
Revisiting models of human conceptualisation in the context of a

programming examination

Jacqueline Whalley and Nadia Kasto

School of Computing and Mathematical Sciences
AUT University

PO Box 92006, Auckland 1142, New Zealand

{nkasto,jwhalley}@aut.ac.nz

Abstract
This paper reports on an evaluation of the Block model

for the measurement of code comprehension questions in

a first semester programming examination. A set of exam

questions is classified using the Block model and two

commonly employed taxonomies, SOLO and Bloom. We

found that some of the problems inherent in the

application of Bloom and SOLO taxonomies also exist in

the Block model. Some of the difficulties associated with

SOLO and Bloom’s taxonomy are due to the wide breadth

of the dimensions. These difficulties are to some degree

mitigated by the limited breadth of the Block model

dimensions and we found that the Block model provided a

better way of describing novice programming code

comprehension tasks because of the increased granularity

that it provides.
Keywords: code comprehension, novice programmers,

Block model, SOLO, Bloom’s taxonomy.

1 Introduction
Teachers of computer programming have experienced

difficulty in judging the cognitive complexity of learning

tasks and test items. A relatively accurate and simple way

is required for determining the difficulty inherent in our

teaching and assessment programs: “...we as educators

are continually underestimating the difficulty of the tasks

that we are asking students to undertake” (Whalley, Clear

and Lister 2007).
Computer science educators have attempted to apply

models and taxonomies of human conceptualisation to

aspects of the teaching and learning of computer

programming with varying degrees of success. The most

widely adopted taxonomies to date have been the Bloom

(Bloom 1956) and SOLO (Biggs and Collis 1982)

taxonomies. Recently a new taxonomy has been

developed specifically for application to the design of

tasks for computer programming. This paper reports on

an investigation of the use of that model to determine the

difficulty of a set of test questions.

2 Background
In 1956, Bloom produced a taxonomy that consisted of a

hierarchy of learning objectives ranked according to their

Copyright © 2013, Australian Computer Society, Inc. This paper

appeared at the 15th Australasian Computer Education

Conference (ACE 2013), Adelaide, South Australia, January-

February 2013. Conferences in Research and Practice in

Information Technology (CRPIT), Vol. 136. A. Carbone and J.

Whalley, Eds. Reproduction for academic, not-for profit

purposes permitted provided this text is included.

expected cognitive complexity (Figure 1). The taxonomy is

a behavioural classification system of educational objectives.

Many variants of the taxonomy have been proposed but the

most widely accepted (Figure 1) is the revised Bloom’s

taxonomy (Anderson et al. 2001). This version of the

taxonomy adds a knowledge dimension, which specifies the

type of information that is processed, to a revised version of

the original cognitive process dimension. Traditionally a

strict inclusive hierarchy has been assumed for the cognitive

process dimension where each category is assumed to

include lower ones.

Bloom Revised Bloom

Evaluation Create

Synthesis Evaluate

in
cr

ea
si

ng
co

m
pl

ex
ity

Analysis Analyse

Application Apply

Comprehension Understand

Knowledge Remember

Figure 1: The cognitive process dimension; (left)

Bloom’s and, (right) revised Bloom’s taxonomy

Bloom’s taxonomy has been applied to computer

science for course design and evaluation (Scott 2003),

structuring assessments (Lister and Leaney 2003, Lister

2001), specifying learning outcomes (Starr, Manaris and

Stavely 2008) and comparing the cognitive difficulty of

computer science courses (Oliver et al. 2004).
The revised and the original Bloom’s taxonomy have

been used in attempts to improve the instruction and

assessment of programming courses (e.g., Abran et al.

2004, Shneider and Gladkikh, 2006, Thompson et al.

2008, Khairuddin and Hashim 2008, Alaoutinen and

Smolander 2010, Whalley et al. 2006, Whalley et al.

2007, Shuhidan, Hamilton and D’Souza 2009).
The use and interpretation of Bloom and the revised

Bloom’s taxonomy for describing computer science tasks

has been found to be problematic (Fuller et al. 2007,

Thompson et al. 2008, Shuhidan, Hamilton and D’Souza

2009, Meerbaum-Salant, Armoni and Ben-Ari 2010).

Much of the research shows that it can be difficult to

reach a consensus on an interpretation for the computer

programming education domain (Johnson and Fuller

2006). In a recent study Gluga et al. (2012) confirmed

that many of the ambiguities in the application of

Bloom’s taxonomy to the assessment of computer

programming are due to the necessity to have a deep

understanding of the learning context in order to achieve

an accurate classification. They also noted that the

classifiers often had preconceived misunderstandings of

the categories and differing views on the complexity of

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

67

tasks and the sophistication of the cognitive processes

required to solve them. This may be due to the difficulty

that the educators have remembering the cognitive

complexity of such a task when they were learning to

program. A much higher cognitive load exists for a

novice programmer writing a simple function than for an

experienced programmer. Additionally it has been

reported that the ordering of cognitive tasks in Bloom’s

taxonomy does not readily map to the learning

trajectories of many novice programmers (Lahtinen

2007).
As a result of these difficulties, several variants of

Bloom’s taxonomy have been proposed specifically for

computer programming education (e.g., Schneider and

Gladkikh 2006, Fuller et al. 2007, Bower 2008). These

variants have not been widely adopted by computer

science educators and researchers. Perhaps this is

partially due to the fact that the appropriateness of

Bloom’s taxonomy for the design of learning activities

and assessments has been disputed. The presupposition

that there is a necessary relationship between the

questions asked and the responses elicited is not a valid

one because a question could potentially elicit responses

at different levels (Hattie and Purdie 1998).
Biggs and Collis (1982) surmised that Bloom levels

reflect a teacher imposed view of what it means to have

achieved full mastery whereas SOLO levels come from

an understanding of the student learning process. The

focus of Bloom is to assist in the development of

educational objectives, while the SOLO taxonomy

focuses on the cognitive process used to solve problems.

