
Resource Evaluation and Node Monitoring in Service Oriented

Ad-hoc Grids

Ian Scriven
†
 Andrew Lewis

†

Matthew Smith
‡
 Thomas Friese

‡

†
Griffith University

170 Kessels Road, Nathan 4111, Queensland
Ian.Scriven@student.griffith.edu.au A.Lewis@griffith.edu.au

‡
University of Marburg

Philipps-Universität, Biegenstr. 10, 35032 Marburg, Germany
{matthew,thomas}@informatik.uni-marburg.de

Abstract

Ad-hoc grid computing is an emerging computing

technology that promises to deliver high performance at

relatively low cost using existing computing resources.

There are a number of grid middleware systems being

developed to this end. However, a number of features are

lacking that are required if ad hoc grid computing is to

become viable in a production environment. This paper

addresses two of these key features – a resource

evaluation and allocation system, which allows grid

developers to accurately specify the requirements of their

grid job to ensure the most suitable nodes are used when

creating the ad-hoc grid, and a node monitoring and error

recovery system, which allows grid applications to detect

and recover from errors and complete successfully. These

systems are built into Mage, the Marburg Ad-hoc Grid

Environment, a grid middleware solution developed using

the Globus Toolkit, Apache Tomcat and FreePastry
.
.

Keywords: Grid Computing, Ad-hoc Grids, Peer-to-peer,

Resource Evaluation, Node Monitoring.

1 Introduction

Grid computing is an increasingly popular alternative to

traditional high performance computing systems. For

many organizations, traditional supercomputers can be

prohibitively expensive when the costs of administration

and housing are combined with the initial purchase. An

alternative is to use computing resources aggregated into

a grid across an intranet or the Internet. Many such grids

exist, or are developing. Most, however, have the

drawback that to install and maintain production quality,

large-scale grids is a complex and time-consuming task.

It is to address this issue, and extend the potential benefits

of grid computing to a wider audience, that ad hoc grids

have been proposed.

Copyright © 2007, Australian Computer Society, Inc. This

paper appeared at the Sixth Australasian Symposium on Grid

Computing and e-Research (AusGrid2008), Wollongong,

Australia, January 2008. Conferences in Research and Practice

in Information Technology, Vol. 82. Wayne Kelly and Paul

Roe, Eds. Reproduction for academic, not-for profit purposes

permitted provided this text is included.

The ad hoc grid computing paradigm brings together idle

computing resources from varying geographical locations

to form a one-off grid for a particular grid job. Once the

job is completed, the grid is disbanded. This system has a

number of advantages, including:

• Financial Control: Organizations can use idle

CPU cycles from existing computers on their network to

form a grid. This not only makes more efficient use of the

resources already available but also allows for a gradual

expansion of the grid without single large investments.

• Accessibility: Significant resources can made

available to anyone on the network, as any connected

node running the grid software is able to initiate a grid

job. Of course, restrictions could be put in place if this

freedom is not desirable.

• Flexibility: The grid can consist of

heterogeneous systems running a variety of hardware and

software configurations.

• Decentralization: As there is no central point of

failure for the grid, the reliability of the grid is not

affected by individual systems.

However, this system will not be suitable for some

applications, where significant communication between

grid nodes is required, as the connection between nodes

will usually be low speed and high latency.

The heterogeneity and constantly changing nature of such

a system also presents some unique challenges. The

hardware and software configuration of nodes can differ

vastly, and so some nodes may be better suited to

particular jobs than others, and some may not be suitable

at all. While allocation of work to nodes in an existing

grid is a mature and well-defined field, there are no

existing systems that can be used to evaluate and allocate

nodes when forming a new, ad hoc grid. This paper will

discuss a resource assessment and allocation mechanism

that addresses these concerns, which allows the creation

of ad hoc grids tailored to the specific needs of individual

jobs.

Another set of challenges arises due to the fact that the

nodes that make up the grid are not dedicated – the grid

infrastructure is usually designed to run in the

background while local users perform other tasks on the

node (University of California 2007, Stanford University

2007), and at a lower priority than local tasks, which

could cause starvation of the grid job. Nodes could also

be turned off or restarted, or become otherwise

unreachable (e.g. network problems). Grid applications

must be able to detect and recover from these issues. This

paper outlines an extensible node monitoring system that

provides this capability.

