
Ranking-Constrained Keyword Sequence Extraction
from Web Documents

Dingyi Chen1 Xue Li1 Jing Liu1,2 Xia Chen1

1 School of Information Technology and Electrical Engineering
The University of Queensland,
Brisbane, Qld 4072, Australia,
Email: xueli@itee.uq.edu.au

2 School of Computer Science and Electronic Engineering
Xidian University,

Xi’an, 710071, China,
Email: neouma@163.com

Abstract

Given a large volume of Web documents, we consider
problem of finding the shortest keyword sequences for
each of the documents such that a keyword sequence
can be rendered to a given search engine, then the
corresponding Web document can be identified and
is ranked at the first place within the results. We
call this system as an Inverse Search Engine (ISE).
Whenever a shortest keyword sequence is found for
a given Web document, the corresponding document
can be returned as the first document by the given
search engine. The resulting keyword sequence is
search-engine dependent. The ISE therefore can be
used as a tool to manage Web content in terms of
the extracted shortest keyword sequences. In this
way, a traditional keyword extraction process is con-
strained by the document ranking method adopted
by a search engine. The significance is that the whole
Web-searchable documents on the World Wide Web
can then be partitioned according to their keyword
phrases. This paper discusses the design and imple-
mentation of the proposed ISE. Four evaluation mea-
sures are proposed and are used to show the effective-
ness and efficiency of our approach. The experiment
results set up a test benchmark for further researches.

1 Introduction

Search engine eg., Google, Yahoo, or Live Search,
helps user find Web pages on a given subject us-
ing keywords. Knowing the right keywords, a user
is able to locate relevant Web resources in a short
time. However, as Kleinberg points out [1], search
engines are not able to provide direct answers if user
only knows what he/she wants, but does not know
the right keywords to search. This would raise an in-
teresting question: How can we extract a sequence of
keywords from a Web document, so that once user
knows this keyword sequence, he/she would be able
to locate the document immediately? Thus the Web

This project is supported by Australian ARC Discovery Project
DP0558879.

Copyright c©2009, Australian Computer Society, Inc. This pa-
per appeared at the 20th Australasian Database Conference
(ADC 2009), Wellington, New Zealand, January 2009. Con-
ferences in Research and Practice in Information Technology
(CRPIT), Vol. 92, Athman Bouguettaya and Xuemin Lin, Ed.
Reproduction for academic, not-for profit purposes permitted
provided this text is included.

search problem could become a problem of approx-
imating or mapping the keywords specified by user
into the keyword sequences that can represent doc-
uments uniquely. This kind of ranking-constrained
keyword extraction process is termed inverse search.

Inverse search as a common psychological process
can be used for users to remember the Web pages
that they have visited. For example, a tourist might
wish to find the best place to watch insects that emit
lights at night in Australia. Neither knowing proper
terms of the insects nor the place where those insects
inhabit, he/she tried “firefly Australia”, but none of
the search results is about the insects, because this
kind of insects is usually referred as “glowworm” or
more specifically, Arachnocampa. After many tri-
als, he/she finally learnt that glowworm can be seen
in Springbrook National Park near Gold Coast and
would want to use a few words to represent these rel-
evant pages. Indeed, the exact URLs of these pages
can be recorded as bookmarks in a Web browser.
However, long URL addresses are generally difficult
to memorise or to speak out, therefore they are not
suitable for oral communications. Instead of mem-
orising the whole URL, the tourist can just refer to
the keywords “glowworm” and “Springbrook” in case
his/her friends are also interested. To an on-line
advertiser, this Web site could be uniquely identi-
fied and advertised by buying these two words (or
the word Arachnocampa) from the search engine. So
when user searches for these words, the associated
Web page will be returned at the first place in the
search results. On the other hand, a Web page may
be uniquely identified by extracting the features of its
content and making an index on it.

An Inverse Search Engine (ISE) accepts a Web
document as input and returns a shortest sequence of
keywords that can be used to uniquely identify this
document through a search engine. That is, after
querying on the keyword sequence, the given Web
document should be returned as the first search re-
sult by the search engine. In the rest of this paper,
the term target page refers to the given input Web
document, and the shortest keyword sequence (short-
est KS) refers to a minimum (in keyword counting)
ordered-list of terms that can make the target page
ranked top in the search results. We use the terms
of ‘Web document’ and ‘Web page’ interchangeably
when the discussion is focused on their content.

For a keyword sequence being shortest, we define
the following three characteristics:

• Minimum number of words in sequence —
A minimum number of keywords that are ex-
tracted from a web document. The words are
ordered and used as a query on the Web.

• Uniquely identifying the document on the
Web — When a search engine uses this keyword
sequence, it will locate it uniquely and rank it as
the first one in the search result.

• Search-engine dependent — Since different
search engines may have different document
ranking methods, for a given Web document, we
are interested in finding the keyword sequence
that can make the given document be ranked at
the top of the search results by a given search
engine. So, different search engines may have
different keyword sequences used as queries to
make the given document being ranked top.

It should be pointed out that although Page Rank
[2] affects the ranking of Web pages of keyword-based
search results, our ISE as a content-based approach
is considered to be independent from the URLs that
link the given Web page to others.