SOLO, unlike Bloom, does not assume a relationship

between the task and the outcome so outcomes to a

specific task may be at different levels for different

students. Additionally, while Bloom separates knowledge

from the intellectual processes that operate on this

'knowledge', the SOLO taxonomy is primarily based on

the processes of understanding used by the students when

solving problems. Therefore, knowledge is inferred in all

levels of the SOLO taxonomy. It may be due to these

differences that educators and researchers have had

greater success in using SOLO to describe programming

tasks (code comprehension and code writing), to classify

student responses to those tasks and to gain some insight

into the students’ cognitive processes (e.g., Lister et al.,

2006, Philpott, Robbins and Whalley 2007, Sheard et al.

2008, Clear et al. 2008).
Both taxonomies have been used, independently, to

analyse the same set of programming assessment

questions and responses (Whalley et al. 2006). Thompson

et al. (2008) noted that the Bloom category for a

programming task can be meaningfully mapped to a

number of categories in the SOLO taxonomy and that a

combined version of these taxonomies may provide a

richer model with which to design and describe

programming tasks. Inspired by Thompson’s observation

a hybrid taxonomy was proposed that combines aspects

of the Bloom and SOLO taxonomies (Meerbaum-Salant,

Armoni and Ben-Ari 2010). The combined taxonomy

consists of the SOLO categories of unistructural,

multistructural and relational and three Bloom categories

understand (U), apply (A) and create (C). The taxonomy

was structured so that the three SOLO levels formed

super-categories each containing the three Bloom levels

as subcategories (Figure 2) . This taxonomy was then

used to analyse the correlation between student

performance on a task and the relative complexity of the

task as defined by the classification of the task using the

combined taxonomy. The authors believe that their

“findings suggest that the combined taxonomy captures

the cognitive characteristics of CS practice”. They also

recommend this integration of taxonomies as a research

framework that is applicable to the specific needs of CS

education research. However, they also note that the

taxonomy requires further investigation and validation.

To date this work has not been reported in the literature.

Unistructural Multistructural Relational
U A C A A C U A C

Figure 2: The combined taxonomy

The Block model (Schulte 2008) is an educational

model of program comprehension. It is structured as a

table consisting of three knowledge dimensions and four

hierarchical levels of comprehension. The table consists

of 12 blocks (cells) and each block is designed to

highlight one aspect of the program comprehension

process (Figure 3). The conceptualisation of the

hierarchical levels takes inspiration from Kintsch’s

expanded text comprehension theory (1998).

Macro Understanding Understanding Understanding

structure the overall the “algorithm” the goal / the

 structure of of the program purpose of the

 the program program in its

 text context

Relations References Sequence of Understanding

 between method calls how subgoals

 blocks (e.g.: are related to

 method calls, goals, how

 object function is

 creation, achieved by

 accessing subfunctions

 data

Blocks Regions of Operation of a Function of

 interest (ROI) Block, a block, maybe

 that method or seen as a

 syntactically ROI (as a subgoal.

 or sequence of

 semantically statements)

 build a unit

Atoms Language Operation of a Function of a

 elements statement statement. For

 which goal is

 only

 understandable

 in context

 Text surface Program Functions

 execution (as means or

 (data flow and as purpose,

 control flow) goals of the

 program)

 Structure Function

Figure 3: The Block model (Schulte 2008)

CRPIT Volume 136 - Computing Education 2013

68

Question Type
Revised Bloom’s Block Model

SOLO % correct

cognitive

comprehension

level
 answers

dimension

dimension

2 Basics Remember Atom Text surface U 50%

4 Syntactic errors A Remember Atom Text surface U 68%

 B Understand Block Text surface M 53%

 C Understand Relations Text surface M 31%

7A Tracing Apply Block Execution M 77%

7B Tracing Apply Block Execution M 64%

7C
Tracing

Apply Block

Execution M 81%

(with selection)

7D
Tracing

Apply Relations

Execution M 22%

(with iteration)

7E
Tracing

Apply Relations

Execution M 27%

(with iteration)

5 Skeleton Code Analyse Relations Functions R 42%

6 Parsons Puzzle Apply Block Functions M 60%

10A Code Intent Understand Macro Functions R 36%

10B Code Intent Understand Macro Functions R 9%

10C Code Intent Understand Macro Functions R 6%

Table 1: Classification of exam questions

The intention behind the Block model’s development

was to provide a relatively simple model, compared with

other existing taxonomies and models, to support

research into the teaching of computer programming. The

model was evaluated as a tool for the planning and

evaluation of lessons about algorithm design (Schulte

2008). It was found that the Block model was simple,

constructive and communicative. However the model has

not yet been used as a framework for research into the

teaching and learning of computer programming.
In a recent paper the Block model was used to map a

variety of selected models of program comprehension in

order to assist in the conceptualisation of those models

(Schulte et al. 2010). As a result of this comparative

analysis of models the authors suggest that the process of

knowledge acquisition by novice programmers described

in terms of the Block model might be represented as a

holey patchwork quilt and that the Block model might

help us identify what holes (empty cells) exist and why a

student’s knowledge is “fragile”. We were interested in

investigating the usefulness of the Block model for

measuring and evaluating programming tasks and also for

investigating the cognitive processes employed by

students to solve the problems.
In this preliminary study we employed a set of

programming comprehension questions, from a first

semester programming examination, in order to analyse

the similarities and differences of the Block model with

other models.

3 Analysis and Discussion
What follows is a discussion of the analysis of a small set

of program comprehension questions, given in the same

pen and paper examination, collated by question type.

