
Sentiment Augmented Bayesian Network

Sylvester Olubolu Orimaye

School of Information Technology, MONASH University Malaysia
sylvester.orimaye@monash.edu

Abstract

Sentiment Classification has recently gained attention
in the literature with different machine learning tech-
niques performing moderately. However, the chal-
lenges that sentiment classification constitutes require
a more effective approach for better results. In this
study, we propose a logical approach that augments
the popular Bayesian Network for a more effective
sentiment classification task. We emphasize on cre-
ating dependency networks with quality variables by
using a sentiment-dependent scoring technique that
penalizes the existing Bayesian Network scoring func-
tions such as K2, BDeu, Entropy and MDL. The out-
come of this technique is called Sentiment Augmented
Bayesian Network. Empirical results on three prod-
uct review datasets from different domains, suggest
that a sentiment-augmented scoring mechanism for
Bayesian Network classifier, has comparable perfor-
mance, and in some cases outperform state-of-the-art
sentiment classifiers.

Keywords: sentiment; classification; Bayesian net-
work

1 Introduction

Sentiment Classification (SC) has recently gained a
lot of attention in the research community. This is
due to its increasing demand for the analysis of con-
sumer sentiments on products, topic and news related
text from social media such as Twitter1 and online
product reviews such as Amazon2. In the same man-
ner, Bayesian Network (BN)(Cooper & Herskovits
1992) also known as Bayesian Belief Network plays
a major role in Machine Learning (ML) research for
solving classification problems. Over the last decade,
learning BNs has become an increasingly active area
of ML research where the goal is to learn a network
structure using dependence or independence informa-
tion between set of variables (Cooper & Herskovits
1992, Friedman et al. 1997, Cheng & Greiner 2001,
Chen et al. 2008). The resulting network is a directed
acyclic graph (DAG), with a set of joint probability
distributions, where each variable of the network is a
node in the graph and the arcs between the nodes rep-

Copyright c©2013, Australian Computer Society, Inc. This pa-
per appeared at the Eleventh Australasian Data Mining Con-
ference (AusDM 2013), Canberra, 13-15 November 2013. Con-
ferences in Research and Practice in Information Technology
(CRPIT), Vol. 146, Peter Christen, Paul Kennedy, Lin Liu,
Kok-Leong Ong, Andrew Stranieri and Yanchang Zhao, Ed.
Reproduction for academic, not-for-profit purposes permitted
provided this text is included.

1https://twitter.com/
2https://amazon.com/

resent the probability distribution that signifies the
level of dependency between the nodes.

While it is more common to use other ML al-
gorithms such as Support Vectors Machines (SVM),
Näıve Bayes (NB) and Maximum Entropy (ME) for
SC tasks (Pang & Lee 2004, Boiy & Moens 2009), few
research papers have proposed BN as a competitive
alternative to other popular ML algorithms. Con-
sidering the huge amount of data available from so-
cial media and the level of difficulty attached with
analysing sentiments from natural language texts, the
ability of BN to learn dependencies between words
and their corresponding sentiment classes, could un-
doubtedly produce a better classifier for the sentiment
classification task. This paper focusses on construct-
ing a BN classifier that uses sentiment information
as one important factor for determining dependency
between network variables.

BN has been successfully applied to solve differ-
ent ML problems with its performance outweighing
some of the popular ML algorithms. For example, in
Su & Zhang (2006), a full Bayesian Network classifier
(FBC) showed statistically significant improvement
on state-of-the-art ML algorithms such as SVM-SMO,
C4.5 and NB on 33 UCI datasets. In the case of SC,
NB, which is a special case of BN (Cheng & Greiner
1999), and one of the leading ML algorithms for SC
tasks (Pang & Lee 2004), has surprisingly and re-
peatedly shown improved performance on movie and
product reviews despite its conditional independence
assumption. By comparative study, we show that a
Sentiment Augment Bayesian Network (SABN) has
better or comparable performance with NB and SVM
classifiers on popular review datasets such as Amazon
product reviews.

