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Abstract 
C-store environment uses a relational database for storing 
table tuples on the disk by columns. Can it be effectively 
used as XML database? This paper considers XML data 
without a schema. A two-level model of C-store based on 
XML-enabled relational databases is proposed. A 
measure of the model suitability is the possibility of 
evaluating effectively XPath queries. The XPath fragment 
considered allows the node-test not referring to attribute 
values and text values. Child, descendant, parent, 
ancestor, siblings, and following (preceding) are just the 
XPath axes used here. Low level memory system 
enabling the estimation of the number of two abstract 
operations providing an interface to an external memory 
is characteristic for algorithms for each axis. We will 
show that our algorithms are mostly of logarithmic 
complexity in n, where n is the number of nodes of XML 
tree associated with a XML document. 
.Keywords:  XML, XPath axes, relational database, 
column stores, C-store 

1 Introduction 
Column-oriented databases (column stores) are an 
attractive area both for practice and research in the past 
few years. The values for each single column (or 
attribute) are stored contiguously, compressed and 
densely packed in this architecture. The DBMS C-store 
introduced in (Stonebraker, et al 2007) is a particular 
approach to column stores.  

Among original motivations for use of column stores 
belong read-intensive analytical processing workloads, 
such as those encountered in data warehouses and OLAP. 
As mentioned by Abadi, Madden, and Hachem (2008) 
even show that various attempts with row-store converge 
to performance that is significantly slower on a recently 
proposed data warehouse benchmark. A more advanced 
application of C-store is its variant SW-store for storing 
RDF data as describe authors of (Abadi, et al, 2009). 
Abadi in (Abadi 2007) explores other more general 
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applications of C-store like so called tables with wide 
schemas and tables with sparse attributes, i.e. tables with 
many NULL values. Considering XML-enabled DBMSs, 
approaches that use rather universal table approach 
belong also to this category. For a detailed discussion of 
column-oriented database systems see, e.g., tutorial by 
Abadi, Boncz, and Harizopoulos (2009). In Částková  
(2009) the author examines a use of column stores for 
storing and processing XML data.  

Our goal is not only to store XML data in column 
store but also to evaluate effectively an appropriate set of 
XML queries. Choosing the XPath language means to 
consider evaluation of XPath axes, i.e. relationship types 
in which a current node is associated to other nodes in the 
XML tree. We consider child, descendant, parent, 
ancestor, siblings, and following (preceding) axes in the 
paper. We will show that our algorithms are mostly of 
logarithmic complexity in n, where n is the number of 
nodes of XML tree associated with a XML document. 
This improves results published by Bojanczyk and Parys 
(2008) providing O(2|φ|*n) complexity, where |φ| is the 
size of  query φ. Their queries deal with attribute values 
and only checking attribute values for equality. 

As most known column store architecture we have 
chosen the C-store for our research. 

In the paper we will consider XML data without 
schema. In Section 2 we recall some basics of C-store. 
Section 3 describes a low-level memory system forming 
an abstract level to real disk memory. In Section 4 we 
propose a two-level model of C-store based on XML-
enabled relational databases. We use a simple structure-
centred mapping for storing XML data into relational 
database and a combination of two well-known 
numbering schemes: foreign key and depth first. Section 
5 is devoted to design and analysis of algorithms for 
processing XPath axes. Section 6 concludes the paper. 

2 C-store: overview 
According to work (Stonebraker, et al 2007) we can 
imagine the C-store approach in two logical levels: user-
oriented logical tables and so called projections. 
Projections are collections of columns each sorted on 
some attribute(s). We denote this fact in the relational 
schema by a delimiter and a list of sort attributes. For 
example, R(A, B, C | B) means that projection R is 
sorted on B. 

http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/m/Madden:Samuel.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/h/Hachem:Nabil.html


One column can occur in more projections. 
Consequently, a redundancy occurs in C-store database 
which means that any compression seems to be 
appropriate for columns. At a logical level C-store 
supports standard tables equipped by the primary key 
and, possibly, a set of foreign keys. A C-store projection 
is anchored on a given logical table and retains all 
duplicate rows, i.e. it has the same number of rows as its 
anchor table. 

In fact, C-store physically stores projections, i.e. C-
store considers a logical table as a set of materialized 
views. The columns of projections are stored column-
wise, using separate storage for each column. Because of 

potentially different ordering of projections it is necessary 
to ensure a reconstruction of rows of a logical table of C-
store. For this purpose, C-store considers row numbers of 
projections and mapping tables (join indices). Row 
numbers are not stored in projections, they are calculated 
as needed. The join index T1>>T2(row_number) is 
one column table modelling one-to-one mapping between 
projections T1 and T2 anchored on the same logical table 
C. For example, suppose the 3rd row of T1>>T2 contains 
the number 6. It means that the 6th row of T2 and 3rd 
row of T1 belong to the same row of C. It is well-known, 
that join indexes are expansive to store and maintain in

 

 
Figure 1: Segments and positions of items 

the presence of updates. Fortunately, there is a lot of 
rather static XML data which narrows the use of C-store. 

