
Scaling Up Transit Priority Modelling Using High-Throughput
Computing

Mahmoud Mesbah
School of Civil Engineering,
University of Queensland,

Australia
Mahmoud.Mesbah@uq.edu.au

Majid Sarvi
Dept. of Civil Engineering,

Monash University,
Australia

Majid.Sarvi@monash.edu

Jefferson Tan
Faculty of I.T.,

Monash University,
Australia

Jefferson.Tan@monash.edu

Fateme Karimirad
Dept. of Mechanical and
Aerospace Engineering,

Monash University,
Australia

Fatemeh.Karimirad@monash
.edu

Abstract
The optimization of Road Space Allocation (RSA) from a
network perspective is computationally challenging. An
analogue to the Network Design Problem (NDP), RSA
can be classified NP-hard. In large-scale networks when
the number of alternatives increases exponentially, there
is a need for an efficient method to reduce the number of
alternatives while keeping computer execution time of the
analysis at practical levels. A heuristic based on genetic
algorithms (GAs) is proposed to efficiently select Transit
Priority Alternatives (TPAs). The proposed framework
allows for a TPA to be analysed by a commercial package
that is a significant provision for large-scale networks in
practice. We explore alterative parallel processing
techniques to reduce execution time: multithreading and
High-Throughput Computing (HTC). Speedup and
efficiency are compared with that of traditional sequential
GA, and we discuss both advantages and limitations. We
find that multithreading is better when using the same
number of processors, but HTC provides expandability.
Keywords: transport modelling, genetic algorithm, high-
throughput computing, high-performance computing

1 Introduction
With ever-increasing travel demands, traffic congestion
has become a challenge for many cities around the world.
Construction of new roads or mass transit is not always
possible, and reallocation of road space between transit
vehicles and cars has emerged as a solution. Mesbah et al.
(2011a, 2011b) proposed a bi-level optimization program
for road space allocation (RSA). The objective was to
identify the roads on which a bus lane should be
introduced. The authors showed that this Mixed Integer
Non-Linear (MINL) formulation is an NP-hard problem
and is therefore computationally challenging. For large-
scale networks, a heuristic approach is adapted to find
reasonable solutions. This problem can be classified
under the umbrella of Network Design Problems (NDP)
that has a wide range of applications in Engineering. The
network can be for roads, communication, power, water,
or any network with a set of connected nodes and links.

 Copyright 2012, Australian Computer Society, Inc. This paper
appeared at the 10th Australasian Symposium on Parallel and
Distributed Computing (AusPDC 2012), Melbourne, Australia,
January-February 2012. Conferences in Research and Practice
in Information Technology (CRPIT), Vol. 127. J. Chen and R.
Ranjan, Eds. Reproduction for academic, not-for profit purposes
permitted provided this text is included.

The goal is to find the optimal combination of links to be
added/modified to minimize a certain objective function.

The RSA problem is NP-hard, so the proposed
optimization methods to large-scale problems requires
extensive computational power, feasible with advanced
techniques such as High-Performance Computing (HPC)
(Strohmaier et al., 2005). While the term was applied
broadly at first (Dongarra et al., 2005), HPC today
typically applies to a tightly coupled system of many
shared memory processors, particularly important when
jobs must communicate among themselves. An
alternative is High-Throughput Computing (HTC), aimed
at providing large amounts of processing capacity taken
together over a long period of time (Thain et al, 2005).
Many Task Computing bridges the gap between HPC and
HTC (Raicu et al., 2010), whether or not there are many
long duration tasks, and regardless of the number of
processors per computer. The common goal is to support
simultaneous computations, where a long process is
divided into small tasks, which are distributed across a set
of interconnected processors to execute separately,
simultaneously. Results are then gathered and combined.
While HPC taken broadly may apply, the work described
in this paper focuses on the HTC approach to distinguish
the use of several independent computers on a network,
as against our previous work using a single
multiprocessor (Mesbah et al., 2011a). We demonstrate
the application of HTC to solve a large-scale optimization
problem in Transportation Engineering.

The proposed RSA is formulated as bi-level
optimization. The upper level formulates an objective
function and a set of constraints from the system
managers’ perspective. The lower level consists of user
behavioural models, which requires a complex
optimization program on its own. A number of
commercial packages are available in order to analyse the
user behaviour at the lower level, one of which is
employed in this research. Many transport networks are
already modelled in commercial packages, so there are
benefits to sticking with them. Transport authorities have
invested heavily in developing these models and already
have confidence in their performance. Moreover, many
transport planners are already trained to work with them.
However, there are certain challenges in dealing with
commercial applications such as we have had to do. We
use a package called Visum. It requires Microsoft
Windows, and uses a dongle for license management. The
installer is more than 700MB, and requires interactive
installation. While it can use multithreading on a machine
with many processors (cores) and lots of memory, the

Proceedings of the Tenth Australasian Symposium on Parallel and Distributed Computing (AusPDC 2012), Melbourne, Australia

53

cost of such a machine can be prohibitive, and there are
physical upper limits on cores and memory on any given
machine. On the other hand, like other packages, it is not
designed for HTC environments. Apart from a cluster,
HTC can also be through a computational grid. This is an
extensible aggregation of computational resources, such
as clusters, belonging to independent organizations
(Foster et al., 2001). Grids traditionally consist of Linux
resources, while many engineering applications run on
the Windows platform. Grids commonly support non-
commercial applications with standard libraries provided
almost out of the box, so a distributed execution of such
applications is normally straightforward. RSA
computations speed up if workload is distributed across
such environments, but the nature of grids conflicts with
the conditions for commercially licensed software.
Licenses are typically limited to individual organizations
while grids span across a virtual organization (VO) of
several member organizations that remain autonomous.
One cannot install or execute on just any resource, and
such resources are normally not uniform anyway. We
therefore have these three interesting challenges:

1. We use Visum, which requires Windows.
2. This is a commercial package and the source code

is not accessible for reprogramming.
3. It must be pre-installed on each compute node

with a large installer of over 700MB.
The proposed method can apply to many engineering

applications where an iterative procedure is carried out
using a commercial software package. A point we wish to
make is that, despite the challenges, HTC can make many
engineering applications scalable for large problems,
even where the long runtime used to be a limiting factor.

