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Abstract 
The optimization of Road Space Allocation (RSA) from a 
network perspective is computationally challenging. An 
analogue to the Network Design Problem (NDP), RSA 
can be classified NP-hard. In large-scale networks when 
the number of alternatives increases exponentially, there 
is a need for an efficient method to reduce the number of 
alternatives while keeping computer execution time of the 
analysis at practical levels. A heuristic based on genetic 
algorithms (GAs) is proposed to efficiently select Transit 
Priority Alternatives (TPAs). The proposed framework 
allows for a TPA to be analysed by a commercial package 
that is a significant provision for large-scale networks in 
practice. We explore alterative parallel processing 
techniques to reduce execution time: multithreading and 
High-Throughput Computing (HTC). Speedup and 
efficiency are compared with that of traditional sequential 
GA, and we discuss both advantages and limitations. We 
find that multithreading is better when using the same 
number of processors, but HTC provides expandability. 
Keywords:  transport modelling, genetic algorithm, high-
throughput computing, high-performance computing   

1 Introduction 
With ever-increasing travel demands, traffic congestion 
has become a challenge for many cities around the world. 
Construction of new roads or mass transit is not always 
possible, and reallocation of road space between transit 
vehicles and cars has emerged as a solution. Mesbah et al. 
(2011a, 2011b) proposed a bi-level optimization program 
for road space allocation (RSA). The objective was to 
identify the roads on which a bus lane should be 
introduced. The authors showed that this Mixed Integer 
Non-Linear (MINL) formulation is an NP-hard problem 
and is therefore computationally challenging. For large-
scale networks, a heuristic approach is adapted to find 
reasonable solutions. This problem can be classified 
under the umbrella of Network Design Problems (NDP) 
that has a wide range of applications in Engineering. The 
network can be for roads, communication, power, water, 
or any network with a set of connected nodes and links. 
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The goal is to find the optimal combination of links to be 
added/modified to minimize a certain objective function.  

The RSA problem is NP-hard, so the proposed 
optimization methods to large-scale problems requires 
extensive computational power, feasible with advanced 
techniques such as High-Performance Computing (HPC) 
(Strohmaier et al., 2005). While the term was applied 
broadly at first (Dongarra et al., 2005), HPC today 
typically applies to a tightly coupled system of many 
shared memory processors, particularly important when 
jobs must communicate among themselves. An 
alternative is High-Throughput Computing (HTC), aimed 
at providing large amounts of processing capacity taken 
together over a long period of time (Thain et al, 2005). 
Many Task Computing bridges the gap between HPC and 
HTC (Raicu et al., 2010), whether or not there are many 
long duration tasks, and regardless of the number of 
processors per computer. The common goal is to support 
simultaneous computations, where a long process is 
divided into small tasks, which are distributed across a set 
of interconnected processors to execute separately, 
simultaneously. Results are then gathered and combined. 
While HPC taken broadly may apply, the work described 
in this paper focuses on the HTC approach to distinguish 
the use of several independent computers on a network, 
as against our previous work using a single 
multiprocessor (Mesbah et al., 2011a). We demonstrate 
the application of HTC to solve a large-scale optimization 
problem in Transportation Engineering.  

The proposed RSA is formulated as bi-level 
optimization. The upper level formulates an objective 
function and a set of constraints from the system 
managers’ perspective. The lower level consists of user 
behavioural models, which requires a complex 
optimization program on its own. A number of 
commercial packages are available in order to analyse the 
user behaviour at the lower level, one of which is 
employed in this research. Many transport networks are 
already modelled in commercial packages, so there are 
benefits to sticking with them. Transport authorities have 
invested heavily in developing these models and already 
have confidence in their performance. Moreover, many 
transport planners are already trained to work with them. 
However, there are certain challenges in dealing with 
commercial applications such as we have had to do. We 
use a package called Visum. It requires Microsoft 
Windows, and uses a dongle for license management. The 
installer is more than 700MB, and requires interactive 
installation. While it can use multithreading on a machine 
with many processors (cores) and lots of memory, the 
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cost of such a machine can be prohibitive, and there are 
physical upper limits on cores and memory on any given 
machine. On the other hand, like other packages, it is not 
designed for HTC environments. Apart from a cluster, 
HTC can also be through a computational grid. This is an 
extensible aggregation of computational resources, such 
as clusters, belonging to independent organizations 
(Foster et al., 2001). Grids traditionally consist of Linux 
resources, while many engineering applications run on 
the Windows platform. Grids commonly support non-
commercial applications with standard libraries provided 
almost out of the box, so a distributed execution of such 
applications is normally straightforward. RSA 
computations speed up if workload is distributed across 
such environments, but the nature of grids conflicts with 
the conditions for commercially licensed software. 
Licenses are typically limited to individual organizations 
while grids span across a virtual organization (VO) of 
several member organizations that remain autonomous. 
One cannot install or execute on just any resource, and 
such resources are normally not uniform anyway. We 
therefore have these three interesting challenges: 