3 Low-level Memory System 
We will consider a linear tape consisting from particular 
positions as model of classical disk memory. A position is 
addressable and can contain a data item. Besides 
positions we will also consider segments of fixed size. 
Each segment can contain more data items. Each data 
item can share more segments (see Figure 1). We will 
present a mutual correspondence between a position on 
the disk and a segment on the tape. Let C be the number 
of disk cylinders, S be the number of sectors on one disk 
track and H be the number of disk heads. Further let c ∈ 
{0,…, C-1}, s ∈ {0,…, S-1} and h ∈ {0,…, H-1}. Then 
the triple <c, s, h> uniquely determines a position on the 
disk. The associated segment is determined as follows: 

segment<c,s,h> = c*(H*S) + s*H + h. 
We have introduced segments as intermediate stage 

between physical disk operations and operation over the 
tape with positions.  

Imagine now that the read head is moving over the 
tape. It can read the content from its current position. Let 
i be arbitrary position on the tape and let j, k be positions 
different from i such that ⎜j-i| > 1 and ⎜k-i⎜ = 1. If i is the 
current position on the tape, we call the reading the 
position j a jump, whereas reading the position k we 
consider as reading a neighbour. Let i be a current 
position on the tape. For comparison of time complexity 
of particular algorithms we will use the following 
operations: 

jump(j) – reading the random position j from the 
tape, 
next() – reading the next (or the previous) position 
(i ± 1) on the tape. 

next() operation has time demands dependent on a 
current position. In fact, a position is non-addressable on 
disk. Each position holds a concrete value of one attribute 
of one table row. Implementation of mapping positions 
on segments influences the exaction time of next() 
operation and, mainly, of jump()operation. 

We will consider next() and jump() as basic 
operations for estimating time complexity of particular 
algorithms. Now we introduce a set of basic operations 
that we will be used in all these algorithms: 
SetProjection(P) – setting up a projection (or a 
mapping table) P as current (up to the next setting all 
operations go on over data in this projection). 
SetCol(C) – setting up the C column (in current 
projection) as current. 

Search(X) – finding the first occurrence of X item in 
current projection and column. At the same time, the 
record, where the item is found, is set up as current. The 
function requires several executions of jump()or 
next() operation dependent on the current projection is 
primarily ordered current column or not. 
Read(I) – reading Ith record in current projection  and 
column. At the same time, Ith record is set up as current. 
This function corresponds exactly to one execution of 
jump() operation. 
Next() – reading the next record in current column. At 
the same time the next record is set up as current. This 
operation agrees with execution of operation next(). 
Previous() – reading the previous record in current 
attribute. At the same time, the previous record is set up 
as current. Complexity of this operation is the same as of 
execution of next() operation. 
ReadCol(C) – reading value in C column (in the same 
projection) of the current record. 

Two mapping algorithms used in the next sections will 
be evaluated based on how the associated data models are 
optimal for evaluation of an axis query. We will restrict 
only on retrieval of all nodes belonging to the chosen axis 
of a context node. Algorithms searching nodes of 
particular axes will be completed by a calculation of their 
time complexity on the level of abstract disk operations 
next() and jump(). 



4 XML Data in C-store 
First, we chose a method how to represent XML data in a 
relational database. It is clear that two aspects of the 
design have to be considered: 

• a logical database schema enabling the 
reconstruction of the XML data structure 

• a physical database schema used for storing 
XML data in C-store 

We will use only one logical table. The physical tables 
are projections of the logical table and anchored on it. 

There are a lot of methods concerning the first issue as 
it is shown by Mlýnkova and Pokorný (2005). For 
example, in the work (Boncz et al, 2006) we can find a 
schema based on coding preorder and postorder traversal 
in one logical table. The basic logical table contains 
attribute Pre containing node’s preorder rank, Size 
containing the number of nodes in the subtree below the 
node, and level storing the distance from the tree’s 
root. In combination with so called staircase join this 
approach can significantly support XPath processing, 
particularly in R-store environment. Here we use the 
approach described in work (Kuckelberg and Krieger 
2003), where a mapping of XML document into a 
relational database by other structure-centred mapping is 
described. For this method, of the main importance is the 
knowledge of the list of child nodes for each node from 
XML tree. This is in accordance with an intuition that a 
support for path reconstruction should be at disposal. 
Particularly in C-store, we will ensure that representations 
of these nodes will be close to each other a column. There 
are several approaches, how to implement this list.  