The systems to be discussed are extensions of the

Marburg Ad hoc Grid Environment (Mage) (Smith,

Friese and Freisleben 2004). Mage is a WSRF compliant

grid middleware solution, built upon the Globus Toolkit,

Apache Tomcat and FreePastry, a peer-to-peer

framework. It extends the Globus Toolkit, adding support

for P2P based node discovery, service discovery and

communication, along with non-intrusive service

management (non-interrupting deployment and removal

of services), intra-node resource isolation, and easy

service development (using an Eclipse plug-in).

2 Resource Evaluation and Allocation

2.1 Overview of the Resource Evaluation and

Allocation System

The resource evaluation and allocation (REA) system

allows the grid application developer to accurately

specify the requirements (and desirable qualities) that

connected computers should display in order to be

suitable for the grid job. The REA system provides this

functionality through a series of steps including:

• Resource Request: The system allows users to

specify node requirements for their grid job in the form of

an XML file known as the resource request file. The

format of this XML document is discussed in section

2.1.1 below.

• Node Discovery: In order to form an ad hoc grid,

the initiating node must know what nodes exist on the

network. Node discovery in Mage is performed using

functionality provided by the FreePastry peer-to-peer

system.

• Node Assessment: The system queries nodes

discovered by the peer-to-peer system to determine

whether they meet the mandatory requirements set out in

the resource request. Information is obtained for desirable

parameters once all mandatory parameters have been

verified.

• Node Selection: The system returns a list of

appropriate nodes sorted according to the user defined

resource request file.

• Service Deployment: The resource allocation

system can automatically deploy the grid service to the

designated nodes, thus creating the ad-hoc grid. It can

also facilitate the removal of the grid service upon

completion of the job.

An overview of the communication that takes place

between nodes during a call to the resource allocation

system is provided in Figure 1. The arrows numbered one

to three indicate major steps in the resource allocation

process – node discovery, node evaluation and node

selection. The dashed arrow represents two optional steps

– retrieval of custom benchmarks and grid service

deployment. Each step will be discussed in further detail

in the following sections.

In it iat ing Node Remot e Node

Tomcat Server Tomcat Server

Gr id App licat ion

P2P Network

Resource Broker

1.

Discover
nodes

2.

Query
nodes

3.

Assign
nodes

Download cust om

benchmark and/or
gr id service

Resource In fo

Web Service

Syst em In fo

Lib rary

Figure 1: An overview of the resource allocation

system

The resource allocation system presented here has a

number of advantages over the Monitoring and Discovery

System (MDS4) (Czajkowski, Fitzgerald, Foster and

Kesselman 2001) provided by the Globus Toolkit. MDS4

uses one or more index services to act as centralized

sources of information about available network resources.

This introduces a central point of failure – problems with

the node running the index service could potentially

render a large number of nodes unavailable. Though this

usually will not be a problem as dedicated, reliable

systems are used to provide the indexing services, the

Mage grid middleware software is designed to function in

a purely peer-to-peer environment, where failure of one

node will have no effect on the grid as a whole. As such,

the REA system presented here performs node discovery

and assessment through communication with the nodes

themselves, rather than central index services. This

process may be slower than using the MDS4, but it

ensures all nodes available on the peer-to-peer network

are considered when building an ad hoc grid. This

resource allocation system also provides custom

benchmarking functionality, which is not available in

MDS4. Custom benchmarks, which will be discussed

later in this paper, allow the resource evaluation and

allocation system presented here to very accurately judge

the suitability of nodes for a specific grid application, a

significant advantage for applications having special

requirements.

The REA system is used to make an ad hoc selection of

nodes from a highly dynamic and heterogeneous

environment, and from them construct a grid. Other

systems proposed for resource allocation (Yang, Schopf

and Foster 2003) are primarily targeted at distribution of

tasks to a more or less static set of nodes to make most

effective use of available resources under changing task

loads. As such they have a different purpose to the system

described in this paper. However, once an ad hoc grid has

been constructed using this resource allocation system,

the grid application could make use of other advanced

scheduling algorithms, where past system load

information is used to predict CPU load values, averages

and variation over time. In the dynamic peer-to-peer grid

environment, making use of gathered performance

information (including results of benchmarks performed

by the resource allocation system) when scheduling work

could allow grid applications to more readily respond to

changing resource availability.