The next section starts with a limited literature review
on transit priority and continues with the bi-level
optimization formulation. Then a solution algorithm is
presented, based on a genetic algorithm (GA). It is
implemented for (1) a single CPU on one machine, (2)
multiple CPUs on one machine, and (3) multiple CPUs on
multiple machines. Details are discussed subsequently, as
is an example. In the last section, the results are discussed
and the major findings are summarized.

2 Research Background

2.1 Road Space Allocation
The introduction of exclusive lanes to transit vehicles is
one way to prioritize transit, an approach known as Road
Space Allocation (RSA) (Black 1991, Currie et al., 2004).
The literature on RSA can be classified into evaluation
studies and optimization studies (see Figure 1).

Some evaluation studies focus on the local level, i.e. a
link or corridor, e.g., Black (1991) presented a model on
an urban corridor, evaluating several predefined scenarios
based on total user travel time. Jepson and Ferreira (2000)
assessed different road space priority treatments such as
bus lane and setbacks based on delays in two consecutive
links. Currie et al. (2007) considered a comprehensive list
of impacts of RSA including travel time, travel time
variability, initial and maintenance costs in a local
priority project.

Figure 1. Classification of RSA studies.

Having compared performance measures in the literature,
they proposed an approach to evaluate transit priority
projects. Using the concept of intermittent bus lanes
(Viegas 1996, Viegas and Lu 2004), Eichler and Daganzo
(2006) suggested a new analysis method based on
kinematic wave theory, which can be applied to a long
arterial. At the network level, Bly et al. (1978) explored
exclusive bus lanes to a link in different conditions, and
the impact on the network was assessed using sensitivity
analysis. Waterson et al. (2003) presented a macro-
simulation approach which evaluates a given priority
scenario at the network level. This approach considered
rerouting, retiming, modal change, and trip suppression.
Liu et al. (2006) proposed a similar approach with micro-
simulation. Stirzaker and Dia (2007) applied micro-
simulation to evaluate a major bus lane project in
Brisbane. These studies evaluated a limited number of
alternatives that do not necessarily include the best
possible RSA over the network, and do not propose an
optimization method to find the best set of bus lanes.

A number of studies have approached the problem
using combined RSA optimization in Transit Network
Design Problem (TNDP). Duff-Riddle and Bester (2005)
applied a trip focusing process to design transit routes.
The iterative method was able to put transit routes on the
shortest travel time and shortest distance. The issue of
express buses was also included with minute changes in
the model. Chen et al. (2007) presented a design method
in the form of a mathematical programming model.
However, similar to Duff-Riddle and Bester (2005), the
aim of their method was to design a new bus route.

Having first explored optimal TPAs in an existing
transit network (Mesbah et al., 2008) with a general
framework to find the optimal TPA at the network level,
we have since then introduced a decomposition approach
and a GA approach (Mesbah et al., 2011a, 2011b). This
paper extends our work by employing HTC to reduce the
runtime for large-scale transit networks.

2.2 High-Throughput Computing
HPC is a broad umbrella for a number of different
environments (Strohmaier et al., 2005), but when
performance is measured for many tasks across long
periods of time, we may speak of high-throughput
computing (HTC) (Thain et al., 2005). A neutral term
bridging HPC and HTC is many task computing (MTC),
with little distinction about the size of tasks (Raicu et al.,
2010). Commodity computers can also be organized on
high-speed networks. They are relatively low expenditure
resources, compared to supercomputing facilities.

Road Space Allocation Studies

Evaluation Optimization

Local level Network level Existing
Transit

Network

Transit
Network
Design

CRPIT Volume 127 - Parallel and Distributed Computing 2012

54

Beowulf-class clusters were probably the first (Sterling et
al., 1998) of such environments, providing a queuing
system for submitting and managing computational jobs.
Another environment is the Sun Grid Engine (Gentzsch,
2001), and there are others, which uniformly share a
preference for the UNIX or Linux environment.

Condor (Thain et al., 2005) uses computers that are
normally used for other purposes, e.g., a desktop, and
supports Windows nodes. Condor was originally dubbed
“hunter for idle workstations” (Litzkow et al., 1988), i.e.,
when the user leaves the console for extended periods,
e.g., after hours. This is the case for Monash University’s
SPONGE resource, with up to 1000 cores running on
computer laboratories across campuses during lean
periods and after hours. While most nodes have two cores
with modest memory, SPONGE collectively provides a
considerable HTC resource.

3 Transit Priority Optimization
The RSA problem can be modelled as a ‘Stackelberg
competition’ in which the system manager is the leader
and transport users are followers (Simaan 1977, Bard and
Falks 1982, Yang and Bell 1998, Liu et al., 2008). The
system manager chooses a TPA, and in the subsequent
system, users would choose their mode of travel and a
path in order to maximize their own benefit.

The above design approach is formulated in this paper
as a bi-level optimization program (Shimizu et al., 1997,
Bard, 1998) (see Figure 2). At the upper level are the
objective function and constraints from the system
manager perspective. The upper level determines the TPA
or the links on which priority would be provided for
transit vehicles (decision variables). The aim of the upper
level is to achieve System Optimal (SO) (Sheffi, 1984),
thus the objective function includes a combination of
network performance measures. The corresponding
constraints are included in the upper level constraints.
The upper level can be formulated as follows:

(1)

s.t.,

 (2)

 (3)

Variable definitions can be found in the annotation
section. Note that , where ξp,a is an

element of the bus line-link incident matrix with ξp,a=1 if
bus line p travels on link a and ξp,a=0 otherwise. The in-
vehicle travel time is .