Table 1 gives an overview of the classification of the

questions. The revised Bloom classification was carried

out using the vignettes and principles described by

Thompson et al. (2008) and Whalley et al. (2006) . In

accordance with this set of guidelines we classified the

cognitive process dimension at the category level rather

than the sub category level. In classifying the questions

using the SOLO taxonomy we applied the principles and

guidelines provided by Biggs and Collis (1982) and from

the SOLO categories established by the BRACElet

project for ‘code intent’ comprehension tasks (Clear et al.

2008) . The Block model classification was carried out

using the cell descriptions shown in Figure 3.
One challenge we faced was in determining exactly

what an atom or a block is. It could be argued that this is

dependent on the stage of development that the individual

learner has reached. This observation has been previously

made with respect to salient elements in novice

programming tasks (Whalley et al., 2010). Here in

assigning classifications we have assumed a norm for all

students based on our experiences in teaching novice

programmers. We have taken the notion of an atom to be

the simplest salient element (for example a variable

declaration and assignment) and a block to be a single

method, loop or selection statement. Therefore at the

relations level we consider a relationship to be a

reference between blocks or between a block and an

atom.
For each question the student performance on that

question was also analysed. In our analysis we are

interested in what skills, knowledge base and cognitive

processes are required to successfully answer the

question. Finally we then compared the actual relative

difficulty of the questions in the context of the

examination (as indicated by the percentage of students

who gave a fully correct answer) with the levels of

difficulty of those questions as indicated by the

taxonomies and models.

Question 2: Matching Terms to Code
Question 2 presented students with a class definition that

had ten lines of code underlined and each annotated with

a letter. Students were asked to match 7 definitions to the

appropriate line of code. This question required students

to recall factual knowledge and was classified as

remember. In terms of SOLO this question requires

students to focus on a single language construct and is

therefore a unistructural question.
Because students are focusing on a single language

element this question is considered to be at the atom level

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

69

in the Block model. The text surface dimension of the

Block model is associated with the external

representation of the program, “it is the code a person

reads in order to comprehend the program” (Schulte et

al. 2010). In order to answer question 2 the students do

not need to go beyond understanding the rules of

discourse (grammar) of the program code. They certainly

do not need to understand or have knowledge of the data

and control flow or goal of the atom of code in order to

answer this question correctly. Therefore this question is

an atom level, text surface question.

Question 4: Syntax Errors
In question 4 (see Appendix) students were asked to find

8 of 11 syntax errors in a complete class. The type of

syntax error had a great affect on the number of students

who were able to correctly locate and identify the error. It

seems, not unexpectedly, that the difficulty of the task (as

measured by student performance on the task) is related

to the type of knowledge that is required which in turn is

directly related to the type of bug or error to be identified.

We found that when we mapped each error identification

question to the Block model clear groupings emerged

based on the level of comprehension required to reach the

correct answer. The lowest level of syntactic errors,

which we grouped together as 4A, consisted of errors

such as missing semicolons, a missing bracket in a

method declaration and typographical errors such as

Return rather than the correct r eturn keyword. All of

these errors can be found without reference to the rest of

the program structure. They focus on a language element

and therefore with respect to the level of student program

comprehension required to answer the question they can

be classified as text surface at the atom level. Identifying

these types of errors can also be considered to be a

unistructural task and in terms of Bloom they require the

students to recognise an error that they would have seen

repeatedly during their course of study.
The syntactic errors that we grouped as question 4B

consist of mismatches either between the return data type

of a method and the data type of the value returned or

between a parameter identifier in the method declaration

and the identifier used to represent that method parameter

in the method body. These errors are all located within a

block of code and consist of a sequence of atoms. One

error was positioned in a selection statement. In order to

locate these errors the students must understand the

syntactic structure of the block so these error

identification tasks were classified as requiring text

surface knowledge at the block level. It is not necessary

to operate at the relations level in order to identify these

errors. We classified the 4B errors to the SOLO

multistructural category because they focus on more than

one language construct but to answer correctly them does

not require the students to understand the relationship

between the constructs and the problem can be solved by

knowing the required structure of the code rather than the

purpose or goal of the code. In order to identify this type

of error students must not only recall basic syntax rules

but also identify where there is an incorrect application of

the rule. In order to do this the students must understand

(Bloom’s category) the rule.

Finally, syntactic errors that were grouped together as

4C consisted of bugs such as an incorrect method call or a

data type mismatch for a global variable. In order to

recognize this type of error, the students need to be aware

of the relationships between various blocks in the code

and therefore required comprehension of relations. In

order to identify these bugs the students are still operating

at the text surface where an understanding does not need

to extend beyond the application of their knowledge of

the ‘grammar’ of the code.
While the different forms of question (4A, 4B, 4C)

were classified into three separate categories in the Block

model they were classified into only two different

categories when Bloom and SOLO classifications were

applied. The Block model was the only classification

system to put the three different types of questions into

separate categories.

Question 7: Code Tracing
Tracing questions are solved by tracking data through the

code line by line. This question type has not been

previously classified using the SOLO taxonomy.

However, in a study that analysed student answers to

‘code intent’ questions it was noted that “a student may

hand execute code and arrive at a ... [correct]... final

value but ... the student may not manifest an

understanding of what the code does”. Such student

responses were classified as multistructural (Lister et al.

2006). Extrapolating this to tracing questions it is clear

that it is not necessary to understand the purpose of the

code to reach the correct answer and question 7 A-E

should be classified as multistructural.
These questions require the students to apply a known

process or strategy and are therefore classified as apply in

the revised Bloom’s cognitive dimension.
The students need to have knowledge of the data flow

and in some cases control flow of a simple Java method

in order to answer code tracing questions. In order to

operate at the program execution level they must also

operate at the lower text surface level. They do not need

to extend to the functions domain of the Block model.

