
Schema-less XML in Columns

Zuzana Částková1 Jaroslav Pokorný2

1 e-Fractal s.r.o.
Vinohradská 174, Praha 3, Czech Republic

castkova.zuzka@gmail.com

2 Faculty of Mathematics and Physics
Charles University in Prague

Malostranské nám. 25, Praha 1, Czech Republic
pokorny@ksi.mff.cuni.cz

Abstract
C-store environment uses a relational database for storing
table tuples on the disk by columns. Can it be effectively
used as XML database? This paper considers XML data
without a schema. A two-level model of C-store based on
XML-enabled relational databases is proposed. A
measure of the model suitability is the possibility of
evaluating effectively XPath queries. The XPath fragment
considered allows the node-test not referring to attribute
values and text values. Child, descendant, parent,
ancestor, siblings, and following (preceding) are just the
XPath axes used here. Low level memory system
enabling the estimation of the number of two abstract
operations providing an interface to an external memory
is characteristic for algorithms for each axis. We will
show that our algorithms are mostly of logarithmic
complexity in n, where n is the number of nodes of XML
tree associated with a XML document.
.Keywords: XML, XPath axes, relational database,
column stores, C-store

1 Introduction
Column-oriented databases (column stores) are an
attractive area both for practice and research in the past
few years. The values for each single column (or
attribute) are stored contiguously, compressed and
densely packed in this architecture. The DBMS C-store
introduced in (Stonebraker, et al 2007) is a particular
approach to column stores.

Among original motivations for use of column stores
belong read-intensive analytical processing workloads,
such as those encountered in data warehouses and OLAP.
As mentioned by Abadi, Madden, and Hachem (2008)
even show that various attempts with row-store converge
to performance that is significantly slower on a recently
proposed data warehouse benchmark. A more advanced
application of C-store is its variant SW-store for storing
RDF data as describe authors of (Abadi, et al, 2009).
Abadi in (Abadi 2007) explores other more general

Copyright © 2011, Australian Computer Society, Inc. This
paper appeared at the The 22nd Australasian Database
Conference (ADC 2011), Perth, Australia. Conferences in
Research and Practice in Information Technology (CRPIT),
Vol. 115. H. T. Shen and Y. Zhang, Eds. Reproduction for
academic, not-for-profit purposes permitted provided this text is
included.

applications of C-store like so called tables with wide
schemas and tables with sparse attributes, i.e. tables with
many NULL values. Considering XML-enabled DBMSs,
approaches that use rather universal table approach
belong also to this category. For a detailed discussion of
column-oriented database systems see, e.g., tutorial by
Abadi, Boncz, and Harizopoulos (2009). In Částková
(2009) the author examines a use of column stores for
storing and processing XML data.

Our goal is not only to store XML data in column
store but also to evaluate effectively an appropriate set of
XML queries. Choosing the XPath language means to
consider evaluation of XPath axes, i.e. relationship types
in which a current node is associated to other nodes in the
XML tree. We consider child, descendant, parent,
ancestor, siblings, and following (preceding) axes in the
paper. We will show that our algorithms are mostly of
logarithmic complexity in n, where n is the number of
nodes of XML tree associated with a XML document.
This improves results published by Bojanczyk and Parys
(2008) providing O(2|φ|*n) complexity, where |φ| is the
size of query φ. Their queries deal with attribute values
and only checking attribute values for equality.

As most known column store architecture we have
chosen the C-store for our research.

In the paper we will consider XML data without
schema. In Section 2 we recall some basics of C-store.
Section 3 describes a low-level memory system forming
an abstract level to real disk memory. In Section 4 we
propose a two-level model of C-store based on XML-
enabled relational databases. We use a simple structure-
centred mapping for storing XML data into relational
database and a combination of two well-known
numbering schemes: foreign key and depth first. Section
5 is devoted to design and analysis of algorithms for
processing XPath axes. Section 6 concludes the paper.

2 C-store: overview
According to work (Stonebraker, et al 2007) we can
imagine the C-store approach in two logical levels: user-
oriented logical tables and so called projections.
Projections are collections of columns each sorted on
some attribute(s). We denote this fact in the relational
schema by a delimiter and a list of sort attributes. For
example, R(A, B, C | B) means that projection R is
sorted on B.

http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/m/Madden:Samuel.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/h/Hachem:Nabil.html

One column can occur in more projections.
Consequently, a redundancy occurs in C-store database
which means that any compression seems to be
appropriate for columns. At a logical level C-store
supports standard tables equipped by the primary key
and, possibly, a set of foreign keys. A C-store projection
is anchored on a given logical table and retains all
duplicate rows, i.e. it has the same number of rows as its
anchor table.