1. We use Visum, which requires Windows. 
2. This is a commercial package and the source code 

is not accessible for reprogramming. 
3. It must be pre-installed on each compute node 

with a large installer of over 700MB.  
The proposed method can apply to many engineering 

applications where an iterative procedure is carried out 
using a commercial software package. A point we wish to 
make is that, despite the challenges, HTC can make many 
engineering applications scalable for large problems, 
even where the long runtime used to be a limiting factor.  

The next section starts with a limited literature review 
on transit priority and continues with the bi-level 
optimization formulation. Then a solution algorithm is 
presented, based on a genetic algorithm (GA). It is 
implemented for (1) a single CPU on one machine, (2) 
multiple CPUs on one machine, and (3) multiple CPUs on 
multiple machines. Details are discussed subsequently, as 
is an example. In the last section, the results are discussed 
and the major findings are summarized. 

2 Research Background 

2.1 Road Space Allocation 
The introduction of exclusive lanes to transit vehicles is 
one way to prioritize transit, an approach known as Road 
Space Allocation (RSA) (Black 1991, Currie et al., 2004). 
The literature on RSA can be classified into evaluation 
studies and optimization studies (see Figure 1).  

Some evaluation studies focus on the local level, i.e. a 
link or corridor, e.g., Black (1991) presented a model on 
an urban corridor, evaluating several predefined scenarios 
based on total user travel time. Jepson and Ferreira (2000) 
assessed different road space priority treatments such as 
bus lane and setbacks based on delays in two consecutive 
links. Currie et al. (2007) considered a comprehensive list 
of impacts of RSA including travel time, travel time 
variability, initial and maintenance costs in a local 
priority project. 

 
Figure 1. Classification of RSA studies. 

Having compared performance measures in the literature, 
they proposed an approach to evaluate transit priority 
projects. Using the concept of intermittent bus lanes 
(Viegas 1996, Viegas and Lu 2004), Eichler and Daganzo 
(2006) suggested a new analysis method based on 
kinematic wave theory, which can be applied to a long 
arterial. At the network level, Bly et al. (1978) explored 
exclusive bus lanes to a link in different conditions, and 
the impact on the network was assessed using sensitivity 
analysis. Waterson et al. (2003) presented a macro-
simulation approach which evaluates a given priority 
scenario at the network level. This approach considered 
rerouting, retiming, modal change, and trip suppression. 
Liu et al. (2006) proposed a similar approach with micro-
simulation. Stirzaker and Dia (2007) applied micro-
simulation to evaluate a major bus lane project in 
Brisbane. These studies evaluated a limited number of 
alternatives that do not necessarily include the best 
possible RSA over the network, and do not propose an 
optimization method to find the best set of bus lanes.  

A number of studies have approached the problem 
using combined RSA optimization in Transit Network 
Design Problem (TNDP). Duff-Riddle and Bester (2005) 
applied a trip focusing process to design transit routes. 
The iterative method was able to put transit routes on the 
shortest travel time and shortest distance. The issue of 
express buses was also included with minute changes in 
the model. Chen et al. (2007) presented a design method 
in the form of a mathematical programming model. 
However, similar to Duff-Riddle and Bester (2005), the 
aim of their method was to design a new bus route. 

Having first explored optimal TPAs in an existing 
transit network (Mesbah et al., 2008) with a general 
framework to find the optimal TPA at the network level, 
we have since then introduced a decomposition approach 
and a GA approach (Mesbah et al., 2011a, 2011b). This 
paper extends our work by employing HTC to reduce the 
runtime for large-scale transit networks. 

2.2 High-Throughput Computing 
HPC is a broad umbrella for a  number of different 
environments (Strohmaier et al., 2005), but when 
performance is measured for many tasks across long 
periods of time, we may speak of high-throughput 
computing (HTC) (Thain et al., 2005). A neutral term 
bridging HPC and HTC is many task computing (MTC), 
with little distinction about the size of tasks (Raicu et al., 
2010). Commodity computers can also be organized on 
high-speed networks. They are relatively low expenditure 
resources, compared to supercomputing facilities. 