Typical search engines treat a search query as a
sequence of keywords. This is because the order of
search keywords may indicate either the relevant im-
portance of keywords or the occurring order of key-
words. For example, a query of “search engine” is dif-
ferent from “engine search”, for the former is looking
for an information system to obtain lists of references
matched with specific criteria; while the latter might
be finding a Web site that compares mechanical en-
gines.

Keyword sequence is useful in many fields. In sci-
entific publishing, authors are required to provide a
list of words which point out the main topics of the
paper for searching and indexing purposes. The im-
portant topic usually appears first in a keyword se-
quence.

Automatic keyword extraction from documents
has been implemented in a few systems. For example,
Microsoft Word can generate keywords from given
documents. The extraction techniques suggested by
[11, 10] can induce keyword-generating rules from the
existing document/keyword pairs. Indeed, the key-
words generated by those methods reflect the content
of target documents to some extent. However, those
extracted keywords cannot be used in a ranking pro-
cess that can bring a Web-deployed document to the
top position in a search. This, however, could be the
most desired feature to Web surfers. On the other
hand, most of those keyword-extraction methods are
based on the supervised learning that prefers to work
with a high-quality training set, which in many cir-
cumstances, is not available.

The main idea of this paper is to combine the key-
word extraction with a document ranking process.
In order to test the keyword sequence extracted by
the system, a search engine will be used to feed with
the extracted keyword sequence and to obtain a list
of Web pages that the given Web page is included
and ranked high. To this end, the implementation
of ISE faces a twofold-problem. Firstly, many search
engines limit their total number of daily accesses for
an automatic client application. Yahoo allows 5,000
queries per day, while Google and Live Search (succes-
sor of MSN Search) only allow 1,000. So the number
of queries made by ISE should be as small as possi-
ble. Secondly, search engines also limit the character-
length of queries for security and performance rea-
sons. For example, Google allows at most 2048 char-
acters and MSN allows only 2501. Thus, the ISE-
generated keyword sequence should contain as fewer
words as possible.

To find out the shortest KS, there is always a naive
way by using a brute-force method to exhaustively

1From the HTML source code of http://www.google.com and
http://www.msn.com

search for the solution. However, this will be com-
putationally very expensive and infeasible. We pro-
pose a heuristic method to discover the shortest KS.
Our method consists of three stages: embracing, ex-
panding, and eliminating. Firstly the target page is
embraced by a seed, i.e., an initial candidate KS that
ranks target page in a work range such as top 100, or
a larger number to be decided experimentally. Then
the candidate KS is extended in order to improve the
ranking of the page in that search engine. Finally,
the terms in the candidate KS is reordered and sur-
plus terms are eliminated. In this case, the result of
ISE is search engine dependent, that is, the short-
est KS that tops the target page in Google does not
necessarily top the target page in Yahoo.

We have developed a framework of four measures
for the evaluation of the effectiveness and efficiency
of ISE. These measures are: (1) the success rate that
is a count of the shortest KSs that can be obtained
from different Web pages; (2) the top-one rate which
tells the percentage of the obtained shortest KSs that
actually top the target pages; (3) the shortness that
reflects whether the ISE is KS-size efficient; and (4)
the impoliteness that indicates whether the ISE sends
too many queries to bother a search engine.

Keyword sequence extracted by ISE has three ad-
vantages. (1) Keyword sequence can be used as a
digest of corresponding Web content. It can be a
phrase that captures the topic of document. It can
also be used as a query to get the target page from
the Web. In this case, the best representative key-
words become the best query words. (2) The training
to the keyword extraction process is now performed
by a search engine that provides feedback through its
ranking process. So ISE does not need to collect a
large volume of training data set for keyword extrac-
tion. (3) Keyword sequence as a shorthand of Web
document can be used to index the Web content so to
improve the search engine efficiency. It can be used
by online advertisement or other Web-based applica-
tions where the key phrases are uniquely associated
with certain services or functions.

This paper is organised as follows. Section 2 ad-
dresses the influential related work. Section 3 ex-
plains our proposed approach. Section 4 illustrates
our experimental results. Section 5 provides the con-
clusions.

2 Related Work

There are two types of keyword-extraction ap-
proaches: (1) domain-dependent methods that are
based on the supervised machine-learning models
and require large training corpora, and (2) domain-
independent methods that do not require training cor-
pora.

A keyword is a meaningful term that has some
importance in a document. It can be identified using
the term frequency (TF) [8]. The intuition is that the
important concepts are likely to be referred to more
times than others. However, this might not be true in
the situation that the terms are frequent in all docu-
ments that have the similar content. In this case, the
documents cannot be differentiated from each other.
As an alternative, we can rank the candidate key-
words based on the inverse document frequency (IDF)
[9].

Frank et al., [3] introduced an automatic key-
word extraction algorithm namely KEA, based on a
domain-specific machine learning model. It employs
lexical and information retrieval methods to identify
candidate keyphrase from document. It calculates
the feature values for each candidate and uses Naive
Bayes machine to predict the overall probability of

keyphrases. The features used in the algorithm in-
clude TF × IDF and the positions of their first oc-
currences.