In fact, C-store physically stores projections, i.e. C-
store considers a logical table as a set of materialized
views. The columns of projections are stored column-
wise, using separate storage for each column. Because of

potentially different ordering of projections it is necessary
to ensure a reconstruction of rows of a logical table of C-
store. For this purpose, C-store considers row numbers of
projections and mapping tables (join indices). Row
numbers are not stored in projections, they are calculated
as needed. The join index T1>>T2(row_number) is
one column table modelling one-to-one mapping between
projections T1 and T2 anchored on the same logical table
C. For example, suppose the 3rd row of T1>>T2 contains
the number 6. It means that the 6th row of T2 and 3rd
row of T1 belong to the same row of C. It is well-known,
that join indexes are expansive to store and maintain in

Figure 1: Segments and positions of items

the presence of updates. Fortunately, there is a lot of
rather static XML data which narrows the use of C-store.

3 Low-level Memory System
We will consider a linear tape consisting from particular
positions as model of classical disk memory. A position is
addressable and can contain a data item. Besides
positions we will also consider segments of fixed size.
Each segment can contain more data items. Each data
item can share more segments (see Figure 1). We will
present a mutual correspondence between a position on
the disk and a segment on the tape. Let C be the number
of disk cylinders, S be the number of sectors on one disk
track and H be the number of disk heads. Further let c ∈
{0,…, C-1}, s ∈ {0,…, S-1} and h ∈ {0,…, H-1}. Then
the triple <c, s, h> uniquely determines a position on the
disk. The associated segment is determined as follows:

segment<c,s,h> = c*(H*S) + s*H + h.
We have introduced segments as intermediate stage

between physical disk operations and operation over the
tape with positions.

Imagine now that the read head is moving over the
tape. It can read the content from its current position. Let
i be arbitrary position on the tape and let j, k be positions
different from i such that ⎜j-i| > 1 and ⎜k-i⎜ = 1. If i is the
current position on the tape, we call the reading the
position j a jump, whereas reading the position k we
consider as reading a neighbour. Let i be a current
position on the tape. For comparison of time complexity
of particular algorithms we will use the following
operations:

jump(j) – reading the random position j from the
tape,
next() – reading the next (or the previous) position
(i ± 1) on the tape.

next() operation has time demands dependent on a
current position. In fact, a position is non-addressable on
disk. Each position holds a concrete value of one attribute
of one table row. Implementation of mapping positions
on segments influences the exaction time of next()
operation and, mainly, of jump()operation.

We will consider next() and jump() as basic
operations for estimating time complexity of particular
algorithms. Now we introduce a set of basic operations
that we will be used in all these algorithms:
SetProjection(P) – setting up a projection (or a
mapping table) P as current (up to the next setting all
operations go on over data in this projection).
SetCol(C) – setting up the C column (in current
projection) as current.

Search(X) – finding the first occurrence of X item in
current projection and column. At the same time, the
record, where the item is found, is set up as current. The
function requires several executions of jump()or
next() operation dependent on the current projection is
primarily ordered current column or not.
Read(I) – reading Ith record in current projection and
column. At the same time, Ith record is set up as current.
This function corresponds exactly to one execution of
jump() operation.
Next() – reading the next record in current column. At
the same time the next record is set up as current. This
operation agrees with execution of operation next().
Previous() – reading the previous record in current
attribute. At the same time, the previous record is set up
as current. Complexity of this operation is the same as of
execution of next() operation.
ReadCol(C) – reading value in C column (in the same
projection) of the current record.

Two mapping algorithms used in the next sections will
be evaluated based on how the associated data models are
optimal for evaluation of an axis query. We will restrict
only on retrieval of all nodes belonging to the chosen axis
of a context node. Algorithms searching nodes of
particular axes will be completed by a calculation of their
time complexity on the level of abstract disk operations
next() and jump().

4 XML Data in C-store
First, we chose a method how to represent XML data in a
relational database. It is clear that two aspects of the
design have to be considered:

• a logical database schema enabling the
reconstruction of the XML data structure

• a physical database schema used for storing
XML data in C-store

We will use only one logical table. The physical tables
are projections of the logical table and anchored on it.

There are a lot of methods concerning the first issue as
it is shown by Mlýnkova and Pokorný (2005). For
example, in the work (Boncz et al, 2006) we can find a
schema based on coding preorder and postorder traversal
in one logical table. The basic logical table contains
attribute Pre containing node’s preorder rank, Size
containing the number of nodes in the subtree below the
node, and level storing the distance from the tree’s
root. In combination with so called staircase join this
approach can significantly support XPath processing,
particularly in R-store environment. Here we use the
approach described in work (Kuckelberg and Krieger
2003), where a mapping of XML document into a
relational database by other structure-centred mapping is
described. For this method, of the main importance is the
knowledge of the list of child nodes for each node from
XML tree. This is in accordance with an intuition that a
support for path reconstruction should be at disposal.
Particularly in C-store, we will ensure that representations
of these nodes will be close to each other a column. There
are several approaches, how to implement this list.

We use combination of two methods for storing data
into C-store:

FK (Foreign Key Method) – This method uses a
unique identifier for each node of XML tree and a foreign
key reference to its parent (see Figure 2).