Road Space Allocation Studies 

Evaluation Optimization 

Local level Network level Existing 
Transit 

Network 

Transit 
Network 
Design 
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Beowulf-class clusters were probably the first (Sterling et 
al., 1998) of such environments, providing a queuing 
system for submitting and managing computational jobs. 
Another environment is the Sun Grid Engine (Gentzsch, 
2001), and there are others, which uniformly share a 
preference for the UNIX or Linux environment. 

Condor (Thain et al., 2005) uses computers that are 
normally used for other purposes, e.g., a desktop, and 
supports Windows nodes. Condor was originally dubbed 
“hunter for idle workstations” (Litzkow et al., 1988), i.e., 
when the user leaves the console for extended periods, 
e.g., after hours. This is the case for Monash University’s 
SPONGE resource, with up to 1000 cores running on 
computer laboratories across campuses during lean 
periods and after hours. While most nodes have two cores 
with modest memory, SPONGE collectively provides a 
considerable HTC resource. 

3 Transit Priority Optimization 
The RSA problem can be modelled as a ‘Stackelberg 
competition’ in which the system manager is the leader 
and transport users are followers (Simaan 1977, Bard and 
Falks 1982, Yang and Bell 1998, Liu et al., 2008). The 
system manager chooses a TPA, and in the subsequent 
system, users would choose their mode of travel and a 
path in order to maximize their own benefit.  

The above design approach is formulated in this paper 
as a bi-level optimization program (Shimizu et al., 1997, 
Bard, 1998) (see Figure 2).  At the upper level are the 
objective function and constraints from the system 
manager perspective. The upper level determines the TPA 
or the links on which priority would be provided for 
transit vehicles (decision variables). The aim of the upper 
level is to achieve System Optimal (SO) (Sheffi, 1984), 
thus the objective function includes a combination of 
network performance measures. The corresponding 
constraints are included in the upper level constraints. 
The upper level can be formulated as follows: 

 
(1)  

s.t.,  

 (2) 

 (3) 

Variable definitions can be found in the annotation 
section. Note that , where ξp,a is an 

element of the bus line-link incident matrix with ξp,a=1 if 
bus line p travels on link a and ξp,a=0 otherwise. The in-
vehicle travel time is . 

The first two terms in the objective function are the 
total travel time by car and bus. The next two terms 
represent the various other impacts of these two modes 
including emission, noise, accident, and reliability of 
travel time. The factors α, β, γ, and η not only convert the 
units, but also enable the formulation to attribute different 
relative weights to the components of the objective 
function (Mesbah et al., 2010). Equation (2) states that 

the cost of the implementation should be less than or 
equal to the budget. The decision variable is φa by which 
the system managers try to minimize their objective 
function (Ζ). If φa=1, then a bus lane is introduced on link 
a and buses can speed up to free flow speed, while the 
capacity of the link for cars is reduced from  to 

. If φa=0, then buses will travel in the mixed traffic 

on a link with a capacity of . They are users who 
determine the link flows (x). Link flows are related to the 
decision variables by the lower level models. 

 
Figure 2. Outline of the proposed methodology. 

At the lower level, it is the users’ turn to maximize 
their benefit. Based on the decision variables determined 
at the upper level, users make their trips. The traditional 
four-step method (Ortúzar and Willumsen, 2001) is 
adapted in this paper for transport modelling. It is 
assumed that the travel demand and the distribution of 
demand are not affected by the location of bus lanes 
(these conditions can be relaxed in future studies). 
Therefore, the origin-destination matrix remains constant. 
The lower level consists of three models: (1) modal split 
model, (2) traffic assignment model (car demand), and (3) 
transit assignment model (bus demand). Once the demand 
is determined, users choose their travel mode. Then, the 
car demand segment of the total demand is assigned to 
the network. The last step at the lower level formulation 
is the assignment of transit demand. Without loss of 
generality, in this study, a Logit model is used for the 
mode choice (Papacostas and Prevedouros, 1993), a User 
Equilibrium (UE) model is adapted for traffic assignment 
(Sheffi, 1984), and frequency-based assignment is applied 
to transit assignment (PTV AG, 2009). While these 
models are used for mode choice and assignment steps, 
the proposed HTC framework can be implemented by 
many other transport planning models. The lower level 
calculations are performed in Visum (PTV AG, 2009). As 
previously stated, many cities already use commercial 
packages. The proposed framework incorporates them 
instead of having to convert the models to other formats. 

