
Reference Point Transformation for Visualisation

Cheng G. Weng Josiah Poon

School of Information Technologies,
J12, University of Sydney,

Sydney, NSW, Australia 2006,
Email: {cheng, josiah}@it.usyd.edu.au

Abstract

Visualisation of multi-dimensional dataset can be
very useful for data mining purposes. This paper de-
scribes a simple visualisation technique to reduce a
high dimensional dataset into a 3D space. Our aim
is to design a method that is simple, easy, computa-
tionally cost-e�ective and able to give a reasonable
visualisation of the dataset.

The original dataset is projected to a lower dimen-
sional space via geometric metrics, while the proxim-
ity of the original data points is approximately pre-
served. The idea behind our data transformation is
the concept of triangulation, which is applied through
the use of reference points. In our study, we compared
our method with the Principal Component Analy-
sis (PCA) and Random Projection (RP). The results
suggest that: when compared with PCA, our method
can deliver a comparable visualisation of the dataset
at a lower cost; when compared with RP, our method
yields better visualisations at a similar cost.

Keywords: Data visualisation, Dimensionality reduc-
tion, Random projection

1 Introduction

�A picture is worth a thousand words�, a proverb that
well describes why visualisation can be a powerful tool
for gaining deeper insight into di�cult problems. A
good visualisation should be able to convey a story of
what is being visualised. Generally, di�erent domains
require di�erent types of visualisation techniques, for
instance, we use stock charts to show stock market
data and maps to display physical locations. It seems
that the human brain is accustomed to handling in-
formation in graphical forms. A good example which
shows that graphs are better analytical tools would
be to compare reading experimental results from a
100x100 table, as oppose to reading them from a scat-
ter plot. For any non-trivial sets of experimental re-
sults, it is generally easier to spot trends in the scatter
plot than in the table. So a good visualisation should
help to organise complex information into easy to un-
derstand structures. In this paper, the domain that
we will try to visualise is the vector datasets, i.e. a
collection of well-structured and stationary dataset,
where each example in the dataset is represented by
n number of features.

In general, there are some questions that need to
be considered in order to construct a good visualisa-

Copyright c©2009, Australian Computer Society, Inc. This pa-
per appeared at the Eighth Australasian Data Mining Con-
ference (AusDM 2009), Melbourne, Australia. Conferences in
Research and Practice in Information Technology, Vol. 101.
Paul J. Kennedy, Kok-Leong Ong, and Peter Christen, Eds.
Reproduction for academic, not-for pro�t purposes permitted
provided this text is included.

tion for any vector dataset. Below are some of the
basic questions that will help us shape our method:

1. Meaningfulness: Can the user interpret the vi-
sualisation in ways that would help them learn
more about the dataset?

2. Interactive: Does the visualisation need to pro-
vide a feedback function to interact with the user
and give real-time responses?

3. Computation: How long will it take to generate
the visualisation? Does it scale up well with more
data, i.e. more examples, higher dimensionality,
or both?

4. Limitations: What would be the scope of the
visualisation? Can it work with di�erent types
of attributes, or maybe an arbitrary number of
dimensions?

Based on these questions, we have developed a data
transformation technique to allow users to visualise
datasets in an interactive environment. This tech-
nique uses di�erent reference points to position ex-
amples in the dataset, therefore, we refer to it as the
kRef method. While it is not meant to be an accu-
rate approach as compared with other dimensionality
reduction methods, we recommend it as a good vi-
sualisation alternative for practical reasons: it scales
up well to large datasets, it is cheap to compute, it
is memory e�cient, it can be computed in parallel, it
has no dimensionality restrictions, it is quick to im-
plement and, most importantly, it is able to preserve
a reasonable proximity of the original data points in
order to deliver a meaningful visualisation of datasets.

In the next section, we will provide some related
works, this will then be followed by Section 3, which
is the main content of the paper and it describes our
technique in detail. In Section 4, we will demonstrate
the results of comparing our technique with PCA and
RP, and in Section 5 we will provide some discussions
and future works.