Kelleher et al., [5] enhanced the KEA by introduc-
ing a feature of “Semantic Ratio (SR)” which makes
KEA adapted to Web corpus. The SR of a phrase
is calculated by dividing the number of occurrences
of the phrase in the current document by the num-
ber of times it occurs in all documents directly hyper-
linked to that document. The idea is based on the as-
sumption that the semantics connection between Web
documents is measurable by counting the neighbours
of a Web document (in a way similar to the Page
Rank) and that the subject matter (identified by the
keyphrases) of the document is therefore in some way
related to their content. They concluded that the hy-
perlink information can be used to improve the effec-
tiveness of automatic keyphrase extraction by 50%.

Yih et al., [10] demonstrated that by using extra
features, such as the TF × IDF vectors, the meta
data in Web pages, and the query-frequency informa-
tion from Microsoft MSN query logs, their learning
algorithm can substantially outperform KEA.

In the context of extracting keywords from Web
documents, it is impossible to collect a large enough
training data set for all possible types of Web content.
So the domain-independent keyword extraction which
does not require training corpus is considered in our
approach.

Matsu and Ishizuka [6] proposed a keyword extrac-
tion algorithm from a single document without using
any training corpus. The method firstly extracts a
set of frequent terms from the given document. Then
a set of co-occurrences between a term and a set of
frequent terms is generated. If the probability distri-
bution of a co-occurrence between term t and a set of
frequent terms is biased to a particular subset of fre-
quent terms, then term t is believed to be a keyword.
In this case, the degree of bias of the co-occurrence
between a term and a set of frequent terms is regarded
as an indicator of the term importance.

Our work shares a similar idea from the Implicit
Query System [4] and the Robust Hyperlinks [7]. The
Implicit Query System can automatically generate
query words or phrases from an email and send them
to an Internet search engine in order to find docu-
ments that are relevant to the email. Their method
can extract the special features from emails, such as
the words used in subject line. The system also uses
query logs from the Microsoft MSN Search to avoid
picking up the words or phrases that would never be
queried by real-life users. In this way, the system
can dramatically reduce the total number of candi-
date queries. Their method uses a training data set
with a logistic regression training process.

The Robust Hyperlinks is another keyword extrac-
tion method that extracts text signatures from Web
pages. These signatures serve as search queries to lo-
cate Web pages once the hyperlinks fail. In [7], text
signatures are acquired through the TF-IDF vectors.
This approach can be very effective for Web directory
maintenance and digital libraries, because the total
number of documents is known in advance. However,
it is difficult, if not impossible, to provide a sufficient
large collection of Web pages to produce IDF based
on the unlimited number of Web documents.

In our work, the keyword learning is not based on
a large collection of documents, but on the feedback
given by a search engine in its ranking process. For a
given keyword sequence extracted from a document,
the higher ranking of the document has, the better
that the keyword sequence represents the document.
The system can learn directly from the feedback sup-
plied by search engine to find out the best query words
or phrases for a given Web page without training on

a corpus. The next section discusses the design of
Inverse Search Engine (ISE).

3 Inverse Search Engine (ISE)

A query rendered to a search engine is in the form of a
text string (keyword sequence) k. A sorted list of Web
documents D will be returned as the search result of
k. The relationship between search result list D and
the search engine function SE can be expressed as:

D = [d1, d2, . . . di, dn] ← SE(k) (1)

where the i-th result is referred as di and n is the
maximum search range, which defines the maximum
number of returned Web documents.

In contrast to SE , an inverse search engine (ISE)
accepts a target page ď as input and returns the short-
est keyword sequence ǩ which makes the target page
ď be ranked at the top of the results of a search en-
gine. In other words, the problem is: Given a target
document ď and a search engine SE(k), find a target
keyword sequence ǩ, which is the shortest keyword se-
quence that makes the target document ď be ranked
at the first (d1 = ď) of the search results, as shown in
Formula 2:

ǩ ← ISE(ď), such that
Rank(ǩ, ď) = 1

(2)

where

Rank(k, d) =
{

i if d ∈ D, di = d
−1 if d /∈ D. (3)

The ISE architecture is shown in Figure 1. As
we can see that the input of ISE is a Web document
ď. The final output of ISE is the shortest keyword
sequence ǩ. During the process, an initial keyword
sequence k is fed into a Search Engine then a list of
documents D is returned from the Internet with ď is
one of them and ranked high. This process is repeated
until ď is ranked at the top. After a further process
that eliminates any superfluous words, k becomes the
final output ǩ.

Figure 1: ISE Architecture

There are two naive methods that can exhaus-
tively search for the resulting shortest KS. One is a
bottom-up approach namely incremental brute-force.
This approach tries all the possible word permutation
from uni-gram to n-gram until the shortest keyword
sequence is found. The other is a top-down approach
namely shrinking brute-force. This approach starts
from the keyword sequence that represents the whole
content of the target page. Then, the system itera-
tively removes the “less informative” words from the
candidate keyword sequence until the target page falls
from its first rank in the search results. Clearly, ex-
haustive search for the shortest keyword sequence is

expensive. The both brute-force methods therefore,
are not desirable due to their time complexity.

We consider a heuristic approach to determining
an initial candidate KS, so that the search results
will contain the target page. The system then makes
the target page progressively ranked higher by refin-
ing the candidate KS. Our ISE strategy consists of
three stages: embracing, expanding and eliminating.
At embracing stage, ISE finds an initial candidate
KS, whose results contain the target page; then at
expanding stage, the target page is topped by adding
the words that can highly differentiate the target page
from others; and finally at eliminating stage, the can-
didate KS is shrunk to a minimal size, and yet it can
still make the target page ranked at the first place in
the search results.