DF (Depth First Method) – This method uses
traversing XML tree in a depth first manner. It stores to
each node of XML tree a couple of values (min, max),
that are assigned by traversing tree in a depth first
manner. Suppose a counter which is increased each time
another node is visited. After entering a node U in first
time its min value is set to the current counter value, after
last leaving the U node the current counter value sets the
max value of U. Counter is increased each step by one
(see Figure 3). If U is an arbitrary node, we denote its min
and max values as min(U) and max(U), respectively.

 Figure 2: Node identifiers and foreign keys

Figure 3: Pre/post-order of tree nodes

We store the nodes of XML tree into the logical table
Node(ID, Type, Name, Value, Parent,
 Min, Max, Min_of_Parent),

where ID (node identifier) is the primary key, Type
determines the node type (element, attribute, text), Name
its name (only for elements and attributes, for text data
the value is set to NULL), Value determines value node
(for nodes of type attribute or text, for elements the value
is set to NULL). Attribute Parent is a foreign key
determining the parent node, Min and Max contain min
and max values, respectively, of DF method,
Min_of_Parent is the min value assigned to the
parent node.

Clearly, the logical table is redundant to some
measure. It implements the list of children in a tree in two
ways.

Now we introduce a physical data model, over which
we will work with C-store. An important part of the
design of the physical tables (projections) is specification
of ordering of their rows. It will used for algorithms
computing particular axes. XML tree is mapped into the
following projections:

FK1(ID, Type, Name, Value, Parent,
 Min| Parent, Min)
DF(ID, Type, Name, Value, Min, Max,
 Min_of_Parent| Min)
FK2(ID, Parent| ID)

Observe that FK1 is sorted by Parent and
secondary by Min. Further, we use mapping tables
FK2>>DF and FK2>>FK1.

5 XML Axes Querying
In this section we describe algorithms for computing axes
for an XML tree mapped into relations FK1, DF, and
FK2. For each algorithm we provide an analysis of its
time complexity. Let n be the number all nodes of XML
tree and id be the identifier of the current (context) node
N. m we will denote the cardinality of the result set, i.e.
the cardinality of axis of N. We will also work with value
sequences. So, we introduce one important notion for
situations when some values lie in the sequence
consecutively. Let A = a1,...,an be a sequence. Let M be a
subsequence of A. Then M is a contiguous subsequence of
A, iff there is i ≤ n such that {ai,...ai+|M|-1} = M.

5.1 Child
To retrieve all children of N we use sequential reading of
one attribute that is trivial for C-store. We want to
retrieve all nodes, whose parent is N. We use projection
FK1, which is sorted on attribute Parent. Due to
ordering we easily find the first occurrence (row number)
of searched child and all other occurrences are
in contiguous subsequence behind it. By reading the
corresponding sequence of ID values we obtain the query
result.
Algorithm 5.1 (Child axis)
Input: id of the input node N
Output: the set D containing all children of N

1 D = {}
2 SetProjection(FK1); //Finding

corresponding records
3 SetCol(Parent);
4 r = id; start = Search(id);
5 while r == id:
6 (r,stop) = Next();
7 stop = stop - 1;
8 SetCol(ID); //Relational projection

on ID attribute
9 D.add(Read(start));
10 while start < stop:
11 (d,start) = Next();
12 D.add(d);

Algorithm complexity. Finding the first child requires one
Search() in column Parent with complexity O(log n).
Finding the rest of children takes O(m) Next()
operations.

5.2 Descendant
For finding the set of all descendants of N, FK approach
would lead to recursive calling of relational operation
join. Therefore we use DF approach and its mathematical
properties. We are searching for the set of all nodes,
which have been visited during navigation XML tree in
depth first manner later than the current node N, but they
were left earlier than from the N. Thus, we have the
conditions

min(N) < min(P) (1)

max(N) > max(P), (2)

where P is any descendant of N.
We use projection FK2 along with mapping table

FK2>>DF for quick finding the position of N in
projection DF. Since this projection is sorted on attribute
Min, all descendants of N appear behind the position.
Finally, by the attribute Max, we have to distinguish real
descendants of N from nodes, which fulfil only condition
(1) (nodes in the following axis).
Statement 1: Let all nodes of XML tree be stored in an
array A ordered by value Min of DF method. Denote by
pos(U) the position of the node U in A. Consider the node
N. Then the following holds for all nodes P such that
pos(P) > pos(N):

If max(P)>max(N), then there is no node P1 such that
pos(P1) > pos(P) and P1 is a descendant of N.

Proof: Consider the order of nodes in array A. Traversing
XML tree in a depth first manner values min and max of
particular nodes have been assigned in this order:

min value of N, successively, all min and max values
of all its descendants, min value of N, min and max
values of nodes in the following axis for N.

Nodes in array A are arranged by the min value of DF
method, i.e. in the order:

N, all N descendants, nodes in the following axis for N.

The first node P fulfilling the conditions of Statement 1 is
obviously the node in the following axis of N (it fulfills
(1) and does not fulfil (2)). Hence each node P1
appearing in array A behind node P is also a node in the
following axis and, consequently, can not be its
descendant.