The first two terms in the objective function are the
total travel time by car and bus. The next two terms
represent the various other impacts of these two modes
including emission, noise, accident, and reliability of
travel time. The factors α, β, γ, and η not only convert the
units, but also enable the formulation to attribute different
relative weights to the components of the objective
function (Mesbah et al., 2010). Equation (2) states that

the cost of the implementation should be less than or
equal to the budget. The decision variable is φa by which
the system managers try to minimize their objective
function (Ζ). If φa=1, then a bus lane is introduced on link
a and buses can speed up to free flow speed, while the
capacity of the link for cars is reduced from to

. If φa=0, then buses will travel in the mixed traffic

on a link with a capacity of . They are users who
determine the link flows (x). Link flows are related to the
decision variables by the lower level models.

Figure 2. Outline of the proposed methodology.

At the lower level, it is the users’ turn to maximize
their benefit. Based on the decision variables determined
at the upper level, users make their trips. The traditional
four-step method (Ortúzar and Willumsen, 2001) is
adapted in this paper for transport modelling. It is
assumed that the travel demand and the distribution of
demand are not affected by the location of bus lanes
(these conditions can be relaxed in future studies).
Therefore, the origin-destination matrix remains constant.
The lower level consists of three models: (1) modal split
model, (2) traffic assignment model (car demand), and (3)
transit assignment model (bus demand). Once the demand
is determined, users choose their travel mode. Then, the
car demand segment of the total demand is assigned to
the network. The last step at the lower level formulation
is the assignment of transit demand. Without loss of
generality, in this study, a Logit model is used for the
mode choice (Papacostas and Prevedouros, 1993), a User
Equilibrium (UE) model is adapted for traffic assignment
(Sheffi, 1984), and frequency-based assignment is applied
to transit assignment (PTV AG, 2009). While these
models are used for mode choice and assignment steps,
the proposed HTC framework can be implemented by
many other transport planning models. The lower level
calculations are performed in Visum (PTV AG, 2009). As
previously stated, many cities already use commercial
packages. The proposed framework incorporates them
instead of having to convert the models to other formats.

The bi-level structure, with a linear objective function
and constraints, is NP-hard (Ben-Ayed and Blair, 1990).
To complicate things further, the upper level objective
function and the UE traffic assignment are non-linear. We
employ a GA to find an approximate solution. The output

∑∑∑∑∑
∈∈∈∈∈

++++=
Ba

b
aa

Aa

c
ac

c
a

Ii

b

Ba

b
a

b
a

Aa

c
a

c
a ImpsfImpl

Occ
xwxtxxtxMinZ

i
ηγβα))(()(

BdgExc
Aa

aa ≤∑
∈ '

2

φ

2 1or 0 Aaa ∈∀=φ

∑
∈

=
Lp

appa ff ,ξ

)(xtba

c
aCpc ,0

c
aCpc ,1

c
aCpc ,0

Choose a TPA

Lower Level
(Transport Modelling)

Choose
another

TPA

Upper Level
Calculate the Upper level Objective

Function, Eq (1)

Is the convergence
criterion met? End

No Yes

Start

Proceedings of the Tenth Australasian Symposium on Parallel and Distributed Computing (AusPDC 2012), Melbourne, Australia

55

of the model is the combination of transit exclusive lanes
which minimizes the proposed objective function.

4 The Genetic Algorithm Solution
A Genetic Algorithm (GA) is an iterative search method
in which new answers are produced by combining two
predecessor answers (Russell and Norvig 2003). Inspired
from evolutionary theory in nature, the GA starts with a
set of answers referred to as the population. Each
individual answer in the population, a chromosome, is
assigned a survival probability, based on the value of the
objective function. The algorithm selects individual
chromosomes based on this probability to breed the next
generation of the population. GA uses crossover and
mutation operators to breed the next generation, which
replaces the predecessor generation. The algorithm is
repeated with the new generation until a convergence
criterion is satisfied. A number of studies applied GA to
transit networks. Two recent examples are a transit
network design problem considering variable demand
(Fan and Machemehl, 2006) and minimization of transfer
time by shifting time tables (Cevallos and Zhao, 2006).

In applying GA to the RSA problem, we define a gene
to represent the binary variable φa, and a chromosome is
the vector of genes (φ) which represents a TPA. A
chromosome (TPA) contains a combination of links on
which an exclusive lane may be introduced (set A2).
Therefore, the length of the chromosome is equal to the
size of A2. The algorithm starts with an initial population
with n chromosomes. The chromosomes of the initial
population are produced randomly. When an initial
chromosome population is produced, they are evaluated
using the lower level models, i.e. the transport planning
models of mode split, traffic assignment, and transit
assignment. This evaluation is the time consuming
component in the GA. Using the flow and travel time
from the lower level, the values of the upper level
objective function (Z) for all chromosomes are
determined. Once the evaluated, the chromosomes are
ranked from the lowest Z value to the highest. The fitness
function, which determines the probability of a
chromosome selection for breeding, is assumed to be an
arithmetic series with the highest probability assigned to
the top chromosome. The probability of the top ranked
chromosome is assumed to be naP /1)1(0 += where 0a
is a constant and n is the population size. Subsequently,
other terms can be calculated using iPiP ×−=> γ)1()1(

where γ is the reduction factor so that 1)(
1

=∑ =

n

i
iP .

11
1)1(

1))1(()1()(

0

21

−

×
=

−

−×
=⇒

=×−+= ∑∑ ==

n
an

n
Pn

iPPiP n

i

n

i

γ

γ

A one point crossover is used in all experiments. The
mutation involves flipping the value of a gene from 0 to 1
or vice versa. When a chromosome is selected for
mutation, one gene from each set of 5 to 8 genes are
flipped. That is about 12 to 20 flips for a chromosome
100 genes long. A common convergence criterion
adapted here is to terminate if the number of iterations
exceeds a predetermined value (maxg) or if the best
objective function value found remains constant for a

number of generations (m). The process above is
summarized in this algorithm:

0. Initialization: Set iteration number (n) to 1, best
solution value or upper bound (UBD) to ∞. Set max
generations (maxg), and number of generations
with same UBD, m.

1. Generate initial population.
2. Evaluation: Calculate the objective function value

for all chromosomes (or TPAs) in the population,
using the transport planning models at the lower
level.