2 Related Works

Visualisation is one of the hot topics in computer
science and there are many techniques that can be
used to visualise multi-dimensional datasets. One
of the early works for visualising multi-dimensional
datasets was the parallel coordinates method (Insel-
berg, 1996). Parallel coordinates provides a 2D repre-
sentation of any given dataset. A simple illustration is
provided in Figure 1. The advantage of this method
is that users can visualise the pairwise relationship
between di�erent dimensions in a fairly pleasant man-
ner, but the drawback is that it can be very di�cult to
visualise when the dataset has a high dimensionality.
There is also a novel approach of using human faces
to represent di�erent examples in the dataset (Morris
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Figure 1: Parallel coordinates
An illustration of parallel coordinates. The x-axis
is the dimensions/attributes and the y-axis shows the
di�erent values of the attributes. Examples are shown
as lines connecting each dimension. In this �gure, all
four examples have the same value for Attribute 1,
but they split into 2 groups on Attributes 2. In the
last attribute, all four examples have a di�erent value.

et al. (2000)). In this approach, multiple faces are
presented, one face per example and each face have
a number of adjustable facial features to represent
di�erent dimensions. For example, if one chooses to
use the mouth to represent the �rst attribute, then
the sizes of the mouth could be adjusted according
to the value of the �rst attribute. In essence, this
method makes use of the human's ability to spot sim-
ilar and dissimilar faces, which translates to similar
and dissimilar examples based on a combination of
attributes. This method seems to be more scalable to
dimensionality than the parallel coordinates method,
but it is feasible only when dealing with a handful of
examples.

Other related works in the data mining commu-
nity are the dimensionality reduction techniques, such
as PCA (Jolli�e (2002)), self-organising maps (Koho-
nen (2000)), random projection (Bingham and Man-
nila (2001); Lin and Gunopulos (2003); Blum (2006))
and multi-dimensional scaling (Borg and Groenen
(1997)). For a good survey paper on dimensional re-
duction techniques, Fodor (2002) has provided a com-
prehensive coverage. Essentially, our technique also
belongs to the category of dimensionality reduction,
and the main challenge of dimensionality reduction is
to perform feature selection with minimum informa-
tion loss. The reduced dataset can then be utilised
for other purposes, such as visualisation, data com-
pression and e�cient learning.

From an appropriate perspective, random projec-
tion (RP) is similar to our work because of the similar
dataset transformation process. Random projection
is based on Johnson-Lindenstrauss lemma (Johnson
and Lindenstrauss (1984)), which states that if we
project a set of m data points from n-dimensional
space onto a random k-dimensional space, such that
k ≥ O(ε−2log(m)), then the pairwise distances are
preserved within ε. This minimum bound suggests
that k could potentially be much smaller than n. To
apply random projection, the original m by n data
matrix is reduced, by multiplying a random n by k
matrix, with the constraint that the column vectors
in the random matrix are unit vectors. After the de-
scription of our work, in the discussion section, we
will point out the di�erences between our method and
random projection.

Figure 2: Reference Points
In this 2D example, we have 3 reference points (R1,
R2 and R3) and 4 data points (x, y, z and a). The
circles represent equal Euclidean distances from the
centre reference points, i.e. the distances between R1
to x, y and z are the same.

3 Reference Point Method

As a motivational example of our proposed technique,
we use Figure 2 to show that, using reference point
R1 alone is not possible to tell apart x, y and z by
the distance measurement, as they have the same dis-
tance. However, the situation can be improved with
an additional reference point, R2, because x will have
a di�erent distance to R2 than y and z. Lastly, in
order to separate y and z, we need another refer-
ence point, R3. Thus, with 3 reference points, we
can uniquely identify x, y and z with their distance
information to each reference point. Therefore, the
basic requirement for the method to work is to have
at least 3 reference points, and because we can se-
lect any k number of reference points, provided that
k ≥ 3, hence we called this method kRef.

Furthermore, we have put a data point, a, to show
that, in the 3Ref space, a and z should have sim-
ilar distance measurements to each reference point
because they are located at a close proximity; this is
why kRef transformation is able to preserve the ap-
proximate pairwise distances in a lower dimensional
space. One can see this transformation as projecting
a dataset from the view of each reference point and
combining di�erent views to approximate the original
image. However, the distances in the kRef space will
be distorted due to the projection based on a distance
metric.

3.1 Algorithm and Run-time

The kRef method will transform the original dataset,
X, into a new space, kRefTransform(X):

X =

 x00 . . . x0n
...

. . .
...

xm0 . . . xmn



kRefTransform(X) =

2664
kRef(x0)00 . . . kRef(x0)0k

.

.

.
. . .

.

.