A consequence of Statement 1 is, that although the
tuples in projection DF are not ordered by the Max
attribute, we need not to test the Max values of all nodes
with minimum greater than Min of N. Namely, once we
retrieve the first node in the following axis, we can stop
the searching, since we most certainly will find no node
on the child axis. Finding the first node, which is not a
descendant of N, depends on the moment, when (2) stops
to hold (even in by maximum non-ordered array).
Algorithm 5.2 (Descendant axis)
Input: id of the input node N
Output: the set P containing all descendants of N

0 P = {}
1 SetProjection(FK2); //Finding N node
2 SetCol(ID);
3 start = Search(id);
4 SetProjection(FK2>>DF); //Finding

its position in DF through mapping
table

5 SetCol(position);
6 start = Read(start);
7 SetProjection(DF); //Finding all

descentants as sequence start...stop
8 SetCol(Max);
9 Max = Read(start); m = Max;
10 while m <= Max:
11 (m,stop) = Next();
12 stop = stop -1;
13 SetCol(ID); //Relational projection

on ID attribute
14 Read(start); //No storing – start is

position of N
15 while start < stop:
16 (p,start) = Next();
17 P.add(p);

Algorithm complexity. Finding the N node requires one
Search() execution with complexity O(log n), since it
is performed on ID in FK2 projection, hence on an
ordered sequence. Thus, the time complexity of this
function is O(log n). After that N was found in FK2
projection and consecutively through a mapping table in
DF projection, retrieval of all its descendants requires
O(m) Next()operations.

5.3 Parent
Algorithm for finding the parent of the node N is trivial. It
uses the only FK2 projection. There, with logarithmical
complexity, the position of the context node is found and
the value of Parent attribute on the associated position.
However, this approach uses no property of column-wise
storing; conversely a use of row store would entail
smaller number of disk operations.
Algorithm 5.3 (Parent axis)
Input: id of the input node N
Output: id_r of the parent of N

0 SetProjection(FK2); //Finding N node
1 SetCol(ID);
2 Search(id);
3 id_r=ReadCol(Parent); //Reading

 value in Parent

Algorithm complexity. Time complexity of function
Search() requires O(log n) jump()operations. The
use ReadCol()operation instead of Read() enables a
query optimization natively more suitable for row-stores.

5.4 Ancestor
Storing tables column-wise is appropriate for certain
types of queries. The optimal way, how to approach data
stored in such way is to read one column and based on its
values to decide about query result. As was apparent from
the previous algorithms, beneficial is when the result
members appear in a contiguous sequence. In this case
the time complexity of the algorithm is the same as the
time complexity finding the start of this sequence and
passing just the set of resulted nodes. During reading the
sequence no additional steps are necessary.
Statement 2. There is no algorithm mapping XML tree
nodes on such sequence P, that for arbitrary node the set
of all its ancestors is a contiguous subsequence of P and,
moreover, each node of XML tree appears just once in P.
Proof: Proof is trivial. Assume that there exists such
algorithm. Then it should map the tree in Figure 2 on a
node sequence P in such way, that {1,2}, {1,3}, {1,4} are
contiguous subsequences of P and in the same time node
1 appears in P just once. Such sequence does not exist.

A consequence of Statement 2 is that during searching
all ancestors of N in XML tree it is not possible to exploit
advantage of sequential reading (not even using any other
method implementing the list of following nodes than DF
or FK).

Now, we describe two algorithms finding all ancestors
the context node. The first one is based on the FK
method, the second one on the DF method (Sections
5.4.1-2). Then we will discuss advantages and
disadvantages of both algorithms (Section 5.4.3). Finally,
we describe an algorithm, which combines both
approaches and reaches better results (Section 5.4.4).

5.4.1 Algorithm FK
Remind that both FK and DF methods describe a way,
how to implement for a tree structure the lists of childern.
FK method is based on knowledge of the parent of each
node. In the previous sections, every time when we use
FK method, we used attributes ID (as the primary key)

and Parent (as the foreign key). But FK method can be
also viewed in other way. We use attribute Min as the
primary key and Min_Parent as a foreign key. Then
we use projection DF, instead of projection FK1 or FK2.
Obviously, all principles of FK method will be preserved:

• Min attribute is really the unique node identifier,
• Min_Parent attribute contains values of Min

attribute or NULL (if the node has no parent), so
it is really a foreign key.

Moreover, DF projection is ordered by the Min
attribute. Consequently, for finding all ancestors of N the
use of FK method over projection FK2 is equivalent to
the use of FK method over projection DF. One iteration of
searching the parent of N, its grandparent, etc., means in
both cases searching in sorted column (ID or Min,
respectively) and reading the value, which searched in the
next iteration (Parent or Min_Parent, respectively).
The algorithm uses the projection FK2 and the mapping
table FK2>>DF for finding N in projection DF. Then it
uses above described FK method over projection DF. The
preference of projection DF over projection FK2 serves as
the basis to for easy integration of the algorithm with
Algorithm 5.5 into a combined algorithm (see Section
4.4.4).
Algorithm 5.4 (Ancestor axis – FK method)
Input: id of the input node N
Output: the set P containing all ancestors of N