The bi-level structure, with a linear objective function 
and constraints, is NP-hard (Ben-Ayed and Blair, 1990). 
To complicate things further, the upper level objective 
function and the UE traffic assignment are non-linear. We 
employ a GA to find an approximate solution. The output 
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of the model is the combination of transit exclusive lanes 
which minimizes the proposed objective function. 

4 The Genetic Algorithm Solution 
A Genetic Algorithm (GA) is an iterative search method 
in which new answers are produced by combining two 
predecessor answers (Russell and Norvig 2003). Inspired 
from evolutionary theory in nature, the GA starts with a 
set of answers referred to as the population. Each 
individual answer in the population, a chromosome, is 
assigned a survival probability, based on the value of the 
objective function. The algorithm selects individual 
chromosomes based on this probability to breed the next 
generation of the population. GA uses crossover and 
mutation operators to breed the next generation, which 
replaces the predecessor generation. The algorithm is 
repeated with the new generation until a convergence 
criterion is satisfied. A number of studies applied GA to 
transit networks. Two recent examples are a transit 
network design problem considering variable demand 
(Fan and Machemehl, 2006) and minimization of transfer 
time by shifting time tables (Cevallos and Zhao, 2006).  

In applying GA to the RSA problem, we define a gene 
to represent the binary variable φa, and a chromosome is 
the vector of genes (φ) which represents a TPA. A 
chromosome (TPA) contains a combination of links on 
which an exclusive lane may be introduced (set A2). 
Therefore, the length of the chromosome is equal to the 
size of A2. The algorithm starts with an initial population 
with n chromosomes. The chromosomes of the initial 
population are produced randomly. When an initial 
chromosome population is produced, they are evaluated 
using the lower level models, i.e. the transport planning 
models of mode split, traffic assignment, and transit 
assignment. This evaluation is the time consuming 
component in the GA. Using the flow and travel time 
from the lower level, the values of the upper level 
objective function (Z) for all chromosomes are 
determined. Once the evaluated, the chromosomes are 
ranked from the lowest Z value to the highest. The fitness 
function, which determines the probability of a 
chromosome selection for breeding, is assumed to be an 
arithmetic series with the highest probability assigned to 
the top chromosome. The probability of the top ranked 
chromosome is assumed to be naP /1)1( 0 +=  where 0a  
is a constant and n is the population size. Subsequently, 
other terms can be calculated using iPiP ×−=> γ)1()1(  

where γ  is the reduction factor so that 1)(
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A one point crossover is used in all experiments. The 
mutation involves flipping the value of a gene from 0 to 1 
or vice versa. When a chromosome is selected for 
mutation, one gene from each set of 5 to 8 genes are 
flipped. That is about 12 to 20 flips for a chromosome 
100 genes long. A common convergence criterion 
adapted here is to terminate if the number of iterations 
exceeds a predetermined value (maxg) or if the best 
objective function value found remains constant for a 

number of generations (m). The process above is 
summarized in this algorithm: 

0. Initialization: Set iteration number (n) to 1, best 
solution value or upper bound (UBD) to ∞. Set max 
generations (maxg), and number of generations 
with same UBD, m.  

1. Generate initial population. 
2. Evaluation: Calculate the objective function value 

for all chromosomes (or TPAs) in the population, 
using the transport planning models at the lower 
level.  

3. Fitness: Determine survival probabilities (fitness) 
and update UBD.  

4. Convergence: If n>maxg or UBD is constant for m 
generations, then stop.  

5. Reproduction: Breed a new generation by 
performing selection, crossover, and mutation. Go 
to Step 2. 

5 Implementation of the Genetic Algorithm 
The most computationally intensive part of the GA is 
Step 2 where TPAs are evaluated. One evaluation 
involves running the four-step modelling for a network, 
which may take as long as a few hours on a typical 
desktop. Furthermore, the GA requires a large number of 
TPA evaluations, depending on the number of decision 
variables and attributes, e.g., probabilities of crossover 
and mutation. At this point, we decompose the processes 
in order to execute them in distributed fashion. This 
approach significantly reduces execution time.  