.
kRef(xm)m0 . . . kRef(xm)mk

3775

CRPIT Vol 101 AusDM'09

Page 44



Algorithm 1 Algorithm for transform a dataset to kRef space (in Python).

de f kRefTransform ( dataset , r e f e r en c ePo i n t s ) :
newDataset = [ ] # c r ea t e an empty datase t l i s t
f o r example in datase t :

newExample = [ ] # c r ea t e an empty example
f o r r e f in r e f e r en c ePo i n t s :

newExample . append ( d i s t ( r e f , example ) )
newDataset . append (newExample )

re turn newDataset

The kRefTransform() method returns a new
dataset by taking the original dataset, X, which con-
tains m examples and n attributes; it then uses the
function kRef() to map each example into k at-
tributes, where k equals to the number of reference
points. The basic algorithm is described in Algo-
rithm 1, which is written in Python programming
language. In Algorithm 1, we de�ned a method,
kRefTransform(), that takes a list of examples
(dataset) and a list of reference points (reference-
Points), then returns with a list of examples in k-
dimensions (newDataset). The dist() function in our
implementation uses Euclidean distance, because we
have found it to be a good choice in our experiments.
Although the algorithm shows only one nested loop,
but the Euclidean distance function actually contains
another loop that goes through all the attributes in
each example. So in the worst case, the algorithm
has a run-time of O(knm), where k is the number of
reference points, n is the number of attributes and m
is the number of examples in the dataset. In most
cases, both k and n are �xed constants and only m
would grow, so the average run-time is O(m).

3.2 Fundamentals

We have identi�ed 4 fundamental factors that can
impact the resulting kRef space: the position of
the reference points, the number of reference points
used, the original dimensionality of the dataset and
the distance metrics employed. These factors are
inter-related, because di�erent dataset dimensional-
ities and di�erent number of reference points may re-
quire a di�erent placement of reference points, which
may in turn be a�ected by the distance metric. But,
as a �rst attempt, we will analyse them indepen-
dently.

Before we go through the factors, we will �rst pro-
pose a quality assessment measure for the dataset
transformation.

3.2.1 Quality measurement

The measurement is intended to evaluate how good a
technique is at preserving the proximity of data points
in the geometric space. We de�ne this measurement
as the correlations between the pairwise distances in
the original space and that in the transformed space.
For e�ciency reasons, if the dataset is large, we will
only examine a random subset of the dataset; our
empirical results suggest that a sample of 20% seems
to give a reasonable estimate of the true value.

For a given set of data points, we need to �rst gen-
erate a matrix that contains m×m pairs of distances:

 dist(x(0), x(0)) · · · dist(x(0), x(m))
...

. . .
...

dist(x(m), x(0)) · · · dist(x(m), x(m))



The dist() function calculates the Euclidean dis-
tance between two examples. This matrix is sym-
metric, i.e. the diagonal line contains zeros and the
upper-right half is a mirrored copy of the lower-left
half. Therefore, we can �atten the matrix into a vec-
tor by appending the rows together, i.e. Dsample =
[row(x(0)), row(x(1)), ..., row(x(m−1))]T , and the size
of Dsample is Rm(m−1)/2.

We compute the distances vector for both the orig-
inal and the transformed datasets to get Doriginal

and DkRef , then correlation(Doriginal, DkRef ) can
be calculated with Pearson Product-moment Corre-
lation Coe�cient (Moore, 2006):

correlation(X,Y ) =
1
M

M∑
i=1

(
Xi − µX

σX
)(
Yi − µY

σY
)

where µX , µY , σXand σY are the means and
the standard deviations for the corresponding vec-
tors, and M is the size of X, i.e. |X|. The func-
tion correlation() will produce a real number be-
tween -1 and 1 to indicate whether the vectors have a
negative correlation (towards -1) or a positive cor-
relation(towards 1), or simply no obvious correla-
tion (around 0). A good quality data transformation
should have a strong positive correlation, whereas
a poor quality transformation is indicated by severe
negative correlation, because it means that the origi-
nal distances are distorted in the transformed space.

3.2.2 Synthetic test datasets

Test datasets are used to examine the e�ects of each
factor on the quality of the transformed space. A
test dataset consists of data points at every possible
feature space, e.g. if a dataset is described by 3 at-
tributes and each attribute can take on 5 di�erent
values, then all possible spaces in this dataset will be
53 = 125. We have generated 64 test datasets with
all combinations from di�erent settings: the origi-
nal dimensionality {2, 3, 4, 5}, the number of refer-
ence points {3, 4, 5, 6} and the possible attribute val-
ues {3, 4, 5, 6}.