0 P = {}
1 SetProjection(FK2); //Finding N node
2 SetCol(ID);
3 pos = Search(id);
4 SetProjection(FK2>>DF); //Jump to

projection DF
5 SetCol(position);
6 pos = Read(pos);
7 SetProjection(DF);
8 SetCol(Min_Parent);
9 min_r = Read(pos);
10 while min_r is not NULL: //Finding

parent, grantpater,…
11 SetCol(Min);
12 pos = Search(min_r);
13 min_r = ReadCol(Min_Parent);
14 if min_r is not NULL:
15 P.add(ReadCol(ID));

Algorithm complexity. First, the algorithm retrieves the
node N in projection FK2 by function Search(). First
two jumps are performed (for approaching Min_Parent
column of DF projection). The algorithm is then
recursive. In each recursion level, we first find out the
given node by Search()operation in sorted Min
column of DF projection. Then we read in Min_Parent
column of the same projection the minimum of parent of
this node. This minimum becomes the „current“ in the
next level of recursion. Finding the nearest ancestor takes
O(log n) executions of operation jump(). This process
repeats m-times.

5.4.2 Algorithm DF
This algorithm uses properties of sequential reading.
Sequential reading of current column can be done by two

ways – with the Next() or the Previous(). For our
purposes we consider both approaches as identical. In
practice, Previous()operation can be easily
transformed on Next()operation by creating the
projection ordered in the reverse order. To be consistent
with Algorithm 5.6 we use the Previous()operation in
this algorithm. But the algorithm uses projection FK2 as
well as the mapping table FK2 >> DF for finding N
node and projection DF retrieval of its all ancestors.
Algorithm 5.5 (Ancestor axis – DF method)
Input: id of the input node N
Output: the set P containing all ancestors of N

0 P = {}
1 SetProjection(FK2); //Finding N node
2 SetCol(ID);
3 stop = Search(id);
4 SetProjection(FK2>>DF); //Finding

its position in DF through
mapping table

5 SetCol(position);
6 stop = Read(stop);
7 SetProjection(DF); // Reading

maximum of N node
8 SetCol(Max);
9 Max = Read(stop);
10 i = stop; // Testing all nodes

with Min value less than Min
of N node on Max condition

11 while i > 1:
12 (m,i) = Previous();
13 if m > Max:
14 P_pos.add(i);
15 SetCol(ID); //now P_pos contains a

list of positions, we need list
of IDs

16 i = stop; id = Read(i);
17 while i > 1:
18 (id,i) = Previous();
19 if i in P_pos:
20 P.add(id);

Algorithm complexity. Finding N, i.e. executing
Search() function in attribute ID of projection FK2,
has complexity O(log n) jumps on disk. After finding N
we have first to execute O(1) jumps on disk to reach the
Max column of DF projection and to read Max value of
N. Finally, the algorithm reads at most n members in a
contiguous sequence, which means O(n) executions of
operation next().

5.4.3 Comparison of FK and DF algorithms
We can see that both algorithms for finding node N have
the same time complexity. Thus, we will compare
complexity of finding the set of ancestors of N.

Algorithm 5.4 consists of O(m*log n) jumps on disk.
An advantage is that the algorithm reads no superfluous
data. A disadvantage is that items read are not in a
contiguous sequence, i.e. jumps are needed. On the other
hand, Algorithm 5.5 reads more items (including that
ones not belonging to the result set), but its advantage is,
that these items are stored in a contiguous sequence. The
time complexity of such reading is O(n).

Suitability of particular algorithms can be judged by
two factors – „density“ of sequence read by DF method
and technical parameters of disk. Sequence density

determines how many data in sequence is relevant for the
query result. The higher the sequence density is, the more
usable DF method is. Decreasing the density means that
DF method is less and less effective up to certain moment
(dependent on technical parameters of disk) when m
jumps will take less time than processing n
next()operations.

Also of importance is that density of sequence read by
DF method can be different in different parts of the
sequence. Knowledge of the densities where nodes have
minimum less than N leads to idea to combine approaches
FK and DF for finding all ancestors of N. In sequence
parts with low density Algorithm 5.4 is used, for parts
with high density we use Algorithm 5.5. Of course, the
knowledge of densities has to be obtainable without
additional reading the sequence. In such case, the
algorithm effectiveness could be worse than that one of
Algorithm 5.5 itself. In the next section we describe the
combined algorithm in detail including implementation of
decision, which of two approaches should be used.

5.4.4 Combined algorithm – „Jump and go“
The name of algorithm reflects the movement that the
algorithm reminds – jumping alternated with walking step
by step.

Algorithm is based on recursive findings the parent of
given item, grandparent, etc. It decides dynamically in
each iteration, whether it will search out the parent of
current item by binary search (Search() operation)
over sorted Min column (jumping), or via reading
sequence of several items appearing in projection DF
immediately before the current node (walking).