Therefore, the tracing questions in this exam are all posed

within the program execution knowledge dimension of

the Block model.
The aspect in which these questions differ is the level

of the task when classifying the questions using the Block

model. The Block model was the only system that

differentiated amongst these tracing questions. The

questions were classified into two different levels within

the Block model. For these questions code that contained

iteration were classified at the relations level whereas

code without iteration were classified as block level

questions.

Question 5: Skeleton Code (with scaffolding)
The skeleton code for question 5 is a class definition,

taking up a page and a half, containing two private data

members (one of which is an ArrayList), a single

constructor, and three methods, which add to, delete

from, and print the contents of the ArrayList. After the

code, the students are set the following task for

refactoring the code: “The table below shows the missing

lines of code, but not necessarily in the correct order. It

also has one extra line of code that is not needed. Identify

CRPIT Volume 136 - Computing Education 2013

70

which line of code should go where …” In-line comments

are provided as a scaffold to help the students identify the

appropriate lines of code. The scaffolding means that it is

not necessary for the students to identify the overall goal

of the missing lines and the blocks in which the line must

be placed because this is provided. It does still, however,

require them to understand the various relationships

between lines of code in order for them to select the

correct missing line. For example see Figure 4 where

there is a need to understand the connections between

fields as parameters to an external constructor method for

a Lot object and the Lot object and an ArrayList method

call as well as the sub-goals of these method calls.

Question 5 was therefore classified as a SOLO relational

question and in the relations-functions of the Block

model. This question requires the students to differentiate

the relevant from the irrelevant lines of code and to focus

on the sections of code within the class that are relevant

to the differentiation task. Therefore this question was

classified as analyse. A similar skeleton code question

has been reported previously and was also classified at

the analyse level of Blooms cognitive process dimension

(Whalley et al. 2006).

private ArrayList<Lot> lstLots;

private int nextLotNumber;
....
/**
* A simple model of an auction
* @author David J. Barnes and Michael

Kolling */

public void enterLot(String description)
{

//create new Lot
Lot lot = new Lot(nextLotNum,description);
//store it in the ArrayList
<missing code>

nextLotNumber++;
}

Figure 4: Part of question 5 code (adapted

from Barnes and Kölling 2006)

Question 6: Parsons puzzle (with structure)
Question 6 is a Parsons puzzle (Parsons and Haden 2006)

where students are presented with jumbled lines of code

for a Java method (see Appendix). They are provided

with the purpose of the method which is to count the

number of occurrences of a character in a string and a

structure for the method defined by a set of nested braces

and blank lines. The students are required to place the

lines of code into the correct order.
Classifying this question using SOLO is difficult. It

could be argued that even though the students are

provided with the overall purpose of the code they still

have to understand the code as a whole in order to reach

the correct answer. Therefore it should be considered to

be a relational question. Additionally if we take this

viewpoint the revised Bloom’s cognitive level of the

question must be analyse because the students are

determining how the lines of code fit within the overall

structure and purpose of the code. However research

using these puzzles points to the fact that students

typically apply a set of heuristics to solve the problem

(Denny et al. 2008). For example, the final line of the

method must be the return statement and the first line the

method header. Even in determining the position of the

loop in relation to the selection statement the variable i is

defined in the loop and then used in the ‘if statement’.

Understanding the relationship between the two lines of

code and the variable i can be seen as applying a more

sophisticated heuristic. On the other hand it could be seen

as manifesting an understanding of the purpose of the

variable i. Either way in terms of SOLO, the question is

multistructural because although connections between

parts of the code must be made, the question does not

require meta-connections to be made.
The Parsons puzzle examined here is classified at the

apply level, in the revised Bloom’s cognitive dimension,

because it is possible to solve this problem correctly by

applying known heuristics.
This question requires students to operate at the block

level. It is not necessary for them to be able to understand

the connections between the blocks to solve the problem

because they can use heuristics. Although the students are

given the overall goal of the method it is possible to solve

this Parsons puzzle without understanding the overall

goal. However it seems that the students must at least

understand the sub-goals of the constituent blocks and

atoms in order to solve this puzzle correctly. Therefore

we have classified this puzzle in the functions knowledge

domain. It should be noted that a more complex puzzle,

without scaffolding, may require a deeper understanding

of the logic and flow of the algorithm and be at the

relations level of the functions domain. Therefore, unlike

tracing questions, we cannot claim that all Parsons

puzzles have a predetermined classification.

Question 10: Code Intent
Questions 10 A, B and C all required the students to

explain the purpose or goal of a single method. It is clear

that such a question moves beyond the structure of the

code, data flow and control flow, and is within the

Function cognitive dimension of the Block model. As an

example we will consider question 10B (Figure 5). To

solve this question the students need to understand the

connections between the three blocks of code in order to

infer an overall purpose.

public void method10B(int iNum)

Block 1

{

 for(int iX = 0; iX < iNum; iX++)Block 2

 {

 for(int iY = 0; iY < iNum; iY++)

 {
Block 3

 System.out.print(“*”);

 }

 } System.out.println();

}

Figure 5: Question 10B and its constituent blocks

There are a number of possible ways that a student

might solve this problem. They might apply a top-down

comprehension strategy by identifying the sub-goal of

Block 3 before trying to understand the function of Block

2. When considering Block 2 they see Block 3 as an atom

(which prints a line of iNum stars) and that Block 2

executes Block 3 followed by a carriage return iNum

times. The outer block might be processed in a similar

way in order to arrive at the purpose of the method. In

this way it can be argued that a student is reaching an

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

71

understanding of the relationship between the three

blocks and then inferring an overall purpose. The same

outcome might be achieved by tracing the code, a

bottom-up strategy, in order to try to see the relationships

between the blocks and arrive at a conclusion as to the

purpose of the code. Or they may apply a combination of

both. Regardless of the strategy they apply, to reach a

correct answer the student is operating at the highest level

within the functions dimension because an

“understanding the goal or function of the program” is

required. ‘Code intent’ questions, similar to the ones in

this examination have been consistently classified as

SOLO relational (see Clear et. al 2008) and this gives

weight to our classification of questions 10A-C as

relational. In past work ‘code intent’ questions have been

classified as understand (Thompson et al. 2008, Whalley

et al. 2006). Our initial classification was at this level.