The steps of Genetic algorithm in terms of dependency 
of processes are of two types. First is the evaluation step 
(Step 2). The evaluation of an individual chromosome (or 
TPA) is independent of other chromosomes (or TPAs) in 
a generation, which gives us a number of processes that 
can be executed independently. The second part of the 
GA involves fitness, convergence, and reproduction 
(Steps 3 to 5). These steps integrate the individual 
evaluations of Step 2 where the processes are 
interdependent. On the basis of the dependency attribute, 
two variants of the GA are proposed in the literature 
(Haupt et al., 2004, Goldberg, 2002, Cantú-Paz, 2000): 
serial (SGA) and parallel (PGA). Figure 3 illustrates 
these two variants. In SGA, all processes are carried out 
in a sequence, which means that, in Step 2, evaluation of 
a chromosome is completed before the evaluation of 
another chromosome is started. Then Steps 3, 4, and 5 are 
completed to produce another generation and then we 
cycle back to Step 2 (Figure 3 (a)). However, in PGA, 
evaluations are performed simultaneously. Therefore, 
Step 2 is executed in parallel, which is then followed by 
Steps 3, 4, and 5 in a sequence (see Figure 3(b)). SGA is 
simpler to implement, and details are explained in the 
next section. For PGA, we use two techniques of 
implementation: multithreading with multiple cores on 
one machine or HTC over several machines in a network. 

5.1 Parallel GA - Multithreading (MT)  
An operating system (OS) creates threads to run 
software. To run multiple applications simultaneously, 
multiple threads can be processed at a time, i.e., 
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multithreading, if the machine supports multiple cores 
(Akhter and Roberts 2006, Evjen, 2004). To implement 
PGA by multithreading, the architecture of Figure 3(b) is 
used. The number of threads is selected equal to the 
number of processing cores on a machine (say p) plus a 
main thread. The main thread is reserved to control the 
flow of the GA from the start to the end. The main thread 
performs the fitness, convergence, and reproduction 
steps. The remaining p threads are used to execute TPA 
evaluations (objective function). When a generation is 
produced (see Figure 3(b)), n TPAs are queued for 
evaluation. The first p jobs in the queue are assigned p 
available threads. Once these p TPAs are evaluated, the 
next p TPAs are assigned. The next generation is 
produced when all TPAs are evaluated.  

The speedup achieved depends on the number of cores 
on a machine and the efficiency of the OS in supporting 
multithreading. We implemented multithreading in 
Windows since the TPAs are evaluated by Visum, which 
requires Windows. The latter is commonly criticized for 
its performance, but there will always be cases where 
performance declines when the number of threads 
exceeds the number of cores (Akhter and Roberts, 2006), 
regardless of the OS. In that case, the OS must time-share 
the limited cores among so many executing threads, and 
we incur “time slicing” overhead. Moreover, the 
maximum number of cores that can go into one machine 
is subject to space and temperature constraints. There can 
also be a limit to gains due to memory latency and cache 
conflicts (Athanasaki et al., 2008). There is thus a cap on 
the speedup in multithreading, and the cost of purchasing 
many cores and supporting hardware can be high.  

However, with TPA evaluations performed with 
commercial software, multithreading saves considerably 
on license costs for some packages. For example, one 

Visum license is sufficient for one multithreading 
execution of the entire model on one machine, but 
performance will be constrained to what that machine can 
deliver. The next section discusses our HTC approach to 
avoid some of the limits of multithreading, although it 
requires multiple licenses. Our implementations are in 
Visual Basic .NET environment in this study.  

A distributed computing approach such as HTC 
schedules TPA evaluations to several nodes on a network, 
each node having its own set of cores and local memory. 
Therefore, there is less of a limit on the number of tasks 
that can be executed simultaneously, as the number of 
computers in a network is not so tightly bounded. The 
trade-off is the complexity of distributing the task to 
available computers in the network, manage the queue, 
data transfers, provide an inter-process message-passing 
system in some cases, then collect and integrate the 
results. 

5.2 Parallel GA –HTC with Condor 
In Figure 3(b), p out of n evaluations in a population can 
be run in parallel. The ideal case is when p is equal to n, 
which means all n evaluations are done at the same time. 
However, as mentioned earlier, the number of threads 
supported on a given machine is limited. There are a 
number of existing systems for these, such as Condor. It 
was originally developed to use computers during idle 
periods (Thain et al., 2005), but is now one of the most 
flexible and powerful HTC platforms. Computers 
participate within a Condor pool. Owners can configure 
nodes to donate only some of their time. For example, as 
in the case of Monash University, the SPONGE pool 
consists of nodes that run from computer labs. 

 

 
Figure 3. Sequence of components in serial genetic algorithm and parallel genetic algorithm. 
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They are only used when no one is currently using the 
desktop. These lab nodes are all running Windows XP or 
Windows 7, which works for us since our TPA 
evaluations are performed by Windows-based software. 
While issues emerging in adopting a general tool 
(HPC/HTC) tool to the RSA problem are tool-specific, 
important lessons can be learned. A license server 
restricts simultaneous runs of Visum with a hardware. 
The license server can run anywhere on the network, and 
need not be in the Condor pool. If x computers are in the 
network and y licenses are available, the maximum 
number of parallel TPA evaluations is p=min(x, y).  