2.1.1 Resource Request File

The resource request file is an XML document that is

used to specify the requirements (both mandatory and

desirable) of a grid job. A large number of parameters can

be used, ensuring that the requirements of a grid job can

be accurately specified. These parameters are CPU clock

speed, the number of CPU cores available, the CPU

architecture, the CPU manufacturer, the amount of RAM

available, free disk space, the host operating system name

and version, the java runtime environment version,

system uptime, system CPU load, communication latency

(i.e. ‘ping’ time), the availability of external program

libraries, and finally the results of custom benchmarks,

which will be discussed further in a later section.

Figure 2 shows an example resource request file. In this

particular case, the job requires three nodes, and specifies

a number of requirements that these nodes should adhere

to. Firstly, the grid job requires nodes whose CPUs run at

clock speeds higher than 1500 MHz. The rank tag here

shows that nodes meeting all requirements will be sorted

according to CPU speeds, and the three nodes with the

highest CPU speeds will be selected for the grid job. The

mandatory tag indicates that the selected nodes must

satisfy this requirement. The next parameter is the node’s

operating system name and version. The grid job requires

nodes to be running Windows, version 5.0 (Windows

2000) or later. Finally, the availability of the software

library LibraryA is checked (when dealing with

Windows, this means that LibraryA.dll must be located in

the appropriate directory).

2.1.2 Node Assessment

After the node discovery service has returned a list of

nodes available on the network, the resource allocation

system proceeds to query these nodes based on the

requirements in the resource request. Node information is

acquired through communication with a resource

information web service that is available on all nodes

running the grid infrastructure software. The resource

information web service does not obtain system

information directly, instead relying on another library,

the system information library (SIL). Although the

system information library currently supports only

Windows NT and Linux based operating systems, the fact

that it is separate from the rest of the resource allocation

package means that developers could add support for

other platforms by simply updating the system

information library.

<resource-request>

 <nodes>3</nodes>

 <parameter type="cpu" mandatory="true">

 <value>1500</value>

 <modifier>orHigher</modifier>

 <rank>1</rank>

 </parameter>

 <parameter type=”os” mandatory=”true”>

 <name>Windows</name>

 <value>5.0</value>

 <modifier>orHigher</version>

 </parameter>

 <parameter type="library" mandatory="true">

 <name>LibraryA</name>

 <value>true</value>

 </parameter>

</resource-request>

Figure 2: A sample resource request file.

A graphical user interface has been created to allow the

operator to quickly and easily create this resource request

file. This interface also allows the user to inspect the

results of the resource request once it has been completed.

The resource allocation system checks mandatory

requirements first when querying nodes. If a node fails to

meet a mandatory requirement, then it is removed from

the list of possible nodes, and no further investigation of

that node occurs. This minimizes unnecessary network

traffic and increases the efficiency of the resource

allocation system.

Currently, nodes are queried using direct communication

with the resource information web service located on

each node. While this may be satisfactory for smaller

scale networks, it is not a particularly scalable approach.

In environments where many nodes are present it would

be preferable to utilize the peer-to-peer subsystem

provided by Mage to efficiently multicast grid job

requirements in order to reduce network load (especially

on the initiating node). Nodes that were unsuitable for the

grid job would simply not reply to the initial request.

2.1.3 Node Selection

Once all nodes have been investigated, the resource

allocation system sorts them to provide the grid job with

the best possible nodes. Nodes are sorted in accordance to

ranking criteria provided in the resource request file (see

Fig. 2). The required number of nodes can then be

selected from the top of the list and returned for use in the

grid job. Information on all nodes that met mandatory

criteria is retained, however, in case more nodes are

needed at some time during the job’s execution.

2.1.4 Service Deployment

Automatic and non-disruptive service deployment is

critical to the viability of the grid (Smith, Friese and

Freisleben 2004). Mage provides a hot deployment

mechanism for this purpose. The resource allocation

system makes use of this mechanism to provide automatic

service deployment to remote nodes that are selected for a

grid job. The grid service GAR file is delivered to the

remote nodes over HTTP, making use of the web server

component of Apache Tomcat, before being loaded on

the remote node using the hot deployment mechanism.

The resource allocation package uses the hot deployment

mechanism again once the grid job has completed to

remove the grid service from the remote node.