We use combination of two methods for storing data 
into C-store:  

FK (Foreign Key Method) – This method uses a 
unique identifier for each node of XML tree and a foreign 
key reference to its parent (see Figure 2).  

DF (Depth First Method) – This method uses 
traversing XML tree in a depth first manner. It stores to 
each node of XML tree a couple of values (min, max), 
that are assigned by traversing tree in a depth first 
manner. Suppose a counter which is increased each time 
another node is visited. After entering a node U in first 
time its min value is set to the current counter value, after 
last leaving the U node the current counter value sets the 
max value of U. Counter is increased each step by one 
(see Figure 3). If U is an arbitrary node, we denote its min 
and max values as min(U) and max(U), respectively.  

 

               
  Figure 2: Node identifiers and foreign keys 

 

                
Figure 3: Pre/post-order of tree nodes 

We store the nodes of XML tree into the logical table 
Node(ID, Type, Name, Value, Parent,   
     Min, Max, Min_of_Parent), 

where ID (node identifier) is the primary key, Type 
determines the node type (element, attribute, text), Name 
its name (only for elements and attributes, for text data 
the value is set to NULL), Value determines value node 
(for nodes of type attribute or text, for elements the value 
is set to  NULL). Attribute Parent is a foreign key 
determining the parent node, Min and Max contain min 
and max values, respectively, of DF method, 
Min_of_Parent is the min value assigned to the 
parent node. 

Clearly, the logical table is redundant to some 
measure. It implements the list of children in a tree in two 
ways. 

Now we introduce a physical data model, over which 
we will work with C-store. An important part of the 
design of the physical tables (projections) is specification 
of ordering of their rows. It will used for algorithms 
computing particular axes. XML tree is mapped into the 
following projections: 

FK1(ID, Type, Name, Value, Parent,   
    Min| Parent, Min)  
DF(ID, Type, Name, Value, Min, Max,    
   Min_of_Parent| Min) 
FK2(ID, Parent| ID) 

Observe that FK1 is sorted by Parent and 
secondary by Min. Further, we use mapping tables 
FK2>>DF and FK2>>FK1.  

5 XML Axes Querying  
In this section we describe algorithms for computing axes 
for an XML tree mapped into relations FK1, DF, and 
FK2. For each algorithm we provide an analysis of its 
time complexity. Let n be the number all nodes of XML 
tree and id be the identifier of the current (context) node 
N. m we will denote the cardinality of the result set, i.e. 
the cardinality of axis of N. We will also work with value 
sequences. So, we introduce one important notion for 
situations when some values lie in the sequence 
consecutively. Let A = a1,...,an be a sequence. Let M be a 
subsequence of A. Then M is a contiguous subsequence of 
A, iff there is i ≤ n such that {ai,...ai+|M|-1} = M. 
 
 
 
 
 



 

5.1 Child 
To retrieve all children of N we use sequential reading of 
one attribute that is trivial for C-store. We want to 
retrieve all nodes, whose parent is N. We use projection 
FK1, which is sorted on attribute Parent. Due to 
ordering we easily find the first occurrence (row number) 
of searched child and all other occurrences are 
in contiguous subsequence behind it. By reading the 
corresponding sequence of ID values we obtain the query 
result. 
Algorithm 5.1 (Child axis) 
Input: id of the input node N 
Output: the set D containing all children of N 

1 D = {} 
2 SetProjection(FK1); //Finding  

corresponding records 
3 SetCol(Parent); 
4 r = id; start = Search(id); 
5 while r == id: 
6 (r,stop) = Next(); 
7 stop = stop - 1; 
8 SetCol(ID); //Relational projection  

on ID attribute 
9 D.add(Read(start)); 
10 while start < stop: 
11 (d,start) = Next(); 
12 D.add(d); 

Algorithm complexity. Finding the first child requires one 
Search() in column Parent with complexity O(log n). 
Finding the rest of children takes O(m) Next() 
operations. 

5.2 Descendant 
For finding the set of all descendants of N, FK approach 
would lead to recursive calling of relational operation 
join. Therefore we use DF approach and its mathematical 
properties. We are searching for the set of all nodes, 
which have been visited during navigation XML tree in 
depth first manner later than the current node N, but they 
were left earlier than from the N. Thus, we have the 
conditions 

min(N) < min(P)      (1) 

max(N) > max(P),     (2) 

where P is any descendant of N. 
We use projection FK2 along with mapping table 

FK2>>DF for quick finding the position of N in 
projection DF. Since this projection is sorted on attribute 
Min, all descendants of N appear behind the position. 
Finally, by the attribute Max, we have to distinguish real 
descendants of N from nodes, which fulfil only condition 
(1) (nodes in the following axis). 
Statement 1: Let all nodes of XML tree be stored in an 
array A ordered by value Min of DF method. Denote by 
pos(U) the position of the node U in A. Consider the node 
N. Then the following holds for all nodes P such that 
pos(P) > pos(N):  

If max(P)>max(N), then there is no node P1 such that 
pos(P1) > pos(P) and P1 is a descendant of N. 