The parallel scheduling used in this HTC approach is 
to queue n TPA evaluations (the jobs) when a generation 
is produced (see Figure 3(b)). The jobs are assigned to the 
first set of available nodes. For instance, if p<n nodes are 
available, p jobs are assigned and the remaining n-p will 
wait in the queue. As soon as a job finishes on one node, 
the next queued job is assigned to that node. The next 
generation is produced when all TPAs are evaluated.  

To evaluate the TPAs, a user submits jobs from the 
submission machine. For each job, Condor will copy 
input files and the objective evaluation program to the 
worker node and execute the program. Once completed, 
output data are copied back will be downloaded back to 
the submission machine. Some applications can be 
launched as a self-contained package, but Visum is not in 
that category. It requires interactive installation, with a 
700-MB installer, which would require a considerable 
amount of time to copy to an execution node, even on a 
fast network. The solution was pre-installation of Visum 
on a subset of Sponge, where the owners were willing. 
Condor’s scheduler must be told, upon submission, to 
send jobs only to nodes with Visum installed. This can be 
effected with Condor’s ClassAd mechanism using custom 
ClassAd attributes, but in our implementation, we instead 
identified specific Visum-installed machines by name. 

Windows differentiates between the local or remote 
launch of an application. Windows also consults the user 
permissions to run an application either locally or 
remotely. A COM server was configured to grant suitable 
permissions to launch Condor jobs from a remote user. 

6 Numerical Example 
Three GA implementations (SGA, PGA-MT, and PGA-
HTC) are applied to an example transit network, the 
layout of which is in Figure 4. This grid network consists 
of 86 nodes and 306 links. All circumferential nodes 
together with Centroid 22, 26, 43, 45, 62, and 66 are 
origin and destination nodes. A ‘flat’ demand matrix of 
30 persons/hr is traveling from all origins to all 
destinations. The total demand for all the 36 origins and 
destinations is 37,800 persons/hr. There are 10 bus lines 
covering transit demand in the network (see Figure 4). 
The frequency of service for the bus lines is 10 minutes. 
Parameters used are extracted from those calibrated for 
the Melbourne Integrated Transport Model (MITM), a 
four-step model used by the Victorian State Government 
for planning in Melbourne (Department of Infrastructure, 
2004). Vertical and horizontal links are 400m long with 
two lanes in each direction and a speed limit of 36 km/hr. 
It is assumed that if an exclusive lane is introduced on a 
link on one direction, it may not necessarily be introduced 

in the opposite direction. There are 120 links (uni-
directional) in the network on which an exclusive lane 
can be introduced. These links are highlighted in black 
solid line. The following Akcelik cost functions (Ortúzar 
and Willumsen, 2001) are assumed for links with an 
exclusive lane (Equation (4)) and without (Equation (5)). 

 
(4) 

 
(5) 

where t0 determines travel time with free flow 
speed, a is length of observation period, b is a 
constant, d is lane capacity, and other terms are as 
in the Section 8. Each link has 2 lanes, and: 

 
Mode share is determined using a Logit model. 

Traffic User Equilibrium (UE) and a frequency-
based assignment is employed to model traffic and 
transit assignments, respectively. All these lower 
level transport models are implemented using 
Visum (PTV AG, 2009). The upper level objective 
function includes total travel time and total vehicle 
distance. The absolute value of the objective 
function can therefore be very large. A constant 
value is subtracted from the objective function value 
for all evaluations. Hence, the objective function 
value is relative. The weighting factors of the 
objective function are assumed to be 0.01. 
Regarding constraints the budget is assumed to 
allow for all candidate links for the provision of bus 
priority. The GA includes many parameters to tune. 
We suggest a particular set of values as a guideline 
in this example. It was assumed that population 
size, crossover probability (cp), and mutation 
probability (mp) are 40, 0.98, 0.01, respectively. 
The example demonstrates the HTC speedup 
compared to the serial approach. Although selection 
of the GA parameters may vary the absolute value 
of the execution time, the time differences on a 
relative basis are useful indicators to highlight the 
efficiency of the HTC approach. Table 1 describes 
seven computers we used in terms of the number of 
CPUs, versions of Windows, and of Visum. It 
demonstrates HTC incorporating diverse types of 
computers and software. Note that some processors 
can support two simultaneous threads per core. The 
first machine listed has four cores but can support 
eight threads, and perform up to eight TPA 
evaluations at a time. If all computers were 
allocated, 32 evaluations can be carried out 
simultaneously, requiring 32 licenses. The last 
column in Table 1 is the time spent evaluating one 
TPA on each machine. Machine 1 took the least 
time at 65 seconds, and Machine 7 was the slowest 
at 226 seconds. SGA, PGA by multithreading (MT), 
and PGA by HTC are explored. 
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Figure 4. Example network with link numbers, origin destination nodes in boxes, and bus lines in parenthesis 