3.2.3 Factor 1: Positions of the reference
points

It can be shown that the quality of the resulting kRef
space will be a�ected by the placements of the ref-
erence points. Suppose, in Figure 2; instead of the
stated 3 reference points, we choose y, z and a to be
the reference points, then the new reference points
will form a line. When this happens, the line is e�ec-
tively a mirror-like projection, i.e. the data points on
either side of this line will have a symmetrical counter-
part that has the same distances to each new reference
points. As a result of this mirror-like projection, two
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(a) 2D (b) 3D

(c) 4D (d) 5D

Figure 3: Use test datasets to compare di�erent factors
The y-axis is the quality measurement described in Section 3.2, so large value means higher quality. These 4
graphs represent 4 di�erent original dimensions (2D to 5D), and in each graph there are 4 di�erent clusters
representing di�erent numbers of reference points used (3Ref to 6Ref ), then each cluster is further divided
into 4 bars, where each bar, from left to right, represents the number of possible attribute values (3 to 6). For
visual consistency, the graphs are scaled to sit between 0.5 and 1.

Figure 4: Compare distance metrics: Euclidean versus Manhattan
This graph plots the same set of experiments shown in Figure 3, but instead of bars, we plot the quality
measures for each cluster as lines. Each small line segment corresponds to a cluster in the Figure 3, e.g. 5D3R
is the same as the 3Ref cluster of 5D graph. The upper lines in this �gure are the performances of Euclidean
distance, which is the same as the values in Figure 3. The lower line segments are the results when we employ
the Manhattan distance instead.
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di�erent data points in the original space will overlap
in the transformed space.

At the current stage, we have yet to work out a for-
mal derivation of optimal positions for the reference
points that would minimise the loss of information
after data transformation. Although we do not have
a formal proof, we do have 2 general rules that can
yield a good performance in practise:

1. Do not place the points too close to each other,
because this will result in data points having sim-
ilar distances to each reference points. An ex-
treme case would be to place all reference points
at the same spot, which would be useless. There-
fore, one should place the reference points far
away from each other, preferably outside the
dataset region.

2. The layout of the reference points should aim to
produce a unique set of distances for di�erent
data points. This can help to reduce the informa-
tion loss, because, at least, di�erent data points
in the original space will not overlap in the kR
space.

Based on these two rules, we placed our reference
points around the maximum and minimum attribute
values, and we also need to induce some randomness
to ensure that the reference points do not have the
same attribute values. In addition, we followed
certain shape layout to make sure that the reference
points are far away from each other, e.g. using a trian-
gular layout for 3 reference points. An example set of
3 reference points to transform a 3D dataset would be
{(0.10, 0.07, 0.98), (0.09, 0.95, 0.05), (0.97, 0.03, 0.04)}
(assuming the attributes are real numbers between 0
and 1).

3.2.4 Factor 2: Number of reference points

Figure 2 shows that it requires at least 3 reference
points to uniquely identify data points in a 2D space,
but will the same observation be made also in a higher
dimensional space? Unfortunately, this is another dif-
�cult theoretical question that we do not yet have an
answer to, but in our experiment it seems to suggest
that 3 reference points can still produce a unique set
of distances in a higher dimensionality to di�erenti-
ate di�erent data points. We have found that, within
each test dataset, every set of distances is unique.
So, 3 reference points can still uniquely identify every
possible data points in a 5D space.

Although unique identi�cation was possible, the
number of reference points used still seems to have
an impact on the quality of the transformed space.
As shown in Figure 3, using 3Ref seems to be more
unstable and worse than other choices of reference
points. This e�ect is more so in higher dimensional
spaces.

Another observation from Figure 3 is that, as the
number of reference points increases, the quality of
the dataset does not seem to get better, e.g. 4Ref,
5Ref and 6Ref all seem to have comparable qualities
regardless of their dataset dimensionality. We sus-
pect this is due to the layout of the reference points,
because although we are introducing more reference
points, they are probably not at their optimal posi-
tions, so they may have been under-utilised.

3.2.5 Factor 3: Original Dimensions

This factor seems to be the most dominating, as sug-
gested by the results in Figure 3. When the di-
mensionality increases, the quality of the transformed
space generally decreases.

Figure 5: Comparison of transformation quality
The y-axis is the quality measurement described in
Section 3.2. We compare PCA-Top3 (the �rst 3 prin-
cipal components), random projection (RP) and 3 ref-
erence points (3Ref ) in their ability to preserve the
proximity of the data points.