Proof: Consider the order of nodes in array A. Traversing 
XML tree in a depth first manner values min and max of 
particular nodes have been assigned in this order: 

min value of N, successively, all  min and max values 
of all its descendants, min value of N, min and max 
values of nodes in the following axis for N. 

Nodes in array A are arranged by the min value of DF 
method, i.e. in the order: 

N, all N descendants, nodes in the following axis for N. 

The first node P fulfilling the conditions of Statement 1 is 
obviously the node in the following axis of N (it fulfills 
(1) and does not fulfil (2)). Hence each node P1 
appearing in array A behind node P is also a node in the 
following axis and, consequently, can not be its 
descendant.  

A consequence of Statement 1 is, that although the 
tuples in projection DF are not ordered by the Max 
attribute, we need not to test the Max values of all nodes 
with minimum greater than Min of N. Namely, once we 
retrieve the first node in the following axis, we can stop 
the searching, since we most certainly will find no node 
on the child axis. Finding the first node, which is not a 
descendant of N, depends on the moment, when (2) stops 
to hold (even in by maximum non-ordered array). 
Algorithm 5.2 (Descendant axis) 
Input: id of the input node N 
Output: the set P containing all descendants of N 

0 P = {}  
1 SetProjection(FK2); //Finding N node 
2 SetCol(ID); 
3 start = Search(id); 
4 SetProjection(FK2>>DF); //Finding  

its position in DF through mapping 
table  

5 SetCol(position); 
6 start = Read(start); 
7 SetProjection(DF); //Finding all 

descentants as sequence start...stop 
8 SetCol(Max); 
9 Max = Read(start); m = Max; 
10 while m <= Max: 
11 (m,stop) = Next(); 
12 stop = stop -1; 
13 SetCol(ID); //Relational projection 

on ID attribute 
14 Read(start); //No storing – start is 

position of N 
15 while start < stop: 
16  (p,start) = Next(); 
17 P.add(p); 

Algorithm complexity. Finding the N node requires one 
Search() execution with complexity O(log n), since it 
is performed on ID in FK2 projection, hence on an 
ordered sequence. Thus, the time complexity of this 
function is O(log n). After that N was found in FK2 
projection and consecutively through a mapping table in 
DF projection, retrieval of all its descendants requires 
O(m) Next()operations. 



5.3 Parent 
Algorithm for finding the parent of the node N is trivial. It 
uses the only FK2 projection. There, with logarithmical 
complexity, the position of the context node is found and 
the value of Parent attribute on the associated position. 
However, this approach uses no property of column-wise 
storing; conversely a use of row store would entail 
smaller number of disk operations.  
Algorithm 5.3 (Parent axis) 
Input: id of the input node N 
Output: id_r of the parent of N 

0 SetProjection(FK2); //Finding N node 
1 SetCol(ID); 
2 Search(id); 
3 id_r=ReadCol(Parent); //Reading        

                 value in Parent 

Algorithm complexity. Time complexity of function 
Search() requires O(log n) jump()operations. The 
use ReadCol()operation instead of Read() enables a 
query optimization natively more suitable for row-stores. 

5.4 Ancestor 
Storing tables column-wise is appropriate for certain 
types of queries. The optimal way, how to approach data 
stored in such way is to read one column and based on its 
values to decide about query result. As was apparent from 
the previous algorithms, beneficial is when the result 
members appear in a contiguous sequence. In this case 
the time complexity of the algorithm is the same as the 
time complexity finding the start of this sequence and 
passing just the set of resulted nodes. During reading the 
sequence no additional steps are necessary.  
Statement 2. There is no algorithm mapping XML tree 
nodes on such sequence P, that for arbitrary node the set 
of all its ancestors is a contiguous subsequence of P and, 
moreover, each node of XML tree appears just once in P. 
Proof: Proof is trivial. Assume that there exists such 
algorithm. Then it should map the tree in Figure 2 on a 
node sequence P in such way, that {1,2}, {1,3}, {1,4} are 
contiguous subsequences of P and in the same time node 
1 appears in P just once. Such sequence does not exist.  

A consequence of Statement 2 is that during searching 
all ancestors of N in XML tree it is not possible to exploit 
advantage of sequential reading (not even using any other 
method implementing the list of following nodes than DF 
or FK). 