3. Fitness: Determine survival probabilities (fitness)
and update UBD.

4. Convergence: If n>maxg or UBD is constant for m
generations, then stop.

5. Reproduction: Breed a new generation by
performing selection, crossover, and mutation. Go
to Step 2.

5 Implementation of the Genetic Algorithm
The most computationally intensive part of the GA is
Step 2 where TPAs are evaluated. One evaluation
involves running the four-step modelling for a network,
which may take as long as a few hours on a typical
desktop. Furthermore, the GA requires a large number of
TPA evaluations, depending on the number of decision
variables and attributes, e.g., probabilities of crossover
and mutation. At this point, we decompose the processes
in order to execute them in distributed fashion. This
approach significantly reduces execution time.

The steps of Genetic algorithm in terms of dependency
of processes are of two types. First is the evaluation step
(Step 2). The evaluation of an individual chromosome (or
TPA) is independent of other chromosomes (or TPAs) in
a generation, which gives us a number of processes that
can be executed independently. The second part of the
GA involves fitness, convergence, and reproduction
(Steps 3 to 5). These steps integrate the individual
evaluations of Step 2 where the processes are
interdependent. On the basis of the dependency attribute,
two variants of the GA are proposed in the literature
(Haupt et al., 2004, Goldberg, 2002, Cantú-Paz, 2000):
serial (SGA) and parallel (PGA). Figure 3 illustrates
these two variants. In SGA, all processes are carried out
in a sequence, which means that, in Step 2, evaluation of
a chromosome is completed before the evaluation of
another chromosome is started. Then Steps 3, 4, and 5 are
completed to produce another generation and then we
cycle back to Step 2 (Figure 3 (a)). However, in PGA,
evaluations are performed simultaneously. Therefore,
Step 2 is executed in parallel, which is then followed by
Steps 3, 4, and 5 in a sequence (see Figure 3(b)). SGA is
simpler to implement, and details are explained in the
next section. For PGA, we use two techniques of
implementation: multithreading with multiple cores on
one machine or HTC over several machines in a network.

5.1 Parallel GA - Multithreading (MT)
An operating system (OS) creates threads to run
software. To run multiple applications simultaneously,
multiple threads can be processed at a time, i.e.,

CRPIT Volume 127 - Parallel and Distributed Computing 2012

56

multithreading, if the machine supports multiple cores
(Akhter and Roberts 2006, Evjen, 2004). To implement
PGA by multithreading, the architecture of Figure 3(b) is
used. The number of threads is selected equal to the
number of processing cores on a machine (say p) plus a
main thread. The main thread is reserved to control the
flow of the GA from the start to the end. The main thread
performs the fitness, convergence, and reproduction
steps. The remaining p threads are used to execute TPA
evaluations (objective function). When a generation is
produced (see Figure 3(b)), n TPAs are queued for
evaluation. The first p jobs in the queue are assigned p
available threads. Once these p TPAs are evaluated, the
next p TPAs are assigned. The next generation is
produced when all TPAs are evaluated.

The speedup achieved depends on the number of cores
on a machine and the efficiency of the OS in supporting
multithreading. We implemented multithreading in
Windows since the TPAs are evaluated by Visum, which
requires Windows. The latter is commonly criticized for
its performance, but there will always be cases where
performance declines when the number of threads
exceeds the number of cores (Akhter and Roberts, 2006),
regardless of the OS. In that case, the OS must time-share
the limited cores among so many executing threads, and
we incur “time slicing” overhead. Moreover, the
maximum number of cores that can go into one machine
is subject to space and temperature constraints. There can
also be a limit to gains due to memory latency and cache
conflicts (Athanasaki et al., 2008). There is thus a cap on
the speedup in multithreading, and the cost of purchasing
many cores and supporting hardware can be high.

However, with TPA evaluations performed with
commercial software, multithreading saves considerably
on license costs for some packages. For example, one

Visum license is sufficient for one multithreading
execution of the entire model on one machine, but
performance will be constrained to what that machine can
deliver. The next section discusses our HTC approach to
avoid some of the limits of multithreading, although it
requires multiple licenses. Our implementations are in
Visual Basic .NET environment in this study.

A distributed computing approach such as HTC
schedules TPA evaluations to several nodes on a network,
each node having its own set of cores and local memory.
Therefore, there is less of a limit on the number of tasks
that can be executed simultaneously, as the number of
computers in a network is not so tightly bounded. The
trade-off is the complexity of distributing the task to
available computers in the network, manage the queue,
data transfers, provide an inter-process message-passing
system in some cases, then collect and integrate the
results.

5.2 Parallel GA –HTC with Condor
In Figure 3(b), p out of n evaluations in a population can
be run in parallel. The ideal case is when p is equal to n,
which means all n evaluations are done at the same time.
However, as mentioned earlier, the number of threads
supported on a given machine is limited. There are a
number of existing systems for these, such as Condor. It
was originally developed to use computers during idle
periods (Thain et al., 2005), but is now one of the most
flexible and powerful HTC platforms. Computers
participate within a Condor pool. Owners can configure
nodes to donate only some of their time. For example, as
in the case of Monash University, the SPONGE pool
consists of nodes that run from computer labs.

Figure 3. Sequence of components in serial genetic algorithm and parallel genetic algorithm.

Proceedings of the Tenth Australasian Symposium on Parallel and Distributed Computing (AusPDC 2012), Melbourne, Australia

57

They are only used when no one is currently using the
desktop. These lab nodes are all running Windows XP or
Windows 7, which works for us since our TPA
evaluations are performed by Windows-based software.
While issues emerging in adopting a general tool
(HPC/HTC) tool to the RSA problem are tool-specific,
important lessons can be learned. A license server
restricts simultaneous runs of Visum with a hardware.
The license server can run anywhere on the network, and
need not be in the Condor pool. If x computers are in the
network and y licenses are available, the maximum
number of parallel TPA evaluations is p=min(x, y).

The parallel scheduling used in this HTC approach is
to queue n TPA evaluations (the jobs) when a generation
is produced (see Figure 3(b)). The jobs are assigned to the
first set of available nodes. For instance, if p<n nodes are
available, p jobs are assigned and the remaining n-p will
wait in the queue. As soon as a job finishes on one node,
the next queued job is assigned to that node. The next
generation is produced when all TPAs are evaluated.