Now we introduce a metric for measuring the density
of a given sequence part. We can observe that the
sequence part on which we decide contains nodes
appearing in projection DF between the parent of current
node (including) and the current node (out of it). Thus,
this sequence contains several (≥0) nodes not relevant for
the query and the only one node (parent current node)
relevant for the query. The number of non-relevant nodes
is essential for the sequence part desnsity. It corresponds
exactly to the number of nodes appearing in projection
DF between the current node and its parent.
Statement 3. Let all nodes of XML tree be stored in an
array A sorted by the min value of DF method. Let U be a
node and R its parent. Denote by p the number of nodes
appearing in array A between nodes R and U. Then

min(U) - min(R) – 1 (3) p = 2

Proof: During traversing XML tree in a depth first
manner min and max values of particular nodes were
assigned in this order:

min value of R, successively all min and max values of
all nodes appearing between nodes R and U, min value
of U.

Simultaneously, the counter of DF method was increased
by 2×p between assigning min(R) and min(U). Thus,

min(R)+ 2×p + 1 = min(U) (4)
Then (4) immediately implies the equality (3).

A consequence of Statement 3 is, that for setting the
density of the nearest actual sequence we need to know
only Min value the current node and Min value of its
parent. Both these values are stored in projection DF, so
we need not to read the sequence and know its density in
unit time.

To be able to chose either jumping or walking for a
given sequence part, we have to compare their time
demands. Jumping works similarly as Algorithm 5.4.
Assuming, that we just read the values of Min and
Min_Parent attributes for current node, we use only its
corresponding part – finding position, on which its parent
appears. Then a new iteration follows, i.e. the decision
process, which approach will be applied.

Walking is based on Algorithm 5.5. First, we read the
value of Max attribute of the current node and then values
of Max attribute for all nodes, appearing between the
current node and its parent (these nodes have the Max
value less than the current node). The parent is
recognized, when the value of Max attribute is greater
than Max value of the current node. In this moment we
stop the searching. Again a new iteration the algorithm
follows.

Assume the current node U, its minimum min(U) and
minimum for its parent min_r(U). Finding the parent
node U by jumping requires

log(n)×ts (5)
time, where ts is average time needed by a jump on disk.
In practice, we can the jumping method even improve in
such way, that we search out only in those part of DF
projection before the current item (see Section 5.4.2). The
number n would be lower in each step. Finding the parent
node U method need (see Statement 3)

min(U) - min(R) – 1 (6)
 2 n

where tn is average time operation next(). The numbers
ts and tn are constant for the disk used, n is constant pro
each XML file. Comparing values (5) and (6) we can
determine which approach is for sequence actual more
appropriate:

• if value (5) is less, then we apply the jumping
method,

• if value (6) is less, then we apply the walking
method.

Finally, we introduce a formal description of the
complete algorithm „Jump and go“.
Algorithm 5.6 (Jump and go)
Input: id of the input node N
Output: the set P containing all ancestors of N

0 P = {}
1 SetProjection(FK2); //Finding N node
2 SetCol(ID);
3 pos = Search(id);
4 SetProjection(FK2>>DF); //Jump to

projection DF
5 SetCol(position);
6 pos = Read(pos);
7 SetProjection(DF);
8 SetCol(Min_Parent);
9 min_r = Read(pos);
10 while min_r is not NULL: //Finding

parent, grantpater,…
+Decision what to chose

11 min = ReadCol(Min);
12 if log(konst.n)*konst.ts <=((min–

min_r–1)/2 +1)*konst.tn:
13 SetCol(Min); //Jumping
14 pos = Search(min_r);
15 P.add(ReadCol(ID));
16 else:
17 m = max = ReadCol(Max); //Walking
18 SetCol(Max);
19 while pos > 1 and m <= max:
20 (m,pos) = Previous();
21 if m > max:
22 P.add(ReadCol(ID));
23 SetCol(Min_Parent);
24 min_r = Read(pos);

5.5 Sibling
For finding all siblings of the node N we again use
sequential reading of one attribute. We use projection
FK2, in which we approach the value of Parent
attribute for N. Siblings are nodes, which have this value
the same. Using mapping table FK2>>FK1 we find the
occurrence of N in FK1. Due to the secondary ordering
the records by attribute Min, we know that the sequence
of items with the same value of Parent attribute
appearing before the given node in projection FK1
corresponds to its younger siblings and the sequence
behind the item corresponds to its older siblings.
Algorithm 5.7 (Sibling axis)
Input: id of the input node N
Output: the sets M and S containing all younger siblings
and older siblings of N, respectively

0 M = {}, S = {}
1 SetProjection(FK2); //Finding N node

+ l × t 2 SetCol(ID);
3 start_stop = Search(id);
4 SetProjection(FK2>>FK1); //trough

join-index
5 SetCol(position);
6 start_stop = Read(start_stop);
7 SetProjection(FK1); // FK1
8 SetCol(Parent);
9 parent = Read(start_stop);
10 r = parent; //Finding set M =

[start, ...start_stop]
11 while r == parent:
12 (r,start) = Previous();
13 start = start + 1;
14 r = parent; Read(start_stop);