Now, we describe two algorithms finding all ancestors 
the context node. The first one is based on the FK 
method, the second one on the DF method (Sections 
5.4.1-2). Then we will discuss advantages and 
disadvantages of both algorithms (Section 5.4.3). Finally, 
we describe an algorithm, which combines both 
approaches and reaches better results (Section 5.4.4). 

5.4.1 Algorithm FK 
Remind that both FK and DF methods describe a way, 
how to implement for a tree structure the lists of childern. 
FK method is based on knowledge of the parent of each 
node. In the previous sections, every time when we use 
FK method, we used attributes ID (as the primary key) 

and Parent (as the foreign key). But FK method can be 
also viewed in other way. We use attribute Min as the 
primary key and Min_Parent as a foreign key. Then 
we use projection DF, instead of projection FK1 or FK2. 
Obviously, all principles of FK method will be preserved: 

• Min attribute is really the unique node identifier, 
• Min_Parent attribute contains values of Min 

attribute or NULL (if the node has no parent), so 
it is really a foreign key. 

Moreover, DF projection is ordered by the Min 
attribute. Consequently, for finding all ancestors of N the 
use of FK method over projection FK2 is equivalent to 
the use of FK method over projection DF. One iteration of 
searching the parent of N, its grandparent, etc., means in 
both cases searching in sorted column (ID or Min, 
respectively) and reading the value, which searched in the 
next iteration (Parent or Min_Parent, respectively). 
The algorithm uses the projection FK2 and the mapping 
table FK2>>DF for finding N in projection DF. Then it 
uses above described FK method over projection DF. The 
preference of projection DF over projection FK2 serves as 
the basis to for easy integration of the algorithm with 
Algorithm 5.5 into a combined algorithm (see Section 
4.4.4). 
Algorithm 5.4 (Ancestor axis – FK method) 
Input: id of the input node N 
Output: the set P containing all ancestors of N  

0 P = {} 
1 SetProjection(FK2); //Finding N node 
2 SetCol(ID); 
3 pos = Search(id); 
4 SetProjection(FK2>>DF); //Jump to  

projection DF 
5 SetCol(position); 
6 pos = Read(pos); 
7 SetProjection(DF); 
8 SetCol(Min_Parent); 
9 min_r = Read(pos); 
10 while min_r is not NULL: //Finding  

parent, grantpater,… 
11 SetCol(Min); 
12 pos = Search(min_r); 
13 min_r = ReadCol(Min_Parent); 
14 if min_r is not NULL: 
15 P.add(ReadCol(ID)); 

Algorithm complexity. First, the algorithm retrieves the 
node N in projection FK2 by function Search(). First 
two jumps are performed (for approaching Min_Parent 
column of DF projection). The algorithm is then 
recursive. In each recursion level, we first find out the 
given node by Search()operation in sorted Min 
column of DF projection. Then we read in Min_Parent 
column of the same projection the minimum of parent of 
this node. This minimum becomes the „current“ in the 
next level of recursion. Finding the nearest ancestor takes 
O(log n) executions of operation jump(). This process 
repeats m-times. 

5.4.2 Algorithm DF 
This algorithm uses properties of sequential reading. 
Sequential reading of current column can be done by two 



ways – with the Next() or the Previous(). For our 
purposes we consider both approaches as identical. In 
practice, Previous()operation can be easily 
transformed on Next()operation by creating the 
projection ordered in the reverse order. To be consistent 
with Algorithm 5.6 we use the Previous()operation in 
this algorithm. But the algorithm uses projection FK2 as 
well as the mapping table FK2 >> DF for finding N 
node and projection DF retrieval of its all ancestors. 
Algorithm 5.5 (Ancestor axis – DF method) 
Input: id of the input node N 
Output: the set P containing all ancestors of N  

0 P = {} 
1 SetProjection(FK2); //Finding N node 
2 SetCol(ID); 
3 stop = Search(id); 
4 SetProjection(FK2>>DF); //Finding  

its position in DF through 
mapping table 

5 SetCol(position); 
6 stop = Read(stop); 
7 SetProjection(DF);  // Reading  

maximum of N node 
8 SetCol(Max); 
9 Max = Read(stop); 
10 i = stop;  // Testing all nodes  

with Min value less than Min 
of N node on Max condition 

11 while i > 1: 
12 (m,i) = Previous(); 
13 if m > Max: 
14 P_pos.add(i); 
15 SetCol(ID);  //now P_pos contains a  

list of positions, we need list 
of IDs 

16 i = stop; id = Read(i); 
17 while i > 1: 
18 (id,i) = Previous(); 
19 if i in P_pos: 
20 P.add(id); 

Algorithm complexity. Finding N, i.e. executing 
Search() function in attribute ID of projection FK2, 
has complexity O(log n) jumps on disk. After finding N 
we have first to execute O(1) jumps on disk to reach the 
Max column of DF projection and to read Max value of 
N. Finally, the algorithm reads at most n members in a 
contiguous sequence, which means O(n) executions of 
operation next(). 