3.1 Embracing Stage

The objective of embracing stage is to determine a
seed KS that would qualify the target page entering
into a ranking process. Two simple heuristic strate-
gies are used for the initial seed generation: from title
and from single important words.

Intuitively, seed contains words that describe the
target page. Such important words can be found
in the HTML keyword fields, URL anchor text, and
emphasising HTML tags such as <title>, headings
(<h1> or <h2>), bold/italic (/<i>) tags, or the
text in larger fonts. Seed might be among terms in
emphasised text fragments because those terms imply
either their importance or relevance. The pseudo code
of embracing strategy “From Single Word” is listed in
Algorithm 1. The input of the algorithm is the target
page ď; while the out of the algorithm is a seed s and
a list of important terms T .

Algorithm 1 Embracing stage with strategy
“From Single Word”.

1: function EmbraceFromSingleWord(ď)
2: ď 7→ T . Terms extracted from ď is stored in

term list T .
3: for ∀t : t ∈ T do
4: if t appears between emphasising tags

then
5: t.w ← 10 . Emphasised terms weight:

10
6: else
7: t.w ← 1 . Normal terms weight: 1
8: end if
9: end for

10: Sort T from “heavy” to “light”
11: s ← ∅
12: for τ ← 1 to ` do . τ : length of seed.
13: for θ ← 1 to Θ do
14: Set the candidate seed ŝ by choosing τ

terms ([tθ, tθ+1, . . . , tθ+τ−1]) from T
15: D ← SE(ŝ)
16: if 1 ≥ Rank(ŝ, ď) < Rank(s, ď) then
17: s ← ŝ
18: end if
19: end for
20: if s 6= ∅ then
21: return (s,T) . Seed found.
22: end if
23: end for
24: return (s,T) . s = ∅, Seed not found.
25: end function

To hedge against exhaustive search, three constant
control parameters are applied to ISE algorithms.
They are the maximum search range ε, which limits

the number of maximum returned results; the maxi-
mum trial keyword sequence Θ, which limits the num-
ber of trials for different size; and the maximum key-
word sequence length `. If no seed can be found in
the iteration, we consider this stage fail and will not
proceed further.

The title of Web page is usually important because
it is either a summary of Web page content, or the rel-
ative paths from the home Web page. It is possible
to locate the target page by merely using its titles
as the initial keyword sequence. Though the HTML
specification does not mention the limitation of the
title length, in practice, titles are seldom longer than
one hundred characters because the title bar of Web
browser windows usually does not have a sufficient
space to display long titles. For the Web pages with
no title, the first sentence within the HTML typeset-
ting/emphasising tags can be treated as a title. If
such feature still does not exist, then we use the first
sentence of body text. The pseudo code of embracing
strategy “From Title” is listed in Algorithm 2. The
input of the algorithm is the target page ď (as well
as the title of the target page d.t). The output of the
algorithm is a seed s and a list of important terms T .

Algorithm 2 Embracing stage with strategy
“From Title”.

1: function EmbraceFromTitle(ď)
2: ď 7→ T . Terms extracted from ď is stored in

term list T .
3: for ∀t : t ∈ T do
4: if t appears between emphasising tags

then
5: t.w ← 10 . Emphasised terms weight:

10
6: else
7: t.w ← 1 . Normal terms weight: 1
8: end if
9: end for

10: Sort T from “heavy” to “light”
11: ŝ ← ď.t
12: s ← ∅
13: if Rank(ŝ, ď) >= 1 then
14: s ← T
15: return (s,T) . Seed found.
16: end if
17: for τ ← 1 to `− length of ď.t do . τ : length

of seed.
18: for θ ← 1 to Θ do
19: Append τ terms ([tθ, tθ+1, . . . , tθ+τ−1])

from T to candidate seed ŝ
20: D ← SE(ŝ)
21: if 1 ≥ Rank(ŝ, d) < Rank(s, d) then
22: s ← ŝ
23: end if
24: end for
25: if s 6= ∅ then
26: return (s,T) . Seed found.
27: end if
28: end for
29: return (s,T) . s = ∅, Seed not found.
30: end function

To choose a seed for it being more readable, pop-
ular, or user acceptable, the weight for each term in
the word list can be multiplied by a word importance
function M(t) when an importance word list T is
available, where t is a word. The higher return value
of the function indicates the more likely the word is
to be chosen for seeding. For example, ‘glowworm’
should have a higher weight than ‘Arachnocampa’, as
‘glowworm’ is a word easier to remember. A typical
implementation for word importance is the word fre-

quencies, except for the words in stopword list which
should return 0. School teachers may like to set the
return values of coarse words to 0 to prevent students
from viewing inappropriate Web pages. The impor-
tant word list is re-sorted after the weight of words
in the list are updated. However, there is no such
a universal word importance function currently avail-
able, we treat each word equally in our current design
and the tests of the effectiveness of word importance
function is not included in our experiments.

3.2 Expanding Stage

The objective of expanding stage is to find a candi-
date KS that makes the target page be ranked at the
top of the search results. The seed derived at embrac-
ing stage is used as the initial candidate KS for the
expanding. New terms from the important term list
T shall be added to candidate KS until the candidate
KS tops the target page.