//Finding set S = [start_stop,
…,stop]

15 while r == parent:
16 (r,stop) = Next();
17 stop = stop - 1;
18 SetCol(ID); //Relational projection

on ID attribute
19 i = Read(start);
20 while start < stop:
21 if start < start_stop:
22 M.add(i);
23 if start > start_stop:
24 S.add(i);
25 (i,start) = Next();

Algorithm complexity. Operation Search() has
complexity O(log n). After finding N in projection FK1

the time complexity of selection of all siblings
(operations Next()/Previous()) is O(m).
Remark: Algorithm 5.7 has found all siblings of N as a
union of all younger and older siblings. A trivial
modification of the algorithm enables to restrict its result
set only to younger or older siblings without changing the
time complexity of the algorithm.

5.6 Following (Preceding)
Let U be a node of XML tree. While for arbitrary node V

min(V) < min(U), (7)
holds, then V is either ancestor or preceding node of U.
The difference between ancestor and preceding node is in
value max. Whereas the preceding nodes have max value
less than the node U, the ancestors have max value
greater than node U. To be preceding the next condition
(8) has to hold together with the condition (7) for the
node V:

max(V) < max(U). (8)
Otherwise, if for arbitrary node V

min(V) > min(U) (9)
and

max(V) > max (U), (10)
then node V follows node U.

Notice that finding the result set M leads to calculation
of a set difference. Let Min_inv be a set of nodes that
fulfil the minimum invariant, i.e. the condition (7) for
preceding axis and the condition (9) for the following
axis. Further, let Max_not be the set of nodes that do not
fulfil the maximum invariant (condition (8) and (10),
respectively). Thus, Max_not is the set of ancestors (as
concerns searching preceding) or of descendant (as
concerns searching following). The query result is then
the set

M = Min_inv \ Max_not.
Now we introduce a universal algorithm for searching

both preceding and following nodes. The algorithm uses
DF projection for finding the result set. It also uses
projection FK2 and mapping table FK2 >>DF for
finding the node N. The algorithm finds all preceding
nodes or all following nodes, depending on which couple
of operations Init and MaxInvariant is used.
Preceding Following
Init (position)
return(1, position)

Init (position)
return (position+1,
N+1)

MaxInvariant (max)
return max < MAX

MaxInvariant (max)
return max > MAX

Operation Init() implements minimum invariant, i.e. it
returns couple (start, stop) in projection FK1, MAX
denotes the Max value of N.

Algorithm 5.8 (Following, preceding axes)
Input: id of the input node N
Output: the set M containing all preceding nodes
(respectively following nodes) of N

0 SetProjection(FK2); //Finding N node
1 SetCol(ID);
2 position = Search(id);
3 SetProjection(FK2>>DF); //trough

join-index
4 SetCol(position);
5 position = Read(position);
6 SetProjection(DF); //Finding set of

items not belonging to
the result

7 SetCol(Max);
8 MAX = Read(position);
9 (start, stop) = Init(position);

Max_not = {}; i = start;
10 m = Read(i);
11 while i < stop:
12 if not MaxInvariant(m):
13 Max_not.add(i);
14 (m,i)Next();
15 SetCol(ID); //Finding the result set
16 i = start; id = Read(i);
17 while i < stop:
18 if i not in Max_not:
19 M.add(id);
20 (id,i) = Next();

Algorithm complexity. Let p be the number of nodes in
the Max_not set. The retrieval of N node needs O(log n)
jumps on disk. For obtaining the M set itself, the
algorithm takes yet 2*(m+p+1) executions of
Next()function.

6 Conclusions and future work
We can conclude with the following statement
summarizing complexities of algorithms described in
Section 5.
Statement 3. Let n be the number of nodes of XML tree,
m be the number of nodes in an axis, and let p be the
number of nodes not fulfilling the maximum invariant
specified for following (preceding) axis. Axes queries
over C-store modelled by relations specified in Section 4
have the complexities given in Table 1.

Analyzing these O – expressions from proofs
described in Section 4, we can observe that the functions
behind the formal complexities have mostly the constants
a and b in leading terms a*m or b*log n, respectively,
equal to 1.

Of course, as it is mentioned by Částková (2009), the
algorithms can be further optimized, particularly those
ones for following (preceding) axes. Also it is possible to
propose a different logical as well as physical model for
relations implementing C-store. Another direction of
future research is a use of indexes supporting queries over
C-store. For example, authors of (Sidirourgos et al, 2008)
show that with proper clustered indices the triple-store for
RDF data performs better than the vertically-partitioned
approach.

Analyzing these O – expressions from proofs
described in Section 4, we can observe that the functions
behind the formal complexities have mostly the constants
a and b in leading terms a*m or b*log n, respectively,
equal to 1.