5.4.3 Comparison of FK and DF algorithms 
We can see that both algorithms for finding node N have 
the same time complexity. Thus, we will compare 
complexity of finding the set of ancestors of N. 

Algorithm 5.4 consists of O(m*log n) jumps on disk. 
An advantage is that the algorithm reads no superfluous 
data. A disadvantage is that items read are not in a 
contiguous sequence, i.e. jumps are needed. On the other 
hand, Algorithm 5.5 reads more items (including that 
ones not belonging to the result set), but its advantage is, 
that these items are stored in a contiguous sequence. The 
time complexity of such reading is O(n). 

Suitability of particular algorithms can be judged by 
two factors – „density“ of sequence read by DF method 
and technical parameters of disk. Sequence density 

determines how many data in sequence is relevant for the 
query result. The higher the sequence density is, the more 
usable DF method is. Decreasing the density means that 
DF method is less and less effective up to certain moment 
(dependent on technical parameters of disk) when m 
jumps will take less time than processing n 
next()operations. 

Also of importance is that density of sequence read by 
DF method can be different in different parts of the 
sequence. Knowledge of the densities where nodes have 
minimum less than N leads to idea to combine approaches 
FK and DF for finding all ancestors of N. In sequence 
parts with low density Algorithm 5.4 is used, for parts 
with high density we use Algorithm 5.5. Of course, the 
knowledge of densities has to be obtainable without 
additional reading the sequence. In such case, the 
algorithm effectiveness could be worse than that one of 
Algorithm 5.5 itself. In the next section we describe the 
combined algorithm in detail including implementation of 
decision, which of two approaches should be used. 

5.4.4 Combined algorithm – „Jump and go“ 
The name of algorithm reflects the movement that the 
algorithm reminds – jumping alternated with walking step 
by step. 

Algorithm is based on recursive findings the parent of 
given item, grandparent, etc. It decides dynamically in 
each iteration, whether it will search out the parent of 
current item by binary search (Search() operation) 
over sorted Min column (jumping), or via reading 
sequence of several items appearing in projection DF 
immediately before the current node (walking).  

Now we introduce a metric for measuring the density 
of a given sequence part. We can observe that the 
sequence part on which we decide contains nodes 
appearing in projection DF between the parent of current 
node (including) and the current node (out of it). Thus, 
this sequence contains several (≥0) nodes not relevant for 
the query and the only one node (parent current node) 
relevant for the query. The number of non-relevant nodes 
is essential for the sequence part desnsity. It corresponds 
exactly to the number of nodes appearing in projection 
DF between the current node and its parent. 
Statement 3. Let all nodes of XML tree be stored in an 
array A sorted by the min value of DF method. Let U be a 
node and R its parent. Denote by p the number of nodes 
appearing in array A between nodes R and U. Then 

min(U) - min(R) – 1  (3) p =            2 

Proof: During traversing XML tree in a depth first 
manner min and max values of particular nodes were 
assigned in this order: 

min value of R, successively all min and max values of 
all nodes appearing between nodes R and U, min value 
of U. 

Simultaneously, the counter of DF method was increased 
by 2×p between assigning min(R) and min(U). Thus, 

min(R)+ 2×p + 1 = min(U)   (4) 
Then (4) immediately implies the equality (3). 



A consequence of Statement 3 is, that for setting the 
density of the nearest actual sequence we need to know 
only Min value the current node and Min value of its 
parent. Both these values are stored in projection DF, so 
we need not to read the sequence and know its density in 
unit time. 

To be able to chose either jumping or walking for a 
given sequence part, we have to compare their time 
demands. Jumping works similarly as Algorithm 5.4. 
Assuming, that we just read the values of Min and 
Min_Parent attributes for current node, we use only its 
corresponding part – finding position, on which its parent 
appears. Then a new iteration follows, i.e. the decision 
process, which approach will be applied. 

Walking is based on Algorithm 5.5. First, we read the 
value of Max attribute of the current node and then values 
of Max attribute for all nodes, appearing between the 
current node and its parent (these nodes have the Max 
value less than the current node). The parent is 
recognized, when the value of Max attribute is greater 
than Max value of the current node. In this moment we 
stop the searching. Again a new iteration the algorithm 
follows. 