To evaluate the TPAs, a user submits jobs from the
submission machine. For each job, Condor will copy
input files and the objective evaluation program to the
worker node and execute the program. Once completed,
output data are copied back will be downloaded back to
the submission machine. Some applications can be
launched as a self-contained package, but Visum is not in
that category. It requires interactive installation, with a
700-MB installer, which would require a considerable
amount of time to copy to an execution node, even on a
fast network. The solution was pre-installation of Visum
on a subset of Sponge, where the owners were willing.
Condor’s scheduler must be told, upon submission, to
send jobs only to nodes with Visum installed. This can be
effected with Condor’s ClassAd mechanism using custom
ClassAd attributes, but in our implementation, we instead
identified specific Visum-installed machines by name.

Windows differentiates between the local or remote
launch of an application. Windows also consults the user
permissions to run an application either locally or
remotely. A COM server was configured to grant suitable
permissions to launch Condor jobs from a remote user.

6 Numerical Example
Three GA implementations (SGA, PGA-MT, and PGA-
HTC) are applied to an example transit network, the
layout of which is in Figure 4. This grid network consists
of 86 nodes and 306 links. All circumferential nodes
together with Centroid 22, 26, 43, 45, 62, and 66 are
origin and destination nodes. A ‘flat’ demand matrix of
30 persons/hr is traveling from all origins to all
destinations. The total demand for all the 36 origins and
destinations is 37,800 persons/hr. There are 10 bus lines
covering transit demand in the network (see Figure 4).
The frequency of service for the bus lines is 10 minutes.
Parameters used are extracted from those calibrated for
the Melbourne Integrated Transport Model (MITM), a
four-step model used by the Victorian State Government
for planning in Melbourne (Department of Infrastructure,
2004). Vertical and horizontal links are 400m long with
two lanes in each direction and a speed limit of 36 km/hr.
It is assumed that if an exclusive lane is introduced on a
link on one direction, it may not necessarily be introduced

in the opposite direction. There are 120 links (uni-
directional) in the network on which an exclusive lane
can be introduced. These links are highlighted in black
solid line. The following Akcelik cost functions (Ortúzar
and Willumsen, 2001) are assumed for links with an
exclusive lane (Equation (4)) and without (Equation (5)).

(4)

(5)

where t0 determines travel time with free flow
speed, a is length of observation period, b is a
constant, d is lane capacity, and other terms are as
in the Section 8. Each link has 2 lanes, and:

Mode share is determined using a Logit model.

Traffic User Equilibrium (UE) and a frequency-
based assignment is employed to model traffic and
transit assignments, respectively. All these lower
level transport models are implemented using
Visum (PTV AG, 2009). The upper level objective
function includes total travel time and total vehicle
distance. The absolute value of the objective
function can therefore be very large. A constant
value is subtracted from the objective function value
for all evaluations. Hence, the objective function
value is relative. The weighting factors of the
objective function are assumed to be 0.01.
Regarding constraints the budget is assumed to
allow for all candidate links for the provision of bus
priority. The GA includes many parameters to tune.
We suggest a particular set of values as a guideline
in this example. It was assumed that population
size, crossover probability (cp), and mutation
probability (mp) are 40, 0.98, 0.01, respectively.
The example demonstrates the HTC speedup
compared to the serial approach. Although selection
of the GA parameters may vary the absolute value
of the execution time, the time differences on a
relative basis are useful indicators to highlight the
efficiency of the HTC approach. Table 1 describes
seven computers we used in terms of the number of
CPUs, versions of Windows, and of Visum. It
demonstrates HTC incorporating diverse types of
computers and software. Note that some processors
can support two simultaneous threads per core. The
first machine listed has four cores but can support
eight threads, and perform up to eight TPA
evaluations at a time. If all computers were
allocated, 32 evaluations can be carried out
simultaneously, requiring 32 licenses. The last
column in Table 1 is the time spent evaluating one
TPA on each machine. Machine 1 took the least
time at 65 seconds, and Machine 7 was the slowest
at 226 seconds. SGA, PGA by multithreading (MT),
and PGA by HTC are explored.

a
t
bc

a

c
a

c
a

c
a

c
a

c
a

a
c
a tt

Cap
x

ad
b

Cap
x

Cap
xatt ,0,1

,1

2

,1,1
,0,1],)(8)1()1[(

4
3600

=+−+−+=

])(8)1()1[(
4

3600

,0

2

,0,0
,0,0,0 c

a

t
a

c
a

c
a

t
a

c
a

c
a

t
a

c
a

a
b
a

c
a Cap

xx
ad
b

Cap
xx

Cap
xxattt +

+−
+

+−
+

+==

hrvehCap

hrvehCap
hrvehdbhra

c
a

c
a

/900

/1800
/800,4.1,1

,1

,0

=

=

===

CRPIT Volume 127 - Parallel and Distributed Computing 2012

58

Figure 4. Example network with link numbers, origin destination nodes in boxes, and bus lines in parenthesis

Machine CPU Cores Threads Windows Visum Evaluation
Time (s)

1 Intel Core i7
CPU 860 @ 2.8
GHz

4 8 7 64-bit 11.03
64-bit

65

2 Intel Core i7
CPU Q820 @
1.73 GHz

4 8 7 64-bit 11.03
64-bit

147

3 Intel Core 2 Quad
CPU Q6600 @
2.4 GHz

4 4 7 64-bit 11.03
64-bit

101

4 Intel Core 2 Quad
CPU Q6600 @
2.4 GHz

4 4 XP 64-
bit

11.01
32-bit

122

5 Intel Core 2 Quad
CPU Q6600 @
2.4 GHz

4 4 XP 64-
bit

11.01
32-bit

121

6 Intel Core 2 Duo
CPU E8500 @
3.16 GHz

2 2 XP 64-
bit

11.01
32-bit

88

7 Intel Pentium 4
CPU @ 3.2 GHz

2 2 XP 32-
bit

11.01
32-bit

226

Table 1. Computers used in the experiments.