Machine CPU Cores Threads Windows Visum Evaluation 
Time (s) 

1 Intel Core i7 
CPU 860 @ 2.8 
GHz 

4 8 7 64-bit 11.03 
64-bit 

65 

2 Intel Core i7 
CPU Q820 @ 
1.73 GHz 

4 8 7 64-bit 11.03 
64-bit 

147 

3 Intel Core 2 Quad 
CPU Q6600 @ 
2.4 GHz 

4 4 7 64-bit 11.03 
64-bit 

101 

4 Intel Core 2 Quad 
CPU Q6600 @ 
2.4 GHz 

4 4 XP 64-
bit 

11.01 
32-bit 

122 

5 Intel Core 2 Quad 
CPU Q6600 @ 
2.4 GHz 

4 4 XP 64-
bit 

11.01 
32-bit 

121 

6 Intel Core 2 Duo 
CPU E8500 @ 
3.16 GHz 

2 2 XP 64-
bit 

11.01 
32-bit 

88 

7 Intel Pentium 4 
CPU  @ 3.2 GHz 

2 2 XP 32-
bit 

11.01 
32-bit 

226 

Table 1. Computers used in the experiments. 

The base experiment (datum) for the MT approach is 
performed on Machine 4 with four threads, and for the 
HTC approach on Machines 1, 2, 3, and 6, with a total of 
22 threads. The approach taken does not affect either the 
number of evaluations or the rate of improvement in the 
objective function. It does, however, affect the evaluation 
time. The minimum objective function value found in a 
run with 400 generations was -4.757.  

The execution time of SGA is prohibitively long, being 
sequential. The number of generations was not carried 
past 300. All our four runs evaluated about 1700 TPAs 
each by the 50th generation. Although these runs do not 
follow exactly the same path in finding minimum, the 
trend shows that the value improves gradually at each 
successive evaluation. Figure 5 demonstrates the descent 
towards the minimum of the objective function value for 
two MT and two HTC runs. For comparison purposes, the 
SGA runs are also graphed. All approaches take the same 
downward trend to the minimum, but the implementation 
of the evaluation step results in different execution times. 
Three sets of experiments were organized with a 
population size of 40, crossover probability (cp) of 0.98, 
and mutation probabilities (mp) of 0.005, 0.01, and 0.02. 
The change in mp can change the number of evaluated 
TPAs. Figure 5 shows the quickest descent to the 
minimum of about 7.0 for HTC-1 and HTC-2 at about 
100,000 seconds, with up to 32 simultaneous threads 
possible. MT-1 and MT-2 are not far behind at about 
135,000 and 150,000 seconds, respectively, also to 
descend to a minimum of about 7.0. SGA runs went for 
much longer. For example, to reach a value of 30, SGA-3 
takes about 170,000 seconds (two days) while HTC needs 
only 2,000 seconds. SGA-4 with 300 generations 
exceeded 5 days! 
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Figure 5. TPA evaluations in different modes. 

Three measures were used in this study: (1) average time 
per evaluation (ATE), (2) speedup, which is the ratio of 
ATE in one run to the ATE of one SGA run, and (3) 
efficiency, which is the ratio of the speedup to the 
number of available threads. The speedup and efficiency 
of SGA runs are 1. Table 2 shows that ATE does not 
change significantly with mp. The number of cores are 
more significant, so the ATE for SGA, MT, and HTC 
runs are approximately 140, 40, and 14 seconds, 
respectively, where the number of cores are 1, 4 and 10, 
respectively. The efficiency measure demonstrates that in 
return for adding each thread in the MT approach, the 
execution time has improved by 80-90%. However, the 
efficiency in the HTC approach was just above 50% for 
the addition of each thread. There is considerable 
overhead incurred with distribution and queuing in HTC. 
Table 3 presents the effects of the number of available 
threads. Experiment E228 has the lowest ATE at 11.7 
seconds. There are some important results in Table 3. The 
ATE did not improve when the number of threads went 
from 22 to 26. Experiment logs reveal that about 1650 
TPA evaluations are performed in each run, to an average 
of 33 evaluations per generation. Nevertheless, this is not 
uniformly distributed. The TPA evaluations are recorded 
to prevent evaluating a TPA twice. Therefore, while the 
average number of evaluations per generation is 33, the 
first generations evaluate close to 40 (which is the 
population size) evaluations, while the last generations 
evaluate just over 20 TPAs. When close to 40 TPAs are 
being evaluated, both experiments E228 and E230 may 
allocate two or less evaluations to a thread. This means 
about two evaluations run in sequence. Similarly, when 
just above 20 TPAs are being evaluated, both E228 and 
E230 have enough threads to run all evaluations 
simultaneously. Therefore, an increase of four threads 
does not improve execution time. Accordingly, the ATE 
in experiment E231 should be similar to E228 and E230, 
but it increases instead. We added a very slow Machine 7 
to the pool. In the time it takes for it to evaluate one TPA, 
other machines can evaluate between two to four. 
Machine 7 holds up the other available threads, extending 
the evaluation time of each generation. 