2.2 Custom Benchmarking

While the resource allocation system provides a wide

range of inbuilt parameters, more information will often

be needed when judging a node’s suitability for a grid

job. The resource allocation system allows for custom

benchmarking classes to be created and used by grid

developers to ensure that the best possible nodes were

selected for the grid. One clear example of this is found in

today’s processor market. Clock speeds are no longer a

valid way of comparing the performance of different

CPUs – for example, an AMD Athlon64 3200+, which

runs at a clock speed of 2 GHz, is comparable to Intel

Pentium IV processors running at speeds of over 3 GHz.

Custom benchmarks can be created to test integer or

floating point operation speed, or memory access times,

among other possibilities. For example, Figure 3 shows

five nodes (with modern CPUs) as they would be sorted

by the resource allocation system based on CPU clock

speed. If the requesting grid job required three nodes

based on clock speed, the three nodes running the Intel

CPUs would be selected and used to create the ad-hoc

grid. Depending on the individual grid job, this selection

may not be optimal.

0

500

1000

1500

2000

2500

3000

3500

Intel P-4 3.0 GHz Intel P-D 2.8

GHz

Intel Core 2 Duo

e6600

AMD Athlon X2

4200+

AMD Athlon64

3200+

C
lo
c
k
 S
p
e
e
d
 (
M
H
z
)

Figure 3: Various modern CPUs shown sorted by

clock speed

Figure 4 shows the average results of a custom

benchmark which performs a number of iterations of an

optical design ray tracing algorithm. This benchmark,

which utilises extensive floating point and trigonometric

operations, shows that the two nodes with the highest

CPU clock speeds (which were previously selected for

use in the grid) are in fact the least suited of the five

nodes for this type of computation. If an ad-hoc grid for

an optical ray tracing problem was formed based on the

results of this custom benchmark instead of the clock

speed of the available nodes, the resultant grid would be

much more suited to the job at hand and the problem

could be solved faster with more efficient use of

computing resources.

0

2000

4000

6000

8000

10000

12000

14000

Intel Core 2 Duo

e6600

AMD Athlon X2

4200+

AMD Athlon64

3200+

Intel P-4 3.0

GHz

Intel P-D 2.8

GHz

B
e
n
c
h
m
a
rk
 E
x
e
c
u
ti
o
n
 S
p
e
e
d
 (
m
il
li
s
e
c
o
n
d
s
)

Figure 4: The same CPUs shown sorted by results of a

custom benchmark (lower execution time is better)

Custom benchmarking can also prevent overloading of

the ‘best’ nodes. As the workload of a node increases, its

performance in custom benchmarks will degrade, making

it appear less desirable to the resource allocation system.

The requirements for a custom benchmark are simple – it

must be a single Java class file, having a main method

(that is, it should be executable from a command line).

Upon completion, it should output the result to standard

output. The result must be an integer, which could

represent the time in milliseconds the node took to

complete some task, or different numbers could signify

some other result, such as true or false. The value and

modifier tags in the resource request file are used to

signify what value, or range of values, is desirable (or

mandatory) for the grid job.

Like grid service GAR files, custom benchmark classes

are transferred to the remote nodes over HTTP using

Apache Tomcat’s web server component. In order to

prevent abuse of this system, custom benchmarks are

limited to one minute of runtime, and if necessary are

forcibly terminated after this time period has elapsed.

3 Node Monitoring and Error Recovery

3.1 Overview of the Node Monitoring System

The ad hoc grid environment will usually not be as

reliable as a dedicated high performance computing

setup. The nodes that make up the ad hoc grid could be

turned off or reset, the grid infrastructure software could

be closed, the node could become unreachable, or the

node may become heavily loaded by a local user. The

node monitoring and error recovery system has been

designed to address these problems, allowing grid

programmers to detect these issues in their programs and

react appropriately. The node monitoring and error

recovery system is made up of a number of major

components, including a server status grid service, a

monitored service call, various monitor threads and an

event handler, as shown in Figure 5. The roles of each of

these components and the connections between them are

described in the following sections of this paper.

3.2 The Monitored Service Call

Node monitoring is incorporated into a grid application

using a monitored service call. The monitored service call

uses a separate thread to call the grid service on the

remote node. The service call thread is an abstract java

class, and its run method must be implemented by the

grid developer to make the required grid service call.