3.2.6 Factor 4: Distance metrics

We tested two di�erent distance metrics: Euclidean
distance and Manhattan distance. For this experi-
ment, in the quality measurement process, we used
the same distance metric as the one used for the
dataset transformation, i.e. the Euclidean distance
will be evaluated with Euclidean distance in the qual-
ity measure, and the same goes for the Manhattan
distance.

We used the same synthetic test datasets to com-
pare the two distance metrics. The results are pre-
sented in Figure 4. We have found that the Euclidean
distance is consistently better than the Manhattan
distance in all settings.

4 Visualisations

For real world dataset visualisations, we used binary
class problems from the UCI data repository (Asun-
cion and Newman, 2007). Some basic information
about the datasets is listed in Table 1. In our ex-
periments, we have used three tasks to compare our
approach with PCA and RP. The �rst task compared
their ability to preserve the proximity of the data
points with the quality measurement. The second
task compared the changes in the decision tree's learn-
ing performance, before and after the data transfor-
mation; the learning performance is measured with
the area under ROC curve (Fawcett (2004)). In the
third task, we looked at the actual visualisations they
produced and see whether insights on the datasets can
be gained.

Although 2D graphs look better on paper, but the
minimum requirement for kRef to work is with 3 ref-
erence points, therefore, for all tasks, we will reduce
the dimensionality to 3 for visualisation. The visuali-
sations are done in an interactive environment1, but,
unfortunately, this is di�cult to present on paper. We
will try to minimise the loss of interaction by rotat-
ing the 3D models to the most clear angle that we can
�nd. However, the depth information will be lost.

1We used mayavi for building the visualisations
(http://mayavi.sourceforge.net/).
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breast-cancer-3Ref breast-cancer-PCA

breast-w-3Ref breast-w-PCA

horse-colic-3Ref horse-colic-PCA

credit-a-3Ref credit-a-PCA

Figure 6: Comparing visualisations (Part1)
Comparing visualisations produced by 3 reference points (3Ref ) and by PCA on 2-class problems from the
UCI datasets.
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credit-g-3Ref credit-g-PCA

diabetes-3Ref diabetes-PCA

ionosphere-3Ref ionosphere-PCA

sick-3Ref sick-PCA

Figure 7: Comparing visualisations (Part 2)
Comparing visualisations produced by 3 reference points (3Ref ) and by PCA on 2-class problems from the
UCI datasets.
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datasets AUC Numeric Nominal Positive% Size
Breast-cancer 0.58 0 9 29.72 286
Breast-w 0.96 9 0 34.48 699
Horse-colic 0.49 7 20 33.70 368
Credit-a 0.89 6 9 44.49 690
Credit-g 0.64 7 13 30.00 1000
Diabetes 0.75 8 0 34.90 768
Ionosphere 0.89 0 34 35.90 351

Sick 0.95 7 22 6.12 3772

Table 1: Dataset information
This table shows some basic information about the datasets, including the performance of J48 (WEKA's
implementation of C4.5 (Witten and Frank (2005))) in the area under the ROC curve (AUC). Numeric and
Nominal denote the number of numeric attributes and nominal attributes in the dataset. Positive% is the
percentage of the smaller class. Size is the total number of examples in the dataset.

Figure 8: Compare the AUCs of J48
This �gure shows how di�erent data transformation
impacts the area under the ROC curve. There are 8
bar clusters, representing 8 datasets. In each cluster,
there are 4 bars, from left to right, denoting the AUC
measures of the original dataset, PCA-Top3, RP and
3Ref.

4.1 Task 1: Comparing quality measure-
ments

The result for the �rst task is shown in Figure 5.
The result shows that PCA is better in most cases
except for horse-colic, credit-a and sick, but 3Ref is
not much behind. On the other hand, RP is the worse
of the three in 7 out of 8 cases.

Since the quality measurement is the correlation
between the before and after transformation dis-
tances, therefore a negative correlation means that
the closer distances are getting farther, whereas the
farther distances are getting closer. This scenario is
considered poor quality, because it distorts the origi-
nal image of the dataset. Negative numbers occurred
4 times in RP, this indicates that RP is distorting the
dataset more than the other two methods. In the sick
dataset, all three methods are negative, suggesting
this dataset is quite di�cult to preserve. The cause
of di�culty is the abundance of binary attributes in
the sick datasets, because in the distance calculation,
binary attributes o�ers less numerical variations than
numeric attributes. Therefore, it is harder to retain
an accurate pairwise distances.