The current selection method of appending new
terms is based on the inverse document frequencies
(IDFs) of those terms appeared within the documents
of set D. The terms with low document frequencies
(DFs) are more likely to improve the rank of the tar-
get page. The main reasons are that (1) they narrow
down the range of documents to search, (2) they pro-
vide the search engine with indexes of all terms, and
(3) they return only the documents that contain the
keywords in query.

Document frequency is calculated based on For-
mula 4:

DF (t) = |d : d 3 t, d ∈ D − ď| (4)

After DF of each term in the target page is cal-
culated, the term with the lowest DF is appended to
the candidate KS. If the rank of the target page im-
proves after appending term t, the term appending is
repeated until the candidate KS tops the target page.
Otherwise the second lowest DF term is appended
and tested, and so forth.

During the process of expanding, a phenomenon
called Search Engine Shading might occur such that
none of the terms in Tď would improve the rank of
the target page at the expanding stage. The Search
Engine Shading refers that the target document ď is
“shaded” by other documents whose ranks are ahead
of ď and whose terms form the supersets of that of
the target document. For instance, two documents,
d1: “Cats are better than dogs” and d2: “Cats are
not better than dogs”. are accessible for a search en-
gine. The term sets of d1 and d2 are: { ‘Cats’, ‘are’,
‘better’, ‘than’, ‘dogs’} and { ‘Cats’, ‘are’, ‘better’,
‘than’, ‘dogs’, ‘not’ } . That means Td1 ⊆ Td2 . If
d2 is ranked ahead of d1, there might be no way to
rank d1 ahead of d2 in the process. So when encoun-
tering Search Engine Shading, we need to relax the
constraints and to return the candidate KS in order
to make the target page ranking higher.

The pseudo code of expanding stage is listed in Al-
gorithm 3. The input parameters of the algorithm are
the target page ď, the term list T , and the seed s from
embracing stage. The algorithm returns a candidate
KS k.

Search Engine Shading can be detected if the can-
didate KS k cannot top the target document when
the algorithm stops.

3.3 Eliminating Stage

The objective of eliminating stage is to delete super-
fluous terms in the candidate KS (denoted as k in
the algorithm). A naive way to discover superfluous

Algorithm 3 Expanding stage.

1: function Expanding(ď,T ,s)
2: k ← k̂ ← s
3: for t : t ∈ T do k̂ ← k̂ + t
4: if Rank(k̂, ď) = 1 then
5: k ← k̂
6: return k
7: else if then1 < Rank(k̂, ď) < Rank(s, ď)
8: k ← k̂
9: return k ←Expanding(ď,T ,k̂)

10: end if
11: end for
12: return k . Search Engine Shading

encountered.
13: end function

terms is to test every permutation of terms in k. How-
ever the time complexity of this method is

∑|k|
i=0 P

|k|
i ,

which is not desirable for a middle sized candidate KS.
For instance, there could have 9,864,100 permutations
for a 10-word candidate KS, and every permutation
would issue a query to search engine.

In order to reduce the number of tests, we start
elimination from the leading terms in KS until the
elimination would make the target page fall from its
top rank, or the terms in the candidate KS are all
tested. The pseudo code of elimination process is
listed in Algorithm 4. The input parameters of the
algorithm are the target page ď and the candidate KS
k from expanding stage. The algorithm returns the
shortest KS ǩ.

Algorithm 4 Eliminating stage.

1: function Elimination(ď,k)
2: ǩ ← k.
3: Let Tk be the list of terms in k.
4: for t : t ∈ Tk do k′ ← Elimination(ď,ǩ)
5: if 1 ≤ Rank(k′, ď) ≤ Rank(ǩ, ď) and k′ is

shorter than ǩ then
6: ǩ ← k′ . Shorter KS found.
7: end if
8: end for
9: return ǩ . the shortest KS found.

10: end function

There are still some cases that the found KS is not
the shortest. Other than Search Engine Shading, a
possible reason of this problem is that there is a limit
of the query length for the search engine efficiency
and its security control. The process of finding the
shortest KS may also fail if the character-length of
KS is longer than the length-limit of a query.

3.4 Limitations

The proposed approach would not work in following
circumstances [7]:

Non-indexed Web page: Embracing stage will fail
if the target page is not searchable by a search
engine.

Dynamic Web page: Page content is subject to
constant changes. These pages include service
pages, dynamic HTML and search result pages
from other search engines or from a database.

Non-textual resource: If the target page does not
contain textual information, then it is impossible
for embracing stage to extract keyword.

Modern mainstream search engines have many ad-
vanced search functions such as phrase search, in-link,
regular express, and non-negative search. However,
these innovative search methods are hardly applica-
ble to digital libraries or on intranets. For a wider
applicability of ISE the above advanced features are
not considered in the design of ISE.

4 Experiments

The experiments are designed to evaluate the effec-
tiveness and efficiency of our ISE implementation.
The ISE effectiveness is considered as whether a
shortest KS can be successfully obtained. And if it
is able to top the given target document. While the
ISE efficiency is considered as whether the number
of queries is reasonably small in order to obtain a
shortest KS. It should be pointed out that the actual
runtime analysis is not suitable here for ISE efficiency
evaluation, as the runtime of ISE can heavily rely on
the network traffic, which may not be always stable.

