 



We note that no diameter link is contained in the hamil-
tonian (X, Y)-(X', Y') paths that we obtained in this sec-
tion. It is easy to check that the HFN(2) is hamilto-
nian-connected. Therefore, we have the following corol-
lary. 

Corollary 2. The HFN(n) is hamiltonian-connected, 
where n≥2. 

5 Discussion and conclusion 
The HCN was proposed as an alternative to the hyper-
cube. Although the HCN uses about half links of a com-
parable hypercube, its diameter, wide-diameter, and fault 
diameter are all about two-thirds those of a comparable 
hypercube. In this paper, two problems related to the 
hamiltonicity of the HCN were solved. First we solved 
the pancycle problem by showing that there are cycles of 
length l in the HCN(n) if and only if 4≤l≤22n and l≠5, 
where n≥1. In contrast, there are cycles of length l in a 
2n-cube if and only if 4≤l≤22n and l is even.  

Second, we showed that the HCN(n) is hamiltonian- 
connected, where n≥3. That is, there is a hamiltonian path 
(of length 22n−1) between every two distinct nodes of the 
HCN(n). On the other hand, Malluhi and Bayoumi 
showed that the hypercube is hamiltonian-laceable. 
Lemma 1 improved their work by showing that the hy-
percube is strongly hamiltonian-laceable. That is, be-
tween any two distinct nodes X and Y of a 2n-cube, there 
is a hamiltonian X-Y path (of length 22n−1) if dH(X, Y) is 
odd, and a (longest) X-Y path of length 22n−2 if dH(X, Y) is 
even. With our results, it can be concluded that the HCN 
is superior to a comparable hypercube in hamiltonicity. 

As a by-product, the two problems were solved on the 
HFN as well. It was shown that there are cycles of length 
l in the HFN(n) if and only if 4≤l≤22n and l≠5, where n≥2. 
Besides, the HFN(n) is hamiltonian-connected, where 
n≥2. Our results reveal that both the HCN and the HFN 

can embed a longest linear array between every two dis-
tinct nodes and rings of all possible lengths except three 
and five, with dilation, congestion, load, and expansion 
equal to one. Linear arrays and rings are two of the most 
fundamental networks for parallel and distributed com-
puting. There are many efficient algorithms designed on 
them for solving a variety of problems (refer to Akl 1997 
and Leighton 1992). These parallel algorithms can be 
executed on the HCN and the HFN as well.  

G(0)=110 G(1)=111 

G'(1)=010 G'(2)=000 G'(3)=001 

G'(0)=011G(3)=100 G(2)=101 G(1)=111 

G(2)=101G(3)=100 

Node addressing in each cluster 

010

001

011

000

100

110

101

111

There is a sufficient condition for a hamiltonian-connected 
graph as follows (Buckley and Harary 1990). If G=(V, E) 
is a connected graph with deg(u)+deg(v)≥|V|+1 for any 
two nonadjacent nodes u and v, then G is hamilto-
nian-connected, where deg(u) and deg(v) denote the de-
grees of u and v, respectively. The HCN is hamiltonian- 
connected, even if deg(u)+deg(v)=2n+2<22n+1=|V|+1 for 
the HCN(n). One of our further research topics is to ex-
plore the hamiltonicity of the HCN when there are node 
faults and/or edge faults. 

Figure 10. A hamiltonian (110, 110)-(001, 101) 
path in the HCN(3). 6 References 

S. G. AKL (1997): Parallel Computation: Models and 
Methods, Prentice Hall, NJ. 

V. AULETTA, A. A. RESCIGNO, and V. SCARANO 
(1995): Embedding graphs onto the supercube. IEEE 
Transactions on Computers 44(2):593- 597, 1995. 

F. BUCKLEY and F. HARARY (1990): Distance in 
Graphs, Addison-Wesley. 

C. P. CHANG, J. N. WANG, and L. H. HSU (1999): 
Topological properties of twisted cube. Information 
Sciences 113(1):147-167. 

M. S. CHEN and K. G. SHIN (1987): Processor alloca-
tion in an N-cube multiprocessor using Gray codes,” 
IEEE Transactions on Computers 36(12): 1396-1407. 

G. H. CHEN, J. S. FU, and J. F. FANG (2000): Hyper-
complete: a pancyclic recursive topology for large scale 
distributed multicomputer systems. Networks 35(1): 
56-69. 

W. K. CHIANG and R. J. CHEN (1996): Topological 
properties of hierarchical cubic networks. Journal of 
Systems Architecture 42: 289-307. 

S. K. DAS, S. ÖHRING, and A. K. BGANERJEE 
(1995): Embeddings into hyper Petersen networks: yet 
another hypercube-like interconnection topology. Jour-
nal of VLSI Design, Special Issue on Interconnection 
Networks 2(4): 335-351. 

K. DAY and A. TRIPATHI (1993): Embedding of cy-
cles in arrangement graphs. IEEE Transactions on 
Computers 42(8): 1002-1006. 

D. R. DUH, G. H. CHEN, and J. F. FANG (1995): Al-
gorithms and properties of a new two-level network with 
folded hypercubes as basic modules. IEEE Transactions 
on Parallel and Distributed Systems 6(7):714-723. 

A. EL-AMAWY and S. LATIFI (1991): Properties and 
performance of folded hypercubes. IEEE Transactions 
on Parallel and Distributed Systems 2(1):31-42, 1991. 



J. S. FU, G. H. CHEN, and D. R. DUH (2001): Combi-
natorial Properties of Hierarchical Cubic Networks. 
Proc. International Conference on Parallel and Distrib-
uted Systems, 8: 525-532.  

K. GHOSE and K. R. DESAI (1995): Hierarchical cubic 
networks. IEEE Transactions on Parallel and Distrib-
uted Systems 6(4): 427-435.  

S. Y. HSIEH, G. H. CHEN, and C. W. HO (2000): 
Hamiltonian-laceability of star graphs. Networks 36(4): 
225-232. 

S. C. HWANG and G. H. CHEN (2000): Cycles in but-
terfly graphs. Networks 35(2): 161-171. 

J. JWO, S. LAKSHMIVARAHAN, and S. K. DHALL 
(1993): A new class of interconnection networks based 
on the alternating group. Networks 23: 315-326. 

F. T. LEIGHTON (1992): Introduction to Parallel Algo-
rithms and Architecture: Arrays⋅ Trees⋅ Hypercubes, 
Morgan Kaufman, CA. 

R. S. LO and G. H. CHEN (2001): Embedding hamilto-
nian paths in faulty arrangement graphs with the back-
tracking method. IEEE Transactions on Parallel and 
Distributed Systems 12(2):209-222. 

Q. M. MALLUHI and M. A. BAYOUMI (1994): The 
hierarchical hypercube: a new interconnection topology 
for massively parallel systems. IEEE Transactions on 
Parallel and Distributed Systems 5(1): 17-30. 

S. ÖHRING and S. K. DAS (1996): Folded Petersen 
cube networks: new competitors for the hypercubes. 
IEEE Transactions on Parallel and Distributed Systems 
7(2): 151-168. 

S. A. WONG (1995): Hamilton cycles and paths in but-
terfly graphs. Networks 26: 145-150. 

S. K. YUN and K. H. PARK (1995): The optimal rout-
ing algorithm in hierarchical cubic network and its 
properties. IEICE Transactions on Information and Sys-
tems 78(4): 436-443. 

S. K. YUN and K. H. PARK (1998): Comments on hi-
erarchical cubic networks. IEEE Transactions on Paral-
lel and Distributed Systems 9(4):410-414. 

 