The base experiment (datum) for the MT approach is
performed on Machine 4 with four threads, and for the
HTC approach on Machines 1, 2, 3, and 6, with a total of
22 threads. The approach taken does not affect either the
number of evaluations or the rate of improvement in the
objective function. It does, however, affect the evaluation
time. The minimum objective function value found in a
run with 400 generations was -4.757.

The execution time of SGA is prohibitively long, being
sequential. The number of generations was not carried
past 300. All our four runs evaluated about 1700 TPAs
each by the 50th generation. Although these runs do not
follow exactly the same path in finding minimum, the
trend shows that the value improves gradually at each
successive evaluation. Figure 5 demonstrates the descent
towards the minimum of the objective function value for
two MT and two HTC runs. For comparison purposes, the
SGA runs are also graphed. All approaches take the same
downward trend to the minimum, but the implementation
of the evaluation step results in different execution times.
Three sets of experiments were organized with a
population size of 40, crossover probability (cp) of 0.98,
and mutation probabilities (mp) of 0.005, 0.01, and 0.02.
The change in mp can change the number of evaluated
TPAs. Figure 5 shows the quickest descent to the
minimum of about 7.0 for HTC-1 and HTC-2 at about
100,000 seconds, with up to 32 simultaneous threads
possible. MT-1 and MT-2 are not far behind at about
135,000 and 150,000 seconds, respectively, also to
descend to a minimum of about 7.0. SGA runs went for
much longer. For example, to reach a value of 30, SGA-3
takes about 170,000 seconds (two days) while HTC needs
only 2,000 seconds. SGA-4 with 300 generations
exceeded 5 days!

(10) (10) (10) (10) (10) (10) (10) (10)

(40) (40) (40) (50,60) (50,60) (50,60) (50) (50)

(30) (30) (30) (60) (60)

(50) (50) (50) (30,40) (30,40) (30,40) (40) (40)

(60) (60) (60) (30) (30)

(80) (80) (80) (80) (80) (80) (80) (80)

 (1
)

 (1
)

 (1
)

 (1
)

 (1
)

 (1
)

 (1
)

 (1
)

 (1
)

 (3
)

 (3
)

 (3
)

 (3
)

 (3
)

 (3
)

 (5
)

 (5
)

 (5
)

 (5
)

 (5
)

 (5
)

 (5
)

 (5
)

 (5
)

 (7
)

 (7
)

 (7
)

 (7
)

 (7
)

 (7
)

 (7
)

 (7
)

 (7
)

 (3
0)

 (6
0)

 (3
,3

0)

 (3
,6

0)

 (3
,3

0,
40

,5
0,

60
)

Proceedings of the Tenth Australasian Symposium on Parallel and Distributed Computing (AusPDC 2012), Melbourne, Australia

59

Figure 5. TPA evaluations in different modes.

Three measures were used in this study: (1) average time
per evaluation (ATE), (2) speedup, which is the ratio of
ATE in one run to the ATE of one SGA run, and (3)
efficiency, which is the ratio of the speedup to the
number of available threads. The speedup and efficiency
of SGA runs are 1. Table 2 shows that ATE does not
change significantly with mp. The number of cores are
more significant, so the ATE for SGA, MT, and HTC
runs are approximately 140, 40, and 14 seconds,
respectively, where the number of cores are 1, 4 and 10,
respectively. The efficiency measure demonstrates that in
return for adding each thread in the MT approach, the
execution time has improved by 80-90%. However, the
efficiency in the HTC approach was just above 50% for
the addition of each thread. There is considerable
overhead incurred with distribution and queuing in HTC.
Table 3 presents the effects of the number of available
threads. Experiment E228 has the lowest ATE at 11.7
seconds. There are some important results in Table 3. The
ATE did not improve when the number of threads went
from 22 to 26. Experiment logs reveal that about 1650
TPA evaluations are performed in each run, to an average
of 33 evaluations per generation. Nevertheless, this is not
uniformly distributed. The TPA evaluations are recorded
to prevent evaluating a TPA twice. Therefore, while the
average number of evaluations per generation is 33, the
first generations evaluate close to 40 (which is the
population size) evaluations, while the last generations
evaluate just over 20 TPAs. When close to 40 TPAs are
being evaluated, both experiments E228 and E230 may
allocate two or less evaluations to a thread. This means
about two evaluations run in sequence. Similarly, when
just above 20 TPAs are being evaluated, both E228 and
E230 have enough threads to run all evaluations
simultaneously. Therefore, an increase of four threads
does not improve execution time. Accordingly, the ATE
in experiment E231 should be similar to E228 and E230,
but it increases instead. We added a very slow Machine 7
to the pool. In the time it takes for it to evaluate one TPA,
other machines can evaluate between two to four.
Machine 7 holds up the other available threads, extending
the evaluation time of each generation.

7 Conclusions and Future Work
We presented a solution to Road Space Allocation using
serial GA, parallel GA with multithreading, and parallel
GA with HTC. The optimum was found regardless of the
GA variant, but performance varied. PGA-MT with four
threads reduced execution time by 3.2 to 3.7 times
compared to SGA, and PGA-HTC with 18 threads by 9.3
to 9.8 times. MT is more efficient, but challenging to use
for large-scale, realistic networks since the number of
threads on a computer is generally constrained. In
contrast, there is practically no limit in the HTC approach
via incremental expansion.

A novel outcome is the successful implementation of
HTC with commercial software on Windows. However,
the overhead of pre-installed commercial software like
Visum cannot be taken for granted. There is considerable
benefit in grid computing, but it is not so accommodating
to commercial packages. A logical follow-up is to explore
cloud computing (Foster et al., 2008) with standard or
custom settings and applications on the cloud resources.
The framework is generic enough to apply to the entire
family of Network Design Problems (NDPs). Applying
the framework to NDP problems in large-scale networks
can be a challenge. Moreover, substitution and
comparison of other heuristic methods with the GA could
be another area of future studies.