However we believe that the cognitive processes used by

novice programmers when trying to solve ‘code intent’

questions are more complex than previously assumed. A

fuller discussion of this aspect of using Blooms

taxonomy to classify program comprehension tasks is

provided in the next section.

3.1 Using Bloom’s taxonomy
Like many educators in science disciplines we have

found it difficult to apply the Bloom and the revised

Bloom taxonomies. There have been several studies that

indicate that the order of the levels changes depending on

the task. For example in a test on atomic structure it was

found that synthesis and evaluation were placed between

knowledge and comprehension. A test related to glaciers

found that synthesis lay between knowledge and

comprehension (Kropp and Stocker 1966). Similarly, we

believe that the cognitive dimension hierarchy does not

map comfortably with computer programming tasks.
In classifying ‘code intent’ questions Thompson et

al.’s (2008) revised Bloom vignettes and definitions

indicate that this type of question is at the understand

level. In the revised Bloom’s taxonomy understand is

defined as ‘constructing meaning from instructional

messages’ which is interpreted by Thompson et al. (2008)

to include “explaining a concept or an algorithm or

design pattern”. Tracing questions were classified, by

Thompson et al. (2008) at the higher revised Bloom level

of apply. Apply is defined as “carrying out or using a

procedure in a given situation” and clearly hand

execution of code is a process which students must apply

in order to answer a code tracing question.
Past research has shown us that novice programmers

find ‘code intent’ questions more difficult than tracing

questions and Parsons puzzles (Lopez et al. 2008). A

study which examined the approaches of experts vs.

novices in solving these types of problems also illustrated

that there is likely to be a higher cognitive load and more

complex cognitive processes involved in solving a

previously unseen ‘code intent’ question than for an

unseen tracing question (Lister et al. 2006). Additionally

they found that even experts sometimes approach ‘code

intent’ questions by first partially tracing the code in

order to discover the code’s purpose. In classifying

questions to Bloom the highest cognitive process level

necessary to solve the problem should be used.

Consequently, at the lowest possible level ‘code intent’

questions must be apply. We believe that code intent

tasks are more complex than has previously been

assumed. It is likely that students first break down the

code into manageable chunks and then try to determine

the goal of each chunk, possibly by using a tracing

strategy. At this point it is likely that they try to start

mapping this code to their existing knowledge.

Subsequently the students try to establish how the parts

relate to one another and attempt to arrive at an overall

purpose for the code. If this viewpoint is accepted then it

is evident that ‘code intent’ questions require the students

to be thinking at the analyse level. This classification

would be more in line with the SOLO and Block

classifications for ‘code intent’ questions and would

better reflect the level of difficulty of such questions for

novice programmers.

3.2 Reflections on the Block model
The Block model classification of this small set of exam

questions seems to indicate that there is a relationship

between the Block classification of a question and the

observed difficulty of a question.
The average % of fully correct answers for all

questions classified into a block for each block in the

Block model is shown in Figure 6. When compared with

SOLO and Bloom (see Table 1) the Block model

classification levels appear to more accurately match the

relative difficulties of code comprehension tasks for

novice programmers.

Macro structure 17%

Relations 31% 24.5% 42%
Blocks 53% 74% 60%
Atoms 59%

 Text Execution Functions
 surface

Figure 6: Average % fully correct answers

This relationship is particularly evident when

examining the results by question type. For example the

tracing questions (question 7A – E) become progressively

more difficult for the students to answer as the block level

and knowledge dimensions increase (see Table 1 and

Figure 6). However the teaching context of the

knowledge required to successfully solve a question

affects the difficulty of that question. The students found

7C was much easier (81% correct answers) than question

7B (64% correct). On closer examination question 7C

required students to determine if a number was outside of

a given range. The selection statement used a logical or.

This code had been covered in detail in class using a

“range doodle” (Whalley et al. 2007). Many of the scripts

had such doodles on them indicating that although the

code was presented as the opposite logic of the class

room example, which checked if values were within a

range, the teaching had an impact on the learning of the

students. Question 7B on the other hand was a simple

remainder operation. The fact that 36% of students could

not solve this simple problem as well as they could 7C

suggests that the students lack basic mathematical

knowledge that was assumed in the teaching of

CRPIT Volume 136 - Computing Education 2013

72

programming for this cohort. Despite these differences

overall tracing problems which are program execution

knowledge domain questions that were posed at the block

level were easier that those posed at the relations level.
If we map the SOLO classification of our questions to the

Block model classification a pattern emerges that shows a

possible relationship between Block model levels and SOLO

(Figure 7).

Macro
Relational

structure

Relations Multistructural Multistructural Multistructural

Blocks Multistructural Multistructural Multistructural

Atoms Unistructural

 Text surface Execution Functions

Figure 7: Mapping of SOLO & Block model

classifications
A relationship had been hypothesised by Schulte et al.

(2010) and while our findings support a mapping we

propose that the relations level actually maps to the

SOLO multistructural level and not the relational

(Figure 8). We found in our exam that questions at the

relations level across all three knowledge dimensions

were at the SOLO level of multistructural. It is important

to note the distinction between relations (references

between blocks) and ‘thinking’ at a relational level when

classifying exam questions using the Block model.