4.2 Task 2: Comparing learning perfor-
mances

The results of the second task is presented in Figure 8,
which shows that in 5 out of 8 cases, all dimensionality
reduction techniques cause the learning performance
to go down. If we compare Original with the next
best AUC value, there are 2 cases, credit-g and sick,
where the drop in AUC is relatively bigger than other
cases. The drops in AUC are 0.09 for credit-g and 0.20
for sick. In both cases, their quality measurements in
Figure 5 are also lower than others, except credit-
a. The biggest AUC drop of 0.20 from sick dataset
coincides with the result from task 1: the sick dataset
does not project well onto lower dimensions.

Although the performances were dropped, but in
most cases the drops were moderate, and because de-
cision tree learner is learning based on the geometric
information of the classes, therefore, it suggests that
the data transformation technique is able to retain
most of the geometric information, i.e. the relative
geometric positions.

If we compare 3Ref with others, 3Ref does worse
than PCA in 5 out of 8 cases, but does better than
RP in 5 out of 8 cases with 1 tie.

4.3 Task 3: Comparing images

For the third task, we still used the AUC of a de-
cision tree learner as a guide to help compare how
much class information is preserved in the visualisa-
tions. This task is similar to task 2, but in this task,
we try to stress that there are useful information when
one has access to the actual visualisation. Task 2 was
a quantitative analysis, but a lot of information about
the geometrical structure was lost. In this task, with-
out de�ning a speci�c aspect of the dataset to quan-
tify, we used the dimensionality reduction techniques
as a general purpose dataset visualiser.

In Figure 6 and 7, we present images of the UCI
datasets with 3Ref 's images on the left-hand side and
PCA's images on the right-hand side. The colour of
the classes is consistent in each pair of images, i.e. in
both breast-caner-3Ref and breast-cancer-PCA, the
black data points refer to the same class. In addi-
tion to the images, Table 1 provides the performance
measurement of the decision tree on the same set of
dataset. The observations for each pair of images are
as follows:

Breast-cancer We believe that 3Ref has the bet-
ter image, because it shows di�erent clusters for
the black class (recurrence-event class); the white
class also seems to form di�erent clusters. The
dataset looks more clear cut in the 3Ref image
than in the PCA image. We can also isolate the
di�cult region, which seems to be the big cluster
at the top right corner in 3Ref 's image. In PCA's
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image, the dataset seems to be divided into two
symmetrical clusters.

Breast-w Both images separate the black and the
white classes into one sparse cluster and one
dense cluster. The dataset looks reasonably easy
to learn and this is con�rmed by the good learn-
ing performance.

Horse-colic Both images seem to be more complex,
because the black class and the white class are
mixed together. This di�culty is also con�rmed
by the decision tree's performance. 3Ref 's image
suggests that the di�culty comes from the centre
region where classes are more mixed, whereas in
the PCA's image, the points are evenly mixed
with no obvious clusters.

Credit-a The image of PCA seems to be better than
3Ref, because PCA shows more separation be-
tween the two classes and the decision tree is also
able to learn quite well from the dataset.

Credit-g This is another di�cult dataset. Both im-
ages are complex and the classes are overlapped.
Both images seem to show two clusters, and the
source of di�culty lies within the middle region,
where the two classes overlap.

Diabetes The images are still complex, but both im-
ages seem to show that the white class is concen-
trated more at a speci�c region. So it looks like
the errors are coming from the invading white
points into the sparse black cluster.

Ionosphere This dataset seems to be sparse in
3Ref 's image. The white class forms two
well-separated clusters, while the black class is
sparsely distributed. It is not di�cult to learn,
because the classes are not mixed. Although it
can be hard to see, but the two classes actually
lie at a di�erent depth in 3Ref 's image. PCA
seems to be clustering the classes more tightly,
and it also shows two white clusters.

Sick This imbalanced dataset has a very skewed class
distribution (6% rare class), but the learning per-
formance is quite good. The image from 3Ref
shows that the black class (rare class) forms
a well-separated cluster, sitting just above a
big white cluster. Similar pattern can be seen
in PCA's image, but the division between the
classes is not as clear as in 3Ref 's image.

We did not show RP's images because RP's images
were not as informative since the data points are
tightly packed into lines or planes. For example, when
we applied RP on the breast-cancer dataset, as shown
in Figure 9, RP produced 4 lines of points, which is
comparatively less rich in geometric variation than
the other two methods.