8 Notations

: Set of all links in the network,

: Set of links in the network where provision of
priority is impossible,

: Set of links where the provision of priority
(introducing exclusive lane) is possible,

: Set of links with a bus line on them, walking links,

and transfer links,

: Set of bus lines,

: Sum of frequency of service for bus lines on link ,

: Frequency of service for bus line ,

: Length of link ,

 : GA Population size

: Bus service time on link which is equal to running
time plus duel time at stops,

: Travel time on link by mode car () or bus
(), which is a function of flow, with no exclusive lane
(0), with exclusive lane (1)

: Passenger flow on link by car () or bus (),

: Waiting time and transfer time at stops.

: Available budget,

A 21 AAA ∪=

1A

2A

B

L

af a

pf p

al a

n

as a

)(,
,10 xt bc
a− a c

b

bc
ax
, a c b
b
i
w

Bdg

CRPIT Volume 127 - Parallel and Distributed Computing 2012

60

mp
Experiment

Code Approach

Number of
Evaluations on
Generation 50

Execution
Time (sec)

Average time
per

evaluation
Number
of Cores

Number of
Threads

Speed
up Efficiency

0.005 E218 SGA 1649 240618 145.9 1 1 1 1

0.005 E220 MT 1513 59865 39.6 4 4 3.687 0.922

0.005 E219 HTC 1454 21607 14.9 10 18 9.821 0.546

0.01 E210 SGA 1680 241475 143.7 1 1 1 1

0.01 E223 MT 1543 66480 43.1 4 4 3.335 0.834

0.01 E227 HTC 1626 24918 15.3 10 18 9.378 0.521

0.02 E215 SGA 1721 231197 134.3 1 1 1 1

0.02 E224 MT 1714 72237 42.1 4 4 3.187 0.797

0.02 E214 HTC 1683 24204 14.4 10 18 9.343 0.519

Table 2. Comparison of the speedup using MT and HTC approaches.

Ex
pe

rim
en

t
C

od
e

N
o.

 o
f

C
or

es

N
o.

 o
f

Th
re

ad
s

M
ac

hi
ne

 ID

Ev
al

ua
tio

ns

on
 G

en
. 5

0

Ex
ec

. T
im

e
(s

ec
)

A
TE

 (s
ec

)

Sp
ee

du
p

Ef
fic

ie
nc

y

Table 3. Comparison of HTC speedup, varying cores.

: Capacity of link for mode car () or bus (
) with no exclusive lane (0), with exclusive lane (1)

: Cost of implementing an exclusive lane on link ,

: Aggregate weight of operation costs of a car ()
or bus () to the community including: emissions, noise,
accident, and reliability impacts.

: Average occupancy rate for the car mode,

: Weighting factors to convert the units and
adjust the relative importance of each impact in the
objective function, ,

: Equals to 1 if there is an exclusive lane on link , 0
otherwise

9 Acknowledgment
We received generous support from PTV AG, the
Monash e-Research Centre (MeRC), and the Australian
Research Council (ARC) for partial support.

10 References
Akhter, S. and Roberts, J. (2006): Multi-core

Programming: Increasing Performance through
Software Multi-threading, Intel Press.

Athanasaki, E., Anastopoulos, N., Kourtis, K. and
Koziris, N. (2008): Exploring the performance limits of
simultaneous multithreading for memory intensive
applications. Journal of Supercomputing, 44:64-97.

Bard, J. F. (1998): Practical Bilevel Optimization :
Algorithms and Applications, Kluwer, Dordrecht, The
Netherlands.

Bard, J. F. and Falks, J. E. (1982): Explicit solution to the
multi-level programming problem. Computers and
Operations Research, 9:77-100.

Ben-Ayed, O. and Blair, C. E. (1990): Computational
difficulties of bilevel linear programming. Operations
Research, 38(3):556-560.

Black, J. A. (1991): Urban arterial road demand
management - environment and energy, with particular
reference to public transport priority. Road Demand
Management Seminar 1991, Melbourne, Australia.
Haymarket, NSW, Australia, AUSTROADS.

Bly, P. H., Webster, F. V. and Oldfield, R. H. (1978):
Justification for bus lanes in urban areas. Traffic
Engineering and Control, Feb. 1978, 19(2):56-59.

Cantú-Paz, E. (2000) Efficient and Accurate Parallel
Genetic Algorithms, Boston, Mass., Kluwer.

Cevallos, F. and Zhao, F. (2006): Minimizing transfer
times in public transit network with genetic algorithm.
Transportation Research Record, 1971:74-79.

Chen, Q., Shi, F., Yao, J.-L. and Long, K.-J. (2007): Bi-
level programming model for urban bus lanes' layout.
Int. Conf. on Transportation Engineering, ICTE 2007,
Chengdu, China, 394-399.

Currie, G., Sarvi, M. and Young, B. (2007): A new
approach to evaluating on-road public transport priority
projects: Balancing the demand for limited road-space.
Transportation, 34:413-428.

Currie, G., Sarvi, M. and Young, W. (2004) A
comprehensive approach to balanced road space
allocation in relation to transit priority. 83rd TRB
annual meeting. Washington DC, Transportation
Research Board.

Department of Infrastructure (2004): Melbourne Multi-
modal Integrated Transport Model (MITM), User
Guide.

Dongarra, J., Sterling, T., Simon, H. and Strohmaier, E.
(2005): High-performance computing: clusters,
constellations, MPPs and future directions. Computing
in Science and Engineering, IEEE Computer Society,
7:51-59.

Duff-Riddell, W. R. and Bester, C. J. (2005): Network
modeling approach to transit network design. Journal
of Urban Planning and Development, 131:87-97.

Eichler, M. and Daganzo, C. F. (2006): Bus lanes with
intermittent priority: Strategy formulae and an

bc
aCpc ,
,10− a c b

aExc a
bcImp , c
b

cOcc

ηγβα ,,,

0,,, ≥ηγβα

aφ a

Proceedings of the Tenth Australasian Symposium on Parallel and Distributed Computing (AusPDC 2012), Melbourne, Australia

61

evaluation. Transportation Research Part B:
Methodological, 40:31-744.