Block model SOLO SOLO
 (Schulte et al. 2008) (revised mapping)

Macro Relational Relational
Relations Relational Multistructural

Block Multistructural Multistructural
Atom Unistructural Unistructural

Table 2: Mapping the Block model to SOLO

Figure 8 shows the mapping between the Bloom and

Block model classifications. As observed for SOLO there

is a general trend of difficulty as you progress up the

Block levels and this was also reflected in decreasing

student achievement.
There also appears to be a general trend of increasing

cognitive complexity required to solve the questions as

you move from text structure to functions across the

Block model knowledge dimensions. However, this trend

is not present in the student performance data on the set

of questions reported in this paper. It is possible that this

trend was not observed because we do not have sufficient

data for some of the blocks. For some questions it was

difficult to determine which block the question should be

classified to if the question lay on the boundary. It may

be necessary to further define the blocks and provide

vignettes to guide the classification process.

Macro structure Analyse

Relations Understand Apply Analyse
Blocks Understand Apply Apply
Atoms Remember

 Text Execution Functions
 surface

Figure 8: Mapping Bloom & Block model

classifications

4 Conclusion
It is important to note that many of the limitations that

exist for the use of Bloom and SOLO also exist for the

Block model. In particular it is necessary to understand

the context of learning and what prior exposure students

have to the information required. In under taking this

research we have noted that when educators attempt to

design “better models” they somehow end up with

models that appear to be revisions of existing taxonomies.

In this case it appears that the Block model might actually

be a hybrid of a revised SOLO and a revised Bloom’s

taxonomy.
Based on our experience SOLO still seems to the most

straightforward model to apply but in using SOLO we

lose the granularity to examine programming exam

questions because those tasks are largely multistructural.

A recent survey of first year programming exams found

that 20% of questions in CS1 courses were tracing

questions and 9% were explain questions (Simon et al.

2012). The main advantage of the Block model is that it

provides us with a way of describing these novice

programming tasks that gives us a level of granularity

which allows us to distinguish between similar tasks in a

way that SOLO or Bloom’s taxonomy cannot.
The mapping of tasks to the Block model reveals

‘holes’ in the coverage of our examination of code

comprehension. We do not have questions that are about

the execution and functions of atoms or questions that

require text surface and execution knowledge at the

macro structure level. Examinations reflect the focus of

our teaching. The lack of coverage of the Block model

leads us to question whether or not we have it right.

Could we be missing key tasks that might enable student

learning? If we do cover the entire Block model can we

improve code comprehension? Perhaps an increased

focus on these missing areas during instruction will help

students to develop advanced understanding more rapidly.
The work reported here is a preliminary look at the

usefulness of the Block model for measuring and

evaluating programming tasks and also for investigating

the cognitive processes employed by students to solve the

problems. In order to explore this further we intend to

analyse a larger set of examination questions. We also

plan to use the Block model to design assessment tasks

and to attempt to establish the level at which the students

are actually operating by using think-out-loud interviews.
In our analysis we have omitted code writing tasks,

largely because the model was originally designed for

comprehension tasks. But it would be interesting to

revisit the Block model with a focus on code writing

tasks. We believe that the Block model, with minor

refinements, might also provide a useful framework for

research and teaching of code writing tasks.

5 References
Abran, A., Moore, J., Bourque, P., DuPuis, R. and Tripp,

L. (2004): Guide to the Software Engineering Body of

Knowledge - 2004 Version SWEBOK ®, Los Alamitos,

CA , IEEE-CS - Professional Practices Committee.
Alaoutinen, S. and Smolander, K. (2010): Student Self-

Assessment in a Programming Course Using Bloom’s

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

73

Revised Taxonomy. Proc. of the 15
th

 Annual

Conference on Innovation and Technology in Computer

Science Education (ITiCSE ’10), 155–159. ACM Press.
Anderson, L. W., Krathwohl, D. R., Airasian, P. W.,

Cruikshank, K. A., Mayer, R. E., Pintrich, P. R., Raths,

J. and Wittrock, M. C. (2001): A Taxonomy for

Learning, Teaching, and Assessing: A Revision of

Bloom’s Taxonomy of Educational Objectives.

Longman.
Barnes, D.J. and Kolling, M. (2006): Objects First with

Java: A Practical Introduction using BlueJ (3
rd

Edition). England, Pearson Education Ltd.
Biggs, J. B. and Collis, K. F. (1982): Evaluating the

Quality of Learning: The SOLO Taxonomy (Structure

of the Observed Learning Outcome). New York.

Academic Press.
Bloom, B. S. (1956): Taxonomy of Educational

Objectives, Handbook 1: Cognitive Domain. Addison

Wesley.
Bower, M. (2008): A Taxonomy of Task Types in

Computing. SIGCSE Bulletin, 40(3): 281–285.
Clear, T., Whalley, J., Lister, R., Carbone, A., Hu, M.,

Sheard, J., et al. (2008): Reliably Classifying Novice
Programmer Exam Results using the SOLO

Taxonomy. Proc. of the 21
st

 Annual NACCQ

Conference, Auckland, New Zealand, 23-30.
Denny, P., Luxton-Reilly, A. and Simon, B. (2008):

Evaluating a New Exam Question: Parsons Problems.
Proc. of the 2008 International Workshop on

Computing Education Research (ICER '08), Sydney,

Australia, 113-124.
Fuller, U., Johnson, C. G., Ahoniemi, T., Cukierman, D.

Hernán-Losada,I., Jackova, J., Lahtinen, E., Lewis, T.