The effectiveness and efficiency of embracing
strategies “FromSingleWord” and “FromTitle” are
examined and compared with different search engines.
The data set preparation, the evaluation methodol-
ogy, and the results of experiments are shown in the
rest of this section.

4.1 Experimental Data

The ISE implementation is tested with two major
search engines: Live Search and Yahoo. We have
also performed the experiments with Google, how-
ever, after we finished the experiments, we found out
that Google’s terms of service 2 states that the auto-
matic querying clients are not allowed without sepa-
rate permission. Since our application for the permis-
sion has not yet been granted by Google, we cannot
provide our experimental results on Google in this pa-
per. Though the results are consistent to the other
two search engines.

To verify our proposed approach, a shortest KS
is required for every target page. But only a brute-
force search can guarantee to found such shortest KSs.
Here we provide pseudo shortest keyword sequences
for each target page in test. A pseudo shortest
KS is generated from randomly concatenated terms
which were selected from the titles of category and
sub-category of a very large and well-known project
namely, Open Directory Project (ODP) 3. In this
way their titles and category/subcategory can form
a unique identification of their corresponding Web
documents. Therefore the criteria of the effectiveness
are set objectively. All Web documents of the Open
Directory Project can be potentially used as target
pages and used as the initial search result regarding
to the given pseudo shortest KSs. In other words, a
pseudo shortest KS can guarantee that it will top the
target page, even it is not always the actual one that
could be found by a brute-force approach.

Since the evaluation sets from search engine ven-
dors are not available yet, a pseudo shortest KS is a
necessary devil. Indeed, the web pages indexed by
pseudo shortest KSs tend to rank higher, but evalu-
ation cannot proceed without knowing the existence
of the shortest KS. Pseudo shortest KS also ensures
the target pages be searchable. Establishing an ex-
perimental search engine seems plausible, however, a

2http://www.google.com/accounts/TOS
3see http://dmoz.org/. “The Open Directory is the most widely

distributed data base of Web content classified by humans. The
Open Directory powers the core directory services for the Web’s
largest and most popular search engines and portals, including
Netscape Search, AOL Search, Google, Lycos, HotBot, DirectHit,
and hundreds of others.”

nearly enterprise-level search engine is required, oth-
erwise the conclusions might be misleading because a
shortest KS can be found in a few steps, not to men-
tion an ad-hoc ISE function need to be developed for
the experimental search engine.

For each search engine, 100 pseudo shortest KSs
have been automatically generated in 10 different
sizes (from one-word to 10-word). After excluding
the non-HTML files (e.g., PDF or Microsoft Word
files), 96 Web documents are used as the testing tar-
get pages for Yahoo and 99 for Live Search.

Other types of files are to be supported in fu-
ture, as non-HTML files such as pdf, postscript, Mi-
crosoft Word documents, and Powerpoint slides, are
now all searchable in modern search engines. Differ-
ent parsers should be used to handle those formats.

4.2 Evaluation Methodology

The effectiveness of ISE is measured by the success
rate and top-one rate. The success rate (SR) shows
whether ISE can successfully get the shortest KSs. It
is defined as:

SR =
Nǩ

N
(5)

where Nǩ is the number of the shortest KSs found,
and N is the number of the target pages. The top-one
rate (TR) shows whether a obtained shortest KS can
top the corresponding target page. It is defined as:

TR =
Tǩ

Nǩ

(6)

where Tǩ is the number of obtained shortest KSs that
top the target pages. The top-one rate is also in-
versely proportional to the occurrence of the Search
Engine Shading problem. An ISE implementation is
considered effective if both the SR and TR are in high
percentage (i.e., close to 100 percent).

The efficiency of ISE is measured by the average
shortness and average impoliteness. The shortness
(SH) shows whether the obtained shortest KSs are
shorter than the pseudo shortest KSs. It is defined
as:

SH =
|k|
|ǩ| (7)

where |k| and |ǩ| are the numbers of terms in the
pseudo shortest KS and in the shortest KS found. ISE
is efficient if the computed shortness is greater than
1. The impoliteness (IP) shows whether ISE is polite
to the search engine, that is, ISE is impolite when it
sends a large number of queries to a search engine. IP
is an important measure because it implies not only
the inefficiency of ISE, but also the extra network
traffic and search engine load. Moreover, some search
engines may have daily query-quota for their client
applications. The impoliteness is defined as:

IP = log10 q (8)

where q is number of queries sent to search engine to
obtain a shortest KS. For a single automatic client
like our ISE implementation, the daily query-quota
stated by most search engines is 1000. Therefore, our
ISE implementation is deemed to be acceptable if the
impoliteness score is below 3 (i.e., the magnitude of
the query-quota).

4.3 Results

4.3.1 Effectiveness Evaluation

The effectiveness of ISE with different embracing
strategies is compared in this section. Table 1

Table 1: Success Rate of Embracing Strategies
FromSingleWord FromTitle

Live Search 94.95 % 98.99 %
Yahoo 90.63 % 89.58 %

Table 2: Top-one Rate of Embracing Strategies.
FromSingleWord FromTitle

Live Search 100.00 % 100.00 %
Yahoo 100.00 % 100.00 %

presents the success rate (SR) of ISE with various
embracing strategies in Live Search and Yahoo. High
success rates suggest that both the seed and shortest
KSs can be found in most cases.