Assume the current node U, its minimum min(U) and 
minimum for its parent min_r(U). Finding the parent 
node U by jumping requires 

log(n)×ts      (5) 
time, where ts is average time needed by a jump on disk. 
In practice, we can the jumping method even improve in 
such way, that we search out only in those part of DF 
projection before the current item (see Section 5.4.2). The 
number n would be lower in each step. Finding the parent 
node U method need (see Statement 3) 

min(U) - min(R) – 1   (6)
  2 n 

where tn is average time operation next(). The numbers 
ts and tn are constant for the disk used, n is constant pro 
each XML file. Comparing values (5) and (6) we can 
determine which approach is for sequence actual more 
appropriate: 

• if value (5) is less, then we apply the jumping 
method, 

• if value (6) is less, then we apply the walking 
method. 

Finally, we introduce a formal description of the 
complete algorithm „Jump and go“. 
Algorithm 5.6 (Jump and go) 
Input: id of the input node N 
Output: the set P containing all ancestors of N  

0 P = {} 
1 SetProjection(FK2); //Finding N node 
2 SetCol(ID); 
3 pos = Search(id); 
4 SetProjection(FK2>>DF); //Jump to  

projection DF 
5 SetCol(position); 
6 pos = Read(pos); 
7 SetProjection(DF); 
8 SetCol(Min_Parent); 
9 min_r = Read(pos); 
10 while min_r is not NULL:  //Finding  

parent, grantpater,… 
+Decision what to chose 

11 min = ReadCol(Min); 
12 if log(konst.n)*konst.ts <=((min– 

min_r–1)/2 +1)*konst.tn: 
13 SetCol(Min);    //Jumping 
14 pos = Search(min_r); 
15 P.add(ReadCol(ID)); 
16 else: 
17 m = max = ReadCol(Max);  //Walking 
18 SetCol(Max); 
19 while pos > 1 and m <= max: 
20 (m,pos) = Previous(); 
21 if m > max: 
22 P.add(ReadCol(ID)); 
23 SetCol(Min_Parent); 
24 min_r = Read(pos); 

5.5 Sibling 
For finding all siblings of the node N we again use 
sequential reading of one attribute. We use projection 
FK2, in which we approach the value of Parent 
attribute for N. Siblings are nodes, which have this value 
the same. Using mapping table FK2>>FK1 we find the 
occurrence of N in FK1. Due to the secondary ordering 
the records by attribute Min, we know that the sequence 
of items with the same value of Parent attribute 
appearing before the given node in projection FK1 
corresponds to its younger siblings and the sequence 
behind the item corresponds to its older siblings. 
Algorithm 5.7 (Sibling axis) 
Input: id of the input node N 
Output: the sets M and S containing all younger siblings 
and older siblings of N, respectively 

0 M = {}, S = {} 
1 SetProjection(FK2); //Finding N node 

+ l × t 2 SetCol(ID); 
3 start_stop = Search(id); 
4 SetProjection(FK2>>FK1); //trough  

join-index 
5 SetCol(position); 
6 start_stop = Read(start_stop); 
7 SetProjection(FK1); // FK1 
8 SetCol(Parent); 
9 parent = Read(start_stop); 
10 r = parent; //Finding set M =  

[start, ...start_stop] 
11 while r == parent: 
12 (r,start) = Previous(); 
13 start = start + 1; 
14 r = parent; Read(start_stop); 

//Finding set S = [start_stop, 
…,stop] 

15 while r == parent: 
16 (r,stop) = Next(); 
17 stop = stop - 1; 
18 SetCol(ID);  //Relational projection  

on ID attribute 
19 i = Read(start); 
20 while start < stop: 
21 if start < start_stop: 
22 M.add(i); 
23 if start > start_stop: 
24 S.add(i); 
25 (i,start) = Next(); 

Algorithm complexity. Operation Search() has 
complexity O(log n). After finding N in projection FK1 



the time complexity of selection of all siblings 
(operations Next()/Previous()) is O(m). 
Remark: Algorithm 5.7 has found all siblings of N as a 
union of all younger and older siblings. A trivial 
modification of the algorithm enables to restrict its result 
set only to younger or older siblings without changing the 
time complexity of the algorithm. 

5.6 Following (Preceding) 
Let U be a node of XML tree. While for arbitrary node V  

min(V) < min(U),     (7) 
holds, then V is either ancestor or preceding node of U. 
The difference between ancestor and preceding node is in 
value max. Whereas the preceding nodes have max value 
less than the node U, the ancestors have max value 
greater than node U. To be preceding the next condition 
(8) has to hold together with the condition (7) for the 
node V:  

max(V) < max(U).    (8) 
Otherwise, if for arbitrary node V  

min(V) > min(U)     (9) 
and 

max(V) > max (U),    (10) 
then node V follows node U. 