While this call is being processed, the monitored service

call monitors both communication with the remote node

and the remote node’s local CPU usage. Upon completion

of the grid service call, the service call thread

implementation must cast the results to an Object, before

returning them using the finished method of the

monitored service call. The monitored service call will

then pass the results to the grid application, where they

can be re-cast as the appropriate type. To facilitate this,

the grid application must implement the returnResults

method of the abstract service client class. The methods

that deal with the results of the service call use the Object

type because different grid applications will use a wide

variety of types.

Service Client

Monit ored

Service Call

Event Handler

Remot e

Grid Service

Server St at us

Service

Service Call

Thread

Init iat ing Node Remot e Node

Monit or t h reads

Figure 5: An overview of the node monitoring system

3.3 Node Monitoring

Nodes are monitored through calls to a server status grid

service that is installed on all nodes. There are two

monitor threads, one to check that the node is still

reachable on the network (the communication monitor)

and one to check the local CPU usage of the node (the

load monitor). In the latter case, local CPU usage is

assumed to be all CPU usage other than that of the grid

infrastructure application (the modified Apache Tomcat

server). Checks are performed at a default interval of

twenty seconds, however this can be changed at any time.

The communication monitor has a timeout of ten seconds

– if there is no response from the remote node with this

time, a communication error monitor event will be

created. The load monitor can also produce a

communication error if it times out, however it has a

longer timeout of fifteen seconds to account for time

needed by the server status service to accurately calculate

the local CPU usage. If the local CPU usage exceeds a

certain threshold (30% by default. However, this can also

be changed.) a system load monitor event is produced. If

the communication monitor or the load monitor

completes a call without errors or warnings, a monitor

event is produced to indicate this success.

3.4 Monitor Events

As described in the previous section, monitor events are

produced as a result of the completion (successful or

otherwise) of a communication or load monitoring call to

the server status service on a grid node. A monitor event

contains two fields – an integer code, which signifies

what type of monitor event it is, and a message, which

provides a human readable description of the monitor

event.

3.5 Event Handling

The grid application uses an event handler to respond to

monitor events. The event handler is an abstract class,

and no implementations are provided. Different grid

applications and environments will have vastly different

requirements or limits imposed on resource use, and it is

therefore critical that grid developers specify exactly how

errors are to be handled and recovered from.

An event handler can be so simplistic as to simply echo

any event messages to standard output on the initiating

node, or as complex as to redistribute the workload

around remaining nodes in the grid. If the previously

mentioned resource allocation system is used, it could

even allocate work to nodes that were not initially part of

the ad hoc grid.

4 Implementation and Testing

A simple grid application was developed to test both the

resource allocation system and the node monitoring

system. This application uses an ad hoc grid to generate a

Mandelbrot fractal pattern with different grid nodes

constructing different sections of the image. The resource

allocation system is used to construct the ad hoc grid, and

the node monitoring system is used to ensure reliable

completion of the job.

The application was run on a small test bed consisting of

Intel Pentium III computers with clock speeds ranging

from 450 MHz to 800MHz, running a mixture of Fedora

Core 3 and 4. A simple resource request file was used to

select the nodes with the highest CPU clock speeds for

use in this job. The resource allocation system was

demonstrated to correctly select and deliver appropriate

resources to the application, either directly to

specification or of the nearest available compromise.

Tests were also performed using the Mandelbrot

application to assess the performance gains achievable

through the use of the resource allocation system. Results

of these tests are illustrated in Figure 6. A custom

benchmark was created based on the Mandelbrot fractal

generation algorithm to assess node suitability. The

application was run a number of times on two different

test bed environments. The first test involved machines

with significantly different performance capabilities, and

thus selecting the best possible nodes using the resource

allocation system and custom benchmarking resulted in a

significant decrease in computation time. The second test

involved machines of more similar computational power,

and as such the decrease in execution time was less

pronounced. These tests show that in the heterogeneous

ad hoc grid environment proper resource assessment and

allocation can have a significant impact on overall grid

performance.

Figure 6: Testing the grid performance with and

without resource allocation (RA). Test case 1 involved

nodes with significantly different performance

capabilities, while test case 2 used nodes with similar

capabilities.

Multiple tests were also performed on the node

monitoring system using different event handlers. The

simplest test involved causing communication timeouts

and node load warnings and having a basic event handler

count the errors for each node and print the error

information to standard output. Correct tracking of events

was determined by inspection.