Table 2 presents the top-one rate (TR) of ISE with
various embracing strategies in Live Search and Ya-
hoo. The results are perfect. These results show that
whenever a shortest KS is found, it tops the given
target page. In other words, if a seed can be obtained
at embracing stage, then the shortest KS based on
the seed will top the target page. Results in Table 2
also show that there is no occurrence of Search En-
gine Shading. However, we cannot safely conclude
that Search Engine Shading will never happen, be-
cause we have only tested a limited number of target
pages (i.e., 96 for Yahoo and 99 for Live Search).

4.3.2 Efficiency Evaluation

The efficiency of ISE of different embracing strate-
gies are compared in this section. Figures 2 and 3
illustrate the comparisons of the sizes of candidate
KSs (a seed is also a candidate KS) at every stage.
In these figures, the solid and shading bars on the
left represent the sizes of the candidate KSs of the
“FromSingleWord” strategy, while bars on the right
are for the “FromTitle” strategy at embracing stage.
In order to compare the sizes among that of pseudo
shortest KSs and candidate KSs, the sizes of pseudo
shortest KSs are shown as the hollow wide bars on
the left. A shorter KS size suggests a better KS-size
efficiency. From these figures, it can be seen that the
sizes of candidate KSs are seldom larger than that of
the pseudo shortest KSs. This implies that most of
the ISE-generated shortest KSs are not very long. We
also observed that the sizes of the final shortest KSs
are almost identical to their corresponding seeds in
“FromSingleWord” strategy, while the sizes of the fi-
nal shortest KSs are slightly shorter than that of their

 0

 2

 4

 6

 8

 10

 12

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

F
ou

nd
 K

S
 s

iz
e

Pseudo KS Size

LiveSearch: length of KS in each stage

Original

embrace
expand

eliminate

embrace
expand

eliminate

TitleSingleWord

Figure 2: Live Search: Size of Candidate KS at Each
Stage.

 0

 2

 4

 6

 8

 10

 12

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

F
ou

nd
 K

S
 s

iz
e

Pseudo KS Size

Yahoo: length of KS in each stage

Original

embrace
expand

eliminate

embrace
expand

eliminate

TitleSingleWord

Figure 3: Yahoo: Size of Candidate KS at Each Stage.

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 1 2 3 4 5 6 7 8 9 10

S
ho

rt
ne

ss

Pseudo KS Size

LiveSearch: Pseudo KS Size by Shortness

SingleWord
Title

Figure 4: Live Search: Shortness Comparison be-
tween Embracing Strategies.

corresponding seeds in “FromTitle” strategy.
The shortness analysis is shown in Figures 4 and 5,

and Table 3. A greater-than-one shortness score indi-
cates that ISE is KS-size efficient. From these results,
it can be seen that the both of our embracing strate-
gies are KS-size efficient. Moreover, the embracing
strategy “FromSingleWord” is better than “FromTi-
tle” in terms of KS-size efficiency.

Figures 6 and 7 compare the numbers of queries
required to obtain candidate KSs at every stage. In
these figures, the solid and shading bars on the left
show the numbers of queries required to obtain the
candidate KSs for the embracing strategy “FromS-
ingleWord”, while the bars on the right are for the
embracing strategy “FromTitle”. A small number of

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 1 2 3 4 5 6 7 8 9 10

S
ho

rt
ne

ss

Pseudo KS Size

Yahoo: Pseudo KS Size by Shortness

SingleWord
Title

Figure 5: Yahoo: Shortness Comparison between Em-
bracing Strategies.

Table 3: Contingency Table for Average Shortness of
Search Engines.

FromSingleWord FromTitle
Live Search 2.39 1.88
Yahoo 2.72 1.72

Table 4: Average Impoliteness of Search Engines.
FromSingleWord FromTitle

Live Search 1.59 1.27
Yahoo 1.26 1.01

queries suggests a better query efficiency. In these fig-
ures, most queries are issued at embracing stage, fol-
lowed by eliminating stage, and in most cases, the ex-
panding stage is rarely performed. This implies that
the seeds could have already topped the target pages
in nearly all cases. Figures 6 and 7 also show that
the most shortest KSs can be obtained within 1000
queries, which is below the daily query-quota of the
most search engines.

The impoliteness analysis is shown in Figures 8
and 9, and Table 4. A small score of impoliteness in-
dicates that ISE is query-efficient. From these results,
the embracing strategy “FromTitle” is more query-
efficient than “FromSingleWord” in most cases.

So far no sign of the Search Engine Shading oc-
curred in our experiments. As there exists a shortest
KS for each target Web page in our experiments, we
have not encountered the circumstances that Search
Engine Shading would occur.

To sum up, our ISE implementation is effective
and efficient, as the success rates and top-one rates are
demonstrated successfully high (> 89%), the short-
ness scores are large (> 1), and the impoliteness
scores are below the threshold (i.e., below the magni-
tude of the query-quota). Our experiments have effec-
tively set up a benchmark for testing all other future
ISE implementations and strategies. The experiment
results also show that the embracing stage (seed gen-
eration) is the most important stage among the three,
as the other two stages make relatively smaller contri-
butions towards the final shortest KS. Thus, finding
the better embracing strategies becomes a key to sig-
nificantly improve the ISE effectiveness and efficiency.