5 Discussions

In our experiments, we have compared the correla-
tion scores and the change in learning performance of
kRef with PCA and RP. We have demonstrated that
kRef transformation is capable of producing compa-
rable visualisations of datasets. We have also shown
that data visualisation can be a useful tool for under-
standing datasets, and it can also be more informative
than a single learning performance measurement.

When producing data visualisations, there exists a
tradeo� between the accuracy and the computational
speed, although kRef is slightly less accurate than
PCA, kRef is much faster. With a little sacri�ce in
accuracy, kRef is a better choice in practise because
large datasets are abundant.

Figure 9: Breast-cancer dataset with RP
Perform random projection on breast-cancer dataset.
The data points form 4 lines in the RP space.

(a) �equal/not-equal (0/1)� distance approach

(b) VDM distance approach

Figure 10: Dealing with nominal attributes
These two �gures are used to show the di�erence be-
tween the two di�erent approaches of handling nom-
inal attributes. The dataset used is the mushroom
dataset from the UCI data repository. Black points
represent the edible class and white points represent
the poisonous class. The dataset size is 8124, but in
�gure (a), the 0/1 approach has placed a lot of data
points at the same spot, making it rather di�cult to
see all 8124 di�erent data points. On the other hand,
the VDM approach in �gure (b) is able to spread out
the data points more so we can see more interesting
trends in the datasets.
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Figure 11: The data points distribution shape
The sick dataset looking from afar. The dataset
shows a cone shape distribution in the kRef space.

5.1 Implementation issues

The �rst issue was how to deal with nominal at-
tributes, because they may not be ordinal attributes.
In our �rst attempt, we used the simple equal/not-
equal approach: assign 0 distance if the two attributes
have the same value, and assign 1 otherwise. Un-
fortunately, this approach produces very dense clus-
ters, therefore making it hard to visualise because a
lot of points are packed at the same point. So, we
tried Value Di�erence Metric (VDM) distance (Wil-
son and Martinez, 1997), which essentially replaces
nominal values with their respective occurrence rates.
The VDM distance approach is able to give data
points more variations, which allows the data points
to spread out, thus leading to better visualisations.
The mushroom dataset is used as an example to show
the di�erence between the two approaches. Mush-
room dataset has 22 nominal attributes and 8124
examples. It is considered to be one of the easier
datasets in UCI, which is also evident from our vi-
sualisation. Figure 10(b) shows that the two classes
are well separated and both classes have clean clus-
ters that do not overlap. It should be noted that the
black and white groups in Figure 10(b) are sitting at
a di�erent depth, and only appears to be overlapping
because of the 2D perspective.

The second implementation issue was that: if there
are numeric attributes that have large values, then
the distance measurement will be dominated by these
numeric attributes. So, in order to allow an even
contribution from all attributes, we need to normalise
the numeric attributes.

5.2 kRef space restriction

There are regions in the transformed kRef space that
will not be used, for example, under a triangular lay-
out, it would be impossible to have a data point that
has 0 distances to all three reference points. So, this
suggests that the transformed space will have a hyper-
concave shape distribution, where the bottom is sit-
ting at the centre of the reference points. As shown in
Figure 11, a zoomed out image of the sick dataset, the
transformed dataset is distributed in a cone shape.

5.3 Comparison with other methods

kRef and PCA share similar concepts; they both
rely on data point projection, but the di�erence is
that: in kRef, the projection is done via di�erent
points; whereas in PCA, the projection is done via
di�erent eigenvectors (principal components). In the

kRef method, each data point in the datasets is re-
described by all the reference points, but in PCA,
the eigenvectors can be used independently. The suc-
cess of the kRef method relies on reference points to
generate distance with the highest variance so that
the data points will not overlap in a condensed space.
Similarly, PCA tries to project onto eigenvectors that
would re�ect the highest variance.

In terms of computation, kRef has a better run-
time than PCA. The run-time of the kRef method is
O(mn), given m number of examples and n number
of features. In comparison, PCA is more expensive
to compute, with a run-time of O(min(mn2, nm2)).
Thus, given a large enough m and n, the run-time
of kRef method is O(m2), whereas PCA runs at
O(m3). The run-time of PCA is derived from the
run-time of Singular Value Decomposition (SVD), be-
cause computing the covariance matrix directly would
be too costly if the dataset dimensionality is high,
e.g. 10000 features would require a matrix size of
10000x10000. So, the run-time of PCA is dominated
by SVD computation, which has a run-time complex-
ity of O(min(mn2, nm2)).