7 Conclusions and Future Work 
We presented a solution to Road Space Allocation using 
serial GA, parallel GA with multithreading, and parallel 
GA with HTC. The optimum was found regardless of the 
GA variant, but performance varied. PGA-MT with four 
threads reduced execution time by 3.2 to 3.7 times 
compared to SGA, and PGA-HTC with 18 threads by 9.3 
to 9.8 times. MT is more efficient, but challenging to use 
for large-scale, realistic networks since the number of 
threads on a computer is generally constrained. In 
contrast, there is practically no limit in the HTC approach 
via incremental expansion. 

A novel outcome is the successful implementation of 
HTC with commercial software on Windows. However, 
the overhead of pre-installed commercial software like 
Visum cannot be taken for granted. There is considerable 
benefit in grid computing, but it is not so accommodating 
to commercial packages. A logical follow-up is to explore 
cloud computing (Foster et al., 2008) with standard or 
custom settings and applications on the cloud resources. 
The framework is generic enough to apply to the entire 
family of Network Design Problems (NDPs). Applying 
the framework to NDP problems in large-scale networks 
can be a challenge. Moreover, substitution and 
comparison of other heuristic methods with the GA could 
be another area of future studies. 

8 Notations 

: Set of all links in the network,   

: Set of links in the network where provision of 
priority is impossible,  

: Set of links where the provision of priority 
(introducing exclusive lane) is possible, 

: Set of links with a bus line on them, walking links, 

and transfer links, 

: Set of bus lines, 

: Sum of frequency of service for bus lines on link , 

: Frequency of service for bus line , 

: Length of link , 

 : GA Population size 

: Bus service time on link  which is equal to running 
time plus duel time at stops, 

: Travel time on link  by mode car ( ) or bus  
( ), which is a function of flow, with no exclusive lane 
(0), with exclusive lane (1) 

: Passenger flow on link  by car ( ) or bus ( ),  

: Waiting time and transfer time at stops.  

: Available budget, 
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mp 
Experiment 

Code Approach 

Number of 
Evaluations on 
Generation 50 

Execution 
Time (sec) 

Average time 
per 

evaluation 
Number 
of Cores 

Number of 
Threads 

Speed 
up Efficiency 

0.005 E218 SGA 1649 240618 145.9 1 1 1 1 

0.005 E220 MT 1513 59865 39.6 4 4 3.687 0.922 

0.005 E219 HTC 1454 21607 14.9 10 18 9.821 0.546 

0.01 E210 SGA 1680 241475 143.7 1 1 1 1 

0.01 E223 MT 1543 66480 43.1 4 4 3.335 0.834 

0.01 E227 HTC 1626 24918 15.3 10 18 9.378 0.521 

0.02 E215 SGA 1721 231197 134.3 1 1 1 1 

0.02 E224 MT 1714 72237 42.1 4 4 3.187 0.797 

0.02 E214 HTC 1683 24204 14.4 10 18 9.343 0.519 

Table 2. Comparison of the speedup using MT and HTC approaches. 
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Table 3. Comparison of HTC speedup, varying cores. 

: Capacity of link  for mode car ( ) or bus (
) with no exclusive lane (0), with exclusive lane (1) 

: Cost of implementing an exclusive lane on link , 

: Aggregate weight of operation costs of a car ( ) 
or bus ( ) to the community including: emissions, noise, 
accident, and reliability impacts.  

: Average occupancy rate for the car mode, 

: Weighting factors to convert the units and 
adjust the relative importance of each impact in the 
objective function, , 

: Equals to 1 if there is an exclusive lane on link , 0 
otherwise 
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