Evjen, B. (2004): Professional VB.NET 2003,
Indianapolis, IN, J. Wiley.

Fan, W. and Machemehl, R. B. (2006): Optimal transit
route network design problem with variable transit
demand: genetic algorithm approach. Journal of
Transportation Engineering, 132:pp 40-51.

Foster, I. T., Kesselman, C. and Tuecke, S. (2001): The
anatomy of the Grid: enabling scalable virtual
organizations. Int. Journal of Supercomputer
Applications, 15(3):200-222.

Foster, I. T., Zhao, Y., Raicu, I. and Lu, S. (2008): Cloud
computing and grid computing 360-degree compared.
Grid Computing Environments Workshop (GCE '08),
1-10.

Gentzsch, W. (2001): Sun Grid Engine -- Towards
creating a compute power grid. First IEEE/ACM Int.
Symp. on Cluster Computing and the Grid, 35-36.

Goldberg, D. E. (2002): The Design Of Innovation:
Lessons From and For Competent Genetic Algorithms,
Boston, Kluwer Academic Publishers.

Haupt, R. L., Haupt, R. L. and Haupt, S. E. (2004):
Practical Genetic Algorithms, NY, Wiley Interscience.

Monash University: SPONGE – Harvesting Spare CPU
cycles.
http://www.monash.edu.au/eresearch/activities/sponge.
html (last visited 2011).

Jepson, D. and Ferreira, L. (2000): Assessing travel time
impacts of measures to enhance bus operations. Part 2:
Study methodology and main findings. Road and
Transport Research, 9:4-19.

Litzkow, M. J., Livny, M. and Mutka, M. W. (1988):
Condor – a hunter for idle workstations. 8th Int. Conf.
on Distributed Computing Systems, 104-111.

Liu, R., Van Vliet, D. and Watling, D. (2006):
Microsimulation models incorporating both demand
and supply dynamics. Transportation Research Part A:
Policy and Practice, 40:125-150.

Liu, W.-M., Jiang, S. and Fu, L.-F. (2008): Bi-level
program model for multi-type freeway discrete
equilibrium network design. Zhongguo Gonglu
Xuebao/China Journal of Highway and Transport,
21:94-99.

Mesbah, M., Sarvi, M. and Currie, G. (2008): A new
methodology for optimizing transit priority at the
network level. Transportation Research Record:
Journal of the Transportation Research Board,
2089:93-100.

Mesbah, M., Sarvi, M. and Currie, G. (2011):
Optimization of transit priority in the transportation
network using a genetic algorithm. IEEE Transactions
on Intelligent Transportation Systems, 12:908-919.

Mesbah, M., Sarvi, M., Currie, G. and Saffarzadeh, M.
(2010): A policy making tool for optimization of transit
priority lanes in an urban network. Transportation
Research Record, 2197:54-62.

Mesbah, M., Sarvi, M., Ouveysi, I. and Currie, G. (2011):
Optimization of transit priority in the transportation

network using a decomposition methodology.
Transportation Research Part C: Emerging
Technologies, 19: 363-373.

Ortúzar, J. D. D. and Willumsen, L. G. (2001): Modelling
Transport, Chichester NY, J. Wiley.

Papacostas, C. S. and Prevedouros, P. D. (1993):
Transportation Engineering and Planning, Englewood
Cliffs, NJ, Prentice-Hall.

PTV AG (2009): VISUM 11 User Manual, 11th ed.
Karlsruhe, Germany.

Raicu, I., Foster, I. T. and Zhao, Y. (2010) Many-task
computing for grids and supercomputers. IEEE
Workshop on Many-Task Computing on Grids and
Supercomputers (MTAGS), 1-11.

Russell, S. J. and Norvig, P. (2003): Artificial
Intelligence: a modern approach, Upper Saddle River,
N.J., Prentice-Hall.

Sheffi, Y. (1984): Urban Transportation Networks:
Equilibrium Analysis With Mathematical Programming
Methods, Englewood Cliffs, N.J., Prentice-Hall.

Shimizu, K., Ishizuka, Y. and Bard, J. F. (1997):
Nondifferentiable And Two-Level Mathematical
Programming, Boston, Kluwer Academic Publishers.

Simaan, M. (1977): Stackelberg optimization of two-level
systems. IEEE Transactions on Systems, Man and
Cybernetics, SMC-7:554-559.

Sterling, T., Becker, D., Warren, M., Cwik, T., Salmon, J.
and Nitzberg, B. (1998): An assessment of Beowulf-
class computing for NASA requirements: initial
findings from the first NASA workshop on Beowulf-
class clustered computing. Proceedings of IEEE
Aerospace Conference, 4:367-381.

Stirzaker, C. and Dia, H. (2007): Evaluation of
transportation infrastructure management strategies
using microscopic traffic simulation. Journal of
Infrastructure Systems, 13:168-174.

Strohmaier, E., Dongarra, J. J., Meuer, H. W. and Simon,
H. D. (2005): Recent trends in the marketplace of high
performance computing. Parallel Computing, 31:261-
273.

Thain, D., Tannenbaum, T. and Livny, M. (2005):
Distributed computing in practice: the Condor
experience: Concurrency and Computation: Practice
and Experience, 17:323-356.

Viegas, J. (1996): Turn of the century, survival of the
compact city, revival of public transport. In Meersman,
H. and Van De Voorde, E. (Eds.) Transforming the
Port and Transportation Business, Antwerp, Belgium.

Viegas, J. and Lu, B. (2004): The intermittent bus lane
signals setting within an area. Transportation Research
Part C: Emerging Technologies, 12:453-469.

Waterson, B. J., Rajbhandari, B. and Hounsell, N. B.
(2003): Simulating the impacts of strong bus priority
measures. Journal of Transportation Engineering,
129:642-647.

Yang, H. and Bell, M. G. H. (1998) Models and
algorithms for road network design: a review and some
new developments. Transport Reviews, 18:257-278.

CRPIT Volume 127 - Parallel and Distributed Computing 2012

62