Another advantage of the kRef method over PCA
is that the kRef method can run in parallel, because
most of the computations in kRef are not dependent,
so the calculations can be distribute across di�erent
machines. This parallel distribution is quite attrac-
tive because large datasets can be partitioned and
stored in separate machines, which is also more mem-
ory e�cient.

The kRef method is similar to random projection
as well, because they both transform the dataset in
a similar fashion, but our approach is motivated by
triangulation, so our random matrix selection is quite
di�erent from the ones used in random projection.
Also, our method uses distance function in the pro-
jection calculation, whereas random projection uses
dot products.

We have implemented random projection proposed
by Achlioptas (2001) and tested it in our experiments.
As shown in Figure 9, random projection generates
less geometrical variances. This suggests that while
random projection is useful as a dimensionality re-
duction method and enjoys a theoretical bound, its
constraints on the random matrix makes it unable to
provide good visualisations in 3D space.

5.4 Re�ection

In order to address the question of visualisation
meaningfulness, as proposed in the introduction, we
must �rst de�ne the meaning in the context of
the visualisation. For example, in a stock OHLC
(open,high,low,close) bar chart, the meaning could
be the underlying supply and demand, which is what
OHLC bar chart tries to visualise. In the context of
this work, we de�ne the meaning as the underlying
geometric structure of the dataset. Therefore, for a
given dataset, there exists a true �meaning� that dif-
ferent data visualisation methods all try to capture.

Our visualisation is meaningful because it is able
to retain most of the geometric structure of the
dataset. The accuracy of the kRef method is only
slightly behind PCA, i.e. in 6 out of 8 cases in Figure
8 the gaps were within 0.1. Moreover, it is possible if
a better layout of the reference points can be derived,
the accuracy of the kRef method could be further
improved.

Like any generic dimensionality reduction method,
kRef will work with any number of dimensions or any
dataset size, however, the usefulness of the visualisa-
tion depends on the users. Because visualisations are
inherently subjective, the same visualisation may be
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Figure 12: Visualise feature correlations for audiology
An illustration of the kRef method's extension work.
In this visualisation, the features are treated as exam-
ples and the distance function used here is the corre-
lation function. So, in this space, the clusters imply
highly correlated features.

interpreted di�erently, which could lead to di�erent
insights. This creativity is the strength of the data
visualisation methods.

5.5 Future works

The interactive aspect of the visualisation was not
presented in this work because it would require a dif-
ferent evaluation process. However, an interactive en-
vironment may have features that give the users the
ability to rotate the 3D model, zoom-in from any an-
gle, select a sample of data points and check the data
point information by clicking the dots. These inter-
actions allow the user to explore and conceptualise
the di�cult parts of the dataset, which can poten-
tially lead to a better formulated learning approach
for the problem. So, it would be interesting to inves-
tigate this active learning approach and see how best
to utilise the insights from the visualisations.

It is also possible to apply kRef to visualise the
feature space instead of the example space. This can
be done by taking a transpose of the dataset matrix,
so the features become examples and examples be-
come features. The similarity function also needs to
be changed from the Euclidean distance function to
a correlation function for a more meaningful inter-
pretation of the relationship between features. Using
the correlation as the similarity function, we can see
correlated features as they form clusters in the kRef
space. An example of visualising the feature space is
presented in Figure 12, which shows the features of
the audiology dataset from the UCI data repository.
In this dataset, there are 69 attributes and the visu-
alisation shows two obvious clusters, which suggests
that there are two sets of correlated attributes in this
dataset.

Other interesting future works include deeper in-
vestigation of theoretical issues about the reference
point method, such as the optimal position for the
reference points placement; or, applying this method
as an e�cient way of locating approximate nearest
neighbours.

6 Conclusions

Visualisation is a useful tool for analysing di�-
cult problems and in this work, we o�ered a new
method to address the problem of visualising high-
dimensional datasets. We compared our approach

with other generic methods, namely PCA and ran-
dom projection, and the results suggest that PCA is
a computationally expensive approach, while random
projection delivers inaccurate visualisations. Our
method, on the other hand, is able to produce accu-
rate visualisations in a cost-e�ective manner. There-
fore, we recommend this method as an attractive vi-
sualisation tool to assist the data mining process.
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