L. McGee Thompson D., Riedesel, C. and Thompson

E. (2007): Developing a computer science-specific

learning taxonomy. SIGCSE Bull. 39(4): 152-170.
Gluga, R., Kay, J., Lister, R., Kleitman, S. and Lever, T.

(2012): Overconfidence and confusion in using Bloom

for programming fundamentals assessment. Proc. of the

43
rd

 ACM technical symposium on Computer Science

Education (SIGCSE ’12), 147–152: ACM Press.
Hattie, J. and Purdie, N. (1998): The SOLO model:

Addressing fundamental measurement issues. In B.

Dart & G. Boulton-Lewis, (Eds.), Teaching and

Learning in Higher Education, 145–176. ACER Press.
Johnson, C. G. and Fuller, U. (2006): Is Bloom's

taxonomy appropriate for computer science. In A.

Berglund (Ed.), Proc. of the 6th Baltic Sea Conference

on Computing Education Research (Koli Calling

2006), Koli National Park, Finland, 120-123.
Khairuddin, N. N. and Hashim, K. (2008): Application of

Bloom's taxonomy in software engineering

assessments. Proc. of the 8th conference on Applied

computer science (ACS'08), World Scientific and

Engineering Academy and Society (WSEAS), Stevens

Point, Wisconsin, USA, 66-69.

Kintsch, W. (1998): Comprehension: a paradigm for

cognition. Cambridge University Press.
Kropp, R. P. and Stroker, H. W. (1966): The construction

and validation of tests of the cognitive processes as

described in the taxonomy of educational objectives.
Florida State University, Institute of Human Learning

and Department of Educational Research and Testing.
Lahtinen, E. A. (2007): Categorization of Novice

Programmers: A Cluster Analysis Study. Proc. of the

19th Annual Workshop of the Psychology of

Programming Interest Group (PPIG), 32-41. Joensuu,

Finland.
Lister, R. (2001): Objectives and Objective Assessment in

CS1. Proc. of the thirty-second SIGCSE technical

symposium on Computer Science Education (SIGCSE

'01), 292-296: ACM Press.
Lister, R. and Leaney, J. (2003):First Year Programming:

Let All the Flowers Bloom. Proc. of the 5th

Australasian Computing Education Conference

(ACE2003), Adelaide, Australia, 221-230.
Lister, R., Simon, B., Thompson, E., Whalley, J.L. and

Prasad, C. (2006): Not seeing the forest for the trees:
novice programmers and the SOLO taxonomy, Proc. of

the 11
th

 annual SIGCSE conference on Innovation and

Technology in Computer Science Education (ITiCSE
’06), Bologna, Italy, 118-122.

Lopez, M., Whalley, J., Robbins, P. et al., (2008):
Relationships between reading, tracing and writing

skills in introductory programming. Proc. of the 4
th

International Computing Education Research
Workshop (ICER 2008). Sydney, Australia, 101-112.

Oliver, D., Dobele, T., Greber, M. and Roberts, T. (2004):

This course has a Bloom Rating of 3.9. Proc of the 6
th

Australasian Computing Education Conference,
Dunedin, New Zealand, 227-231,

Meerbaum-Salant, O., Armoni, M., & Ben-Ari, M.
(2010): Learning Computer Science Concepts with

Scratch. Proc. of the 6
th

 International Computing

Education Research Workshop (ICER 2010). Aarhus,
Denmark, 69-76.

Parsons, D. and Haden, P. (2006): Parson's programming
puzzles: a fun and effective learning tool for first

programming courses. Proc. of the
8th

 Australian

conference on Computing Education, Darlinghurst,
Australia, 157–163.

Schulte, C., Busjahn, T., Clear, T., Paterson, J. and

Taherkhani, A. (2010): An introduction to program

comprehension for computer science educators. Proc.

of the 2010 ITiCSE Working group reports (ITiCSE-

WGR‘10), Ankara, Turkey, 65-86.
Schulte, C. (2008): Block Model: an educational model of

program comprehension as a tool for a scholarly

approach to teaching. Proc. of the 4
th

 International

Workshop on Computing Education Research (ICER
2008), Sydney, Australia, 149-160.

Scott, T. (2003): Bloom’s taxonomy applied to testing in

computer science classes. Journal of Computing in

Small Colleges, 19(1): 267-274.

CRPIT Volume 136 - Computing Education 2013

74

 Sheard, J., Carbone, A., Lister, R., Simon, B., Thompson,

E. and Whalley, J. L. (2008): Going SOLO to assess

novice programmers, Proc. of the 13
th

 annual SIGCSE

conference on Innovation and Technology in Computer
Science Education (ITiCSE’08), Madrid, Spain, 209-
213.

Shuhidan, S., Hamilton, M. and D'Souza, D. (2009): A

taxonomic study of novice programming summative

assessment. Conferences in Research and Practice in

Information Technology, 95: 147-156.
Simon, Sheard, J., Carbone, A., Chinn, D., Laakso, M.,

Clear, T., de Raadt, M., D'Souza, D., Lister, R.,
Philpott, A., Skene, J. and Warburton, G. (2012):
Introductory programming: examining the exams.
Proc. of the 14

th
Australasian Computing Education

Conference (ACE2012), Melbourne, Australia, 61-70.
Starr, C. W., Manaris, B. and Stalvey, R. H. (2008):

Bloom’s Taxonomy Revisited: Specifying Assessable

Learning Objectives in Computer Science. SIGCSE

Bulletin, 40(1): 261–265.
Thompson, E., Luxton-Reilly, A., Whalley, J., Hu, M.

and Robbins, P. (2008): Bloom's Taxonomy for CS

assessment. Proc. 10
th

 Australasian conference on

Computing Education (ACE 2008), Wollongong,
NSW, Australia, 155-162.