An important part missing in our paper concerns
experiments with real XML data. Theoretical time
complexities should be confirmed by real complexities
gained with a help a column-oriented DBMS, e.g. C-
store. Clearly, it should be done in accordance with our
low-level memory system which seems to be sufficiently
general and, consequently, usable for describing memory

http://www.citeulike.org/user/stavros/author/Sidirourgos:L

Axis #occurrences of next() #occurrences of jump()
child O(m) O(log n)
descendant O(m) O(log n)
parent 0 O(log n)
ancestor - FK method 0 O(m*log n)
ancestor - DF method O(n) O(log n)
sibling O(m) O(log n)
following O(m+p) O(log n)
preceding O(m+p) O(log n)

Table 1: Complexity of algorithms for XPath axes

system in C-store. On the other, real column-oriented
DBMSs can have a different physical data model than the
one used in our research. For example, MonetDB
provides the model based on the technique described in
(Boncz et al, 2006) and mentioned in Section 4.

Another direction comes from the situation when we have
an XML schema for XML data. First observations
discussed by Častková (2009) show that knowledge of
such schema gives no significant contribution to the
design of physical schema design for C-store.

Aknowledgement This research has been partially
supported by the grant of GACR No. P202/10/0573.

References
Abadi, D.J. (2007): Column Stores for Wide and Sparse

Data. Proc. of 3rd Biennial Conference on Innovative
Data Systems Research (CIDR), Asilomar, California,
USA, 292-297, www.crdrdb.org

Abadi, D.J., Markus, M., Madden, S., and Hollenbach, K.
(2009): SW-Store: a vertically partitioned DBMS for
Semantic Web data management. VLDB J. 18(2):385-
406

Abadi, D.J., Madden, S., and Hachem, N. (2008):
Column-stores vs. row-stores: how different are they
really? Proc. of ACM SIGMOD International
Conference on Management of Data, Vancouver,
Canada, 967-980, ACM Press.

Abadi, D.J., Boncz, P.A., and Harizopoulos, S. (2009):
Column-oriented Database Systems. Proc. of VLDB
Conference, Volume 2 of the Journal "Proceedings of
the VLDB Endowment", Lyon, France, 1664–1665.

Bojanczyk, M. and Parys, P. (2008): XPath evaluation in
linear time. In: Proc. of the Twenty-Seventh ACM
SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems (PODS), Vancouver, BC, Canada.
241–250, ACM Press.

Boncz, P., Grust, T., van Keulen, M., Manegold, S.,
Rittinger, J. and Teubner, J. (2006): MonetDB/XQuery:
a fast XQuery processor powered by a relational
engine. Proc. of the 2006 ACM SIGMOD International
Conference on Management of Data, Chicago, IL,
USA, 479-490.

C-store (2010): A Column-Oriented DBMS.
http://db.csail.mit.edu/projects/cstore/. Accessed 1 Nov
2010.

Částková, Z. (2009): XML data representation with the
help of C-store. Diploma thesis. Faculty of
Mathematics and Physics, Charles University in
Prague, Czech Republic. In Czech.

Kuckelberg, A. and Krieger, R. (2003): Efficient
Structure Oriented Storage of XML Documents using
ORDBMS. Lecture Notes in Computer Science,
Volume 2590/2008, 131–143, Springer-Verlag
Heidelberg.

Mlýnková, I. and Pokorný, J. (2005): XML in the World
of (Object-)Relational Database Systems. In
Information Systems Development Advances in Theory,
Practice and Education. Vasilecas, O., Caplinskas, A.,
Wojtowski, G., Wojtowski, W. and Zupancic, S (eds.),
Springer Science+Business Media, Inc.

MonetDB (2010): http://monetdb.cwi.nl/ Accessed 1 Nov
2010.

Sidirourgos, L., Goncalves, R., Kersten, M., Nes, N.,
Manegold, M. (2008): Column-store support for RDF
data management: not all swans are white. Proc. of
VLDB Endow., Vol. 1, No. 2, 1553-1563, ACM.

Stonebraker, M., Abadi, D.J., Batkin, A., Chen, X.,
Cherniack, M., Ferreira, M., Lau, E., Lin, A., Madden,
S., O’Neil, E.J., O’Neil, P.E., Rasin, A., Tran, N., and
Zdonik, S.B. (2007): C-Store: a column-oriented
DBMS. Proc. of VLDB Conference, Vienna, Austria,
553–564, ACM.

http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/m/Madden:Samuel.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/h/Hachem:Nabil.html
http://doc.utwente.nl/view/author/143623516.html
http://db.csail.mit.edu/projects/cstore/
http://www.springerlink.com/content/0302-9743/
http://www.citeulike.org/user/stavros/author/Sidirourgos:L
http://www.citeulike.org/user/stavros/author/Goncalves:R
http://www.citeulike.org/user/stavros/author/Kersten:M
http://www.citeulike.org/user/stavros/author/Nes:N
http://www.citeulike.org/user/stavros/author/Manegold:S

	1 Introduction
	2 C-store: overview
	3 Low-level Memory System
	4 XML Data in C-store
	5 XML Axes Querying
	5.1 Child
	5.2 Descendant
	5.3 Parent
	5.4 Ancestor
	5.5 Sibling
	5.6 Following (Preceding)

	6 Conclusions and future work
	References