Notice that finding the result set M leads to calculation 
of a set difference. Let Min_inv be a set of nodes that 
fulfil the minimum invariant, i.e. the condition (7) for 
preceding axis and the condition (9) for the following 
axis. Further, let Max_not be the set of nodes that do not 
fulfil the maximum invariant (condition (8) and (10), 
respectively). Thus, Max_not is the set of ancestors (as 
concerns searching preceding) or of descendant (as 
concerns searching following). The query result is then 
the set 

M = Min_inv \ Max_not. 
Now we introduce a universal algorithm for searching 

both preceding and following nodes. The algorithm uses 
DF projection for finding the result set. It also uses 
projection FK2 and mapping table FK2 >>DF for 
finding the node N. The algorithm finds all preceding 
nodes or all following nodes, depending on which couple 
of operations Init and MaxInvariant is used. 
Preceding  Following 
Init (position) 
return(1, position) 

Init (position) 
return (position+1, 
N+1) 

MaxInvariant (max) 
return max < MAX 

MaxInvariant (max) 
return max > MAX 

Operation Init() implements minimum invariant, i.e. it 
returns couple (start, stop) in projection FK1, MAX 
denotes the Max value of N. 

Algorithm 5.8 (Following, preceding axes) 
Input: id of the input node N 
Output: the set M containing all preceding nodes 
(respectively following nodes) of N  

0 SetProjection(FK2); //Finding N node 
1 SetCol(ID); 
2 position = Search(id); 
3 SetProjection(FK2>>DF); //trough  

join-index 
4 SetCol(position); 
5 position = Read(position); 
6 SetProjection(DF);  //Finding set of  

items not belonging to 
the result 

7 SetCol(Max); 
8 MAX = Read(position); 
9 (start, stop) = Init(position); 

Max_not = {}; i = start; 
10 m = Read(i); 
11 while i < stop: 
12 if not MaxInvariant(m): 
13 Max_not.add(i); 
14  (m,i)Next(); 
15 SetCol(ID); //Finding the result set  
16 i = start; id = Read(i); 
17 while i < stop: 
18 if i not in Max_not: 
19 M.add(id); 
20 (id,i) = Next(); 

Algorithm complexity. Let p be the number of nodes in 
the Max_not set. The retrieval of N node needs O(log n) 
jumps on disk. For obtaining the M set itself, the 
algorithm takes yet 2*(m+p+1) executions of 
Next()function. 

6 Conclusions and future work 
We can conclude with the following statement 
summarizing complexities of algorithms described in 
Section 5.  
Statement 3. Let n be the number of nodes of XML tree, 
m be the number of nodes in an axis, and let p be the 
number of nodes not fulfilling the maximum invariant 
specified for following (preceding) axis. Axes queries 
over C-store modelled by relations specified in Section 4 
have the complexities given in Table 1.  

Analyzing these O – expressions from proofs 
described in Section 4, we can observe that the functions 
behind the formal complexities have mostly the constants 
a and b in leading terms a*m or b*log n, respectively, 
equal to 1. 

Of course, as it is mentioned by Částková (2009), the 
algorithms can be further optimized, particularly those 
ones for following (preceding) axes. Also it is possible to 
propose a different logical as well as physical model for 
relations implementing C-store. Another direction of 
future research is a use of indexes supporting queries over 
C-store. For example, authors of (Sidirourgos et al, 2008) 
show that with proper clustered indices the triple-store for 
RDF data performs better than the vertically-partitioned 
approach. 

Analyzing these O – expressions from proofs 
described in Section 4, we can observe that the functions 
behind the formal complexities have mostly the constants 
a and b in leading terms a*m or b*log n, respectively, 
equal to 1. 

An important part missing in our paper concerns 
experiments with real XML data. Theoretical time 
complexities should be confirmed by real complexities 
gained with a help a column-oriented DBMS, e.g. C-
store. Clearly, it should be done in accordance with our 
low-level memory system which seems to be sufficiently 
general and, consequently, usable for describing memory  

http://www.citeulike.org/user/stavros/author/Sidirourgos:L


 
Axis #occurrences of  next() #occurrences of jump() 
child O(m) O(log n) 
descendant O(m) O(log n) 
parent 0 O(log n) 
ancestor - FK method 0 O(m*log n) 
ancestor - DF method O(n) O(log n) 
sibling O(m) O(log n) 
following  O(m+p) O(log n) 
preceding O(m+p) O(log n) 

Table 1: Complexity of algorithms for XPath axes

system in C-store. On the other, real column-oriented 
DBMSs can have a different physical data model than the 
one used in our research. For example, MonetDB 
provides the model based on  the technique described in 
(Boncz et al, 2006) and mentioned in Section 4. 

Another direction comes from the situation when we have 
an XML schema for XML data. First observations 
discussed by Častková (2009) show that knowledge of 
such schema gives no significant contribution to the 
design of physical schema design for C-store. 
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