Whalley, J., Clear, T. and Lister, R. (2007): The many

ways of the BRACElet project. Bulletin of Applied

Computing and Information Technology, 5(1).

Retrieved August 3, 2012 from http://www.naccq.ac.nz

/bacit/0501/2007Whalley_BRACELET_Ways.htm
Whalley, J., Prasad, C. and Kumar, P. K. A. (2007):

Decoding doodles: novice programmers and their

annotations, Proc. of the 9
th

 Australasian conference on

Computing Education, Ballarat, Victoria, Australia,
171-178.

Whalley, J. L., Lister, R., Thompson, E., Clear, T.,

Robbins, P., Kumar, P. K. A. and Prasad, C. (2006). An
Australasian Study of Reading and Comprehension
Skills in Novice Programmers, using the Bloom and

SOLO Taxonomies. Proc. of the 8
th

 Australasian

Computing Education Conference (ACE2006), Hobart,
Australia, 243-252.

Whalley, J., Clear, T., Robbins, P., and Thompson, E.

(2011): Salient Elements in Novice Solutions to Code

Writing Problems. Conferences in Research and

Practice in Information Technology, 114: 37-46.

Appendix

Question 4

import java.util.ArrayList;

public SimpleShop{

private String sName A - missing ;

private String sPhoneNumber;

private String aAddress;

private ArrayList lstInventory;

private double dTotalAmountSold; A - missing)

public SimpleShop(String name, String address {

 aAddress = address;

 sName = name;

 lstInventory = new ArrayList();

} dTotalAmountSold = “0.0”;
B

public String getAddress(){

} Return sAddress; A- should be return

public int getPhoneNumber(){ C- wrong return type

}
return sPhoneNumber;

B - should be void

public int setPhoneNumber(String phoneNumber){

sPhoneNumber = phoneNumber;
}

public void addItem(Item item){

lstInventory.add(item);
}

public int numberOfItems(){
B - should have

return statement

lstInventory.size();

} A

public boolean sell Item(Item item){

boolean bSold = false; C

if(lstInventory.contains(items){

lstInventory.remove(item);

dTotalAmountSold + item.getPrice();

bSold = true;

} A – should be +=

return bSold;

}

}

Question 6
Here are some lines of code that in the right order would make up

a method to count the occurrences of a letter in a word.

if(sWord.charAt(i) == c)
for(int i = 0; i < sWord.length;

i++) return count;
int count = 0;
public int countLetter(String sWord, char

c) count++;

Each box represents a placeholder for the lines of code above.

Each line of code must be place in only one of the boxes.

{

{

{

}
}

}

Proceedings of the Fifteenth Australasian Computing Education Conference (ACE2013), Adelaide, Australia

75

http://dl.acm.org/citation.cfm?id=1384328&CFID=98741609&CFTOKEN=95320567
http://dl.acm.org/citation.cfm?id=1384328&CFID=98741609&CFTOKEN=95320567
http://dl.acm.org/citation.cfm?id=1384328&CFID=98741609&CFTOKEN=95320567
http://dl.acm.org/citation.cfm?id=1384328&CFID=98741609&CFTOKEN=95320567
http://dl.acm.org/citation.cfm?id=1384328&CFID=98741609&CFTOKEN=95320567
http://dl.acm.org/citation.cfm?id=1384328&CFID=98741609&CFTOKEN=95320567
http://dl.acm.org/citation.cfm?id=1384328&CFID=98741609&CFTOKEN=95320567
http://dl.acm.org/citation.cfm?id=1384328&CFID=98741609&CFTOKEN=95320567
http://dl.acm.org/citation.cfm?id=1384328&CFID=98741609&CFTOKEN=95320567
http://dl.acm.org/citation.cfm?id=1384328&CFID=98741609&CFTOKEN=95320567

Question 7A
What are the values of a, b and c after this code is
executed? public void int q7A(){

int a = 3;

int b = 6;

int c;

a += 2;

b -= 4;
c = b + a;

}

Question 7B
What will this method return for each pairs of inputs shown?

public void int q7B(int num1, int num2){

return num1 % num2;
}

num1 num2 returns
17 5

18 6

Give a value for each of the two input parameters that would
cause the method to return the value

5: num1....... num2.......

Questions 7C, 7D and 7C all have the same instruction:
Complete the table below to show what this method will return

for the various values shown.

Questions 7C
public boolean q7C(int iValue){

boolean bValid = false;

if(iValue>=FIRST_VAL &&

iVALUE<SECOND_VAL){ bValid = true;
}
return bValid;

}

iValue FIRST_VAL SECOND_VAL returns

17 17 2

18 17 20

4 3 4

Question 7D
public boolean q7D(int

iLimit){ int iIndex = 0;
int iResult = 0;

 while(iIndex <= iLimit){

 iResult += iIndex;

 iIndex ++;

}

 iLimit returns

 return iResult; -1

} 3

 0

Question 7E
public int q7E(int[] numbers){

int iResult = 0;

for(int i = 0; idx < numbers.length;

idx++){ if(numbers[idx] > iResult)
{

iResult = numbers[idx];
}

}

return iResult;
}

numbers returns
{1,2,3,4,5}

{20,-10,6,-2,0}

Question 10A
public double method10A(double[]

numbers){ double num = 0;

for(int i = 0; i < numbers.length; id++){

num += numbers[i];
}

return num;

}

Question 10C
public double method10C(int[] numbers, int

val){ int x = 0;
int y = numbers.length-

1; int z, temp;
boolean switch = false;

while (!switch && (x <= y){

z = (x + y)/2;
temp = numbers[z];

if(val == temp){

switch = true;
}
else if(val < temp){

y = z -1;
}else{

x = z + 1;
}

}
return switch;

}

CRPIT Volume 136 - Computing Education 2013

76