5 Conclusions

Traditional keyword extraction algorithms do not
consider the ranking of documents when keyword is
extracted. This paper has defined a new type of sys-
tem namely, Inverse Search Engine (ISE) to extract
the shortest sequence of keywords from a Web page
such that the keyword sequence can be used in a
Web search and the Web page will be ranked as the
first result by the given search engine. A number of
challenges are addressed and the algorithms are pro-
posed. The main contribution of this paper is the
idea of the ranking-constrained keyword sequence ex-
traction as well as the construction of ISE that can
be used to discover the shortest keyword sequence
for the unique identification of Web documents. The
proposed three-stage algorithms are tested for their
effectiveness and efficiency. An evaluation framework
is proposed and the significant experiment results are
demonstrated. Our experiment results can be re-
garded as a new benchmark for the further research
in this direction.

One important issue still remains: ‘shortest’ is de-
fined as the only one factor. In the real world, met-

 0

 20

 40

 60

 80

 100

 120

 140

 160

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

Q
ue

rie
s

m
ad

e

Pseudo KS Size

LiveSearch: Queries made in each stage

embrace
expand

eliminate

embrace
expand

eliminate

TitleSingleWord

Figure 6: Live Search: Pseudo Shortest KS Size by
Queries.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

Q
ue

rie
s

m
ad

e

Pseudo KS Size

Yahoo: Queries made in each stage

embrace
expand

eliminate

embrace
expand

eliminate

TitleSingleWord

Figure 7: Yahoo: Pseudo Shortest KS Size by
Queries.

rics such as the length of the keyword and popularity
of the keyword would factor in. For example, one
would prefer “insect lights Australia” over “Arachno-
campa Springbrook”. The shortest keyword sequence
extracted from Web documents can be useful in many
situations, such as Web indexing, content summary,
Web advertisement. However, this usage should not
prevent users from choosing words that they would
prefer or know about, to search for the Web pages
that they want.

Further work will focus on above issues and the
popularity of keywords will be considered. The sys-
tem performance regarding the scalability and sup-
porting different file types will also be considered. In
this case, the so-called Search Engine Shading would
occur. The further experiments on the Search Engine
Shading phenomenon will be given. As the initial em-
bracing strategies can influence the effectiveness and
efficiency significantly, a better embracing strategy
might be designed to improve the ISE performance.

The idea of design and implementation of ISE has
also raised another broad issue that if the whole Web-
searchable documents on the World Wide Web can be
partitioned into individuals according to their key-
word phrases, the certain combination of keyword
phrases could be ‘owned’ by the Web document au-
thors.

References

[1] J. Battelle. John battelle’s searchblog:
Being jon kleinberg. Battellemedia.com
(http://battellemedia.com/archives/000304.php),
February 2004.

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 1 2 3 4 5 6 7 8 9 10

Im
po

lit
en

es
s

Pseudo KS Size

LiveSearch: Pseudo KS Size by Impoliteness

SingleWord
Title

Figure 8: Live Search: Impoliteness Comparison be-
tween Embracing Strategies.

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 1 2 3 4 5 6 7 8 9 10

Im
po

lit
en

es
s

Pseudo KS Size

Yahoo: Pseudo KS Size by Impoliteness

SingleWord
Title

Figure 9: Yahoo: Impoliteness Comparison between
Embracing Strategies.

[2] S. Brin and L. Page. The anatomy of a large-
scale hypertextual Web search engine. Computer
Networks and ISDN Systems, 30(1–7):107–117,
1998.

[3] E. Frank, G. W. Paynter, I. H. Witten,
C. Gutwin, and C. G. Nevill-Manning. Domain-
specific keyphrase extraction. In IJCAI 1999:
Proceedings of the 16th International Joint Con-
ference on Artificial Intelligence, pages 668–673,
San Francisco, CA, USA, 1999. Morgan Kauf-
mann Publishers Inc.

[4] J. Goodman and V. R. Carvalho. Implicit queries
for email. In CEAS 2005: 2nd Conference on
Email and Anti-Spam, 2005.

[5] D. Kelleher and S. Luz. Automatic hypertext
keyphrase detection. In IJCAI 2005: Proceedings
of the 22nd International Joint Conference on
Artificial Intelligence, pages 1608–1609, 2005.

[6] Y. Matsuo and M. Ishizuka. Keyword extraction
from a single document using word co-occurrence
statistical information. International Journal on
Artificial Intelligence Tools, 13(1):157–169, 2004.

[7] T. Phelps and R. Wilensky. Robust Hyperlinks
Cost Just Five Words Each. University of Cal-
ifornia, Berkeley, Computer Science Division,
2000.

[8] C. Salton, G.and Yang. On the specification of
term values in automatic indexing. Journal of
Document, 29(4):351–372, Dec. 1973.

[9] K. Sparck Jones. A statistical interpretation of
term specificity and its application to retrieval.
Journal of Document, 28(1):11–20, March 1972.

[10] W. tau Yih, J. Goodman, and V. R. Carvalho.
Finding advertising keywords on web pages. In
WWW 2006: Proceedings of the 15th interna-
tional conference on World Wide Web, pages
213–222, New York, NY, USA, 2006. ACM Press.

[11] P. D. Turney. Learning algorithms for keyphrase
extraction. IR: Information Retrieval, 2(4):303–
336, 2000.