A second test involved using an event handler in

conjunction with the resource allocation system to move

work to a new node if a resource was deemed to have

“failed”. Failure was defined as two node communication

errors occurring in a row, simulating either node failure

causing lack of response, or network failure or congestion

inhibiting access to a remote resource. During this test the

combined functions of node monitoring and resource

allocation allowed the application to complete

successfully despite one of the grid nodes being removed

from the network.

An issue that arose during testing was that when the event

handler moved work from one node to another, there was

no way to stop the original node from continuing to

process the service call. This may occur if the action was

in response to failure of network connectivity: the

“failed” node would actually continue processing while

being inaccessible. While this does not affect the grid

application itself, as well as wasting computational

capacity it will decrease perceived performance of the

original node and any applications running on it. This is

an area for future work.

5 Conclusions

In this paper two sub-systems extending the functionality

of the Mage grid middleware system were discussed. A

resource evaluation and allocation system allows ad hoc

grids to be constructed using the best nodes available for

a particular application. Grid job requirements can be

accurately specified by a number of user-selected values

for predefined parameters, or through the use of custom

benchmarks. Once the required nodes are selected, the

grid service can be automatically deployed to each node.

A grid job can then immediately begin making calls to the

grid service.

A node monitoring and error recovery framework allows

grid jobs to run and complete successfully despite the

volatile nature of the ad hoc grid. If a grid node becomes

unreachable or heavily loaded, the work it was

performing can be moved to a new node using the

resource allocation system, or redistributed among

remaining grid nodes, increasing grid resilience and fault

tolerance.

With the framework in place, tools are planned to

automate the process of incorporating the resource

allocation and node monitoring and error recovery

systems into grid applications in order to make the system

as transparent to the grid application developer as

possible. In particular, a more advanced error handler is

planned that will allow the developer to configure its

behaviour without any extra coding.

Both sub-systems have been implemented, integrated into

the Mage system and functionally tested on a grid test

bed. Work is currently ongoing to integrate the Mage

system into Nimrod (Abramson, Sosic, Giddy and Hall

1995) and the Nimrod Portal in order to allow ad-hoc

grids to be constructed and used in conjunction with

traditional, fixed, high performance computing resources

for large scale grid jobs. This would allow organisations

to extend their pool of available high performance

computing resources using existing desktop and personal

computer installations.

6 References

Czajkowski, K., Fitzgerald, S., Foster, I. and Kesselman,

C. (2001): Grid Information Services for Distributed

Resource Sharing. Proc. Tenth IEEE International

Symposium on High-Performance Distributed

Computing, San Francisco, USA, 181-194, IEEE

Computer Society.

Yang, L., Schopf, J.M. and Foster, I. (2003):

Conservative Scheduling: Using Predicted Variance to

Improve Scheduling Decisions in Dynamic

Environments. Proc. 2003 ACM/IEEE Conference on

Supercomputing, Phoenix, USA, 31-31, IEEE

Computer Society.

Smith, M., Friese, T. and Freisleben, B. (2004): Towards

a Service-Oriented Ad Hoc Grid. Proc. 3
rd

International Symposium on Parallel and Distributed

Computing, Cork, Ireland, 201-208, IEEE Computer

Society.

SETI@Home, University of California.

http://setiathome.berkeley.edu/. Accessed 31/08/2007.

Folding@Home Distributed Computing, Stanford

University. http://folding.stanford.edu/. Accessed

31/08/2007.

MAGE – The Marburg Ad-hoc Grid Environment, Smith,

M., Friese, T. and Freisleben, B. http://mage.uni-

marburg.de/. Accessed 02/09/2007.

The Globus Toolkit, The Globus Alliance.

http://www.globus.org/toolkit/. Accessed 02/09/2007.

Apache Tomcat, The Apache Software Foundation.

http://tomcat.apache.org/. Accessed 30/08/2007.

Pastry, Rice University. http://freepastry.rice.edu/.

Accessed 01/09/2007.

Fedora Project, Red Hat, Inc. http://fedoraproject.org/.

Accessed 02/09/2007.

GT Information Services: Monitoring and Discovery

System (MDS), The Globus Alliance.

http://www.globus.org/toolkit/mds/. Accessed

30/08/2007.

Abramson D., Sosic R., Giddy J. and Hall B. (1995):

Nimrod: A Tool for Performing Parametised

Simulations using Distributed Workstations. Proc. 4th

IEEE Symposium on High Performance Distributed

Computing, Virginia, USA, 112-121, IEEE Computer

Society.