Constructing a BN classifier requires learning a
network structure with set of Conditional Probabil-
ity Tables (CPTs)(Cooper & Herskovits 1992). Basi-
cally, there are two combined steps involved in the BN
construction process. The first is to perform variable
search on a search space, and the other is to score
each variable based on the degree of fitness (Hecker-
man 2008). The challenge however, is to ensure that
good networks are learned with appropriate parame-
ters using a scoring or fitness function to determine
network variables from the given dataset. Thus, much
of the research works on BN focus on developing scor-
ing functions for the BN classifier (De Campos 2006).
We argue that such scoring functions rely on many
assumptions that make them less effective for SC
tasks. For example, K2 algorithm, which is based on
Bayesian Scoring function relies on the assumptions
of parameter independence and assigning a uniform
prior distribution to the parameters, given the class
(Chen et al. 2008). We believe these assumptions lead
to many false positives in the classification results as
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sentiment classes are better captured by conditional
dependency between words, rather than independent
word counts (Airoldi et al. 2006, Bai 2011).

We also suggest that varying prior distribution
could be assigned to each variable since each word
has a natural prior probability of belonging to a par-
ticular sentiment class, independent of the data. For
example, the word “good” is naturally positive and
“bad” is naturally negative. Thus, in this work, we
propose a sentiment scoring function that leverage
sentiment information between variables in the given
data. The output of the sentiment scoring function is
then used to augment existing BN scoring functions
for better performance. Our aim is to ensure senti-
ment information form part of the fitness criteria for
selecting network variables from sentiment-oriented
datasets such as reviews.

The proposed scoring function uses a simple but
logical multi-class approach to compute the condi-
tional mutual information between local variables in
each class of instances. The conditional mutual in-
formation for all classes are then combined through
a penalization process that uses the Minimum De-
scription Length (MDL) principle. The final entropy
score is further used to penalize the score from an
existing BN scoring function. The local probabilities
used in computing the conditional mutual informa-
tion is computed using the popular Bayesian proba-
bility that uses the prior probability of a variable be-
longing to a natural sentiment class (i.e. independent
of the given data by using individual word sentiment
score from SentiWordNet (Esuli 2008)) and the obser-
vation of the variable in the selected class of instances
and other classes in the dataset (e.g. positive, nega-
tive and neutral). The technique takes into account
that the dependency score between two local variables
xi and xj of a SC task would depend on two criteria:

• The posterior probability from multiple evi-
dences that variables xi and xj have sentiment
dependency.

• The sum of conditional mutual information be-
tween the variables for all classes.

The importance of the first criterion is that we are
able to avoid the independence assumption made by
the existing BN scoring functions. We capture local
sentiment dependency between the variables as a joint
probability of evidences from each variable and each
class in the given data. Existing BN scoring functions
uses the conditional independence given the data as
a whole for determining dependencies between vari-
ables (De Campos 2006, Chen et al. 2008). Under
such approach in SC, two independent words may oc-
cur with the same or similar frequencies in different
classes. Thus, training BN classifier without penaliz-
ing such occurrences or dependencies, could affect the
classifier decision to decide an appropriate sentiment
class. Finally, the second criterion allows us to en-
force strict d-separation policy between the network
variables (Pearl 1988). Thus, only quality variables
are used to form the dependency network for the BN
classifier.

Section 2 of this paper discuss related work and
additional motivations. In Section 3, we explain the
problem background and then present the proposed
sentiment augmentation technique in Section 4. Our
experiment is described in Section 5. Finally, Section
6 gives the conclusion to our study and some thoughts
on future research directions.

2 Related Work

2.1 Sentiment Classification (SC)

The most prominent of SC work is perhaps Pang et al.
(2002) which employed supervised machine learning
techniques to classify positive and negative sentiments
in movie reviews. The significance of that work influ-
enced the research community and created different
research directions within the field of sentiment anal-
ysis and opinion mining (Liu 2012).

Turney & Littman (2002) uses unsupervised learn-
ing of semantic orientation to classify reviews based
on the number of negative and positive phrases. They
achieved an accuracy of 80% over an unlabeled cor-
pus.

Pang & Lee (2004) proposed a subjectivity sum-
marization technique that is based on minimum cuts
to classify sentiment polarities in movie reviews. The
intuition is to identify and extract subjective por-
tions of the review document using minimum cuts
in graphs. The minimum cut approach takes into
consideration, the pairwise proximity information via
graph cuts that partitions sentences which are likely
to be in the same class. This approach showed signif-
icant improvement from 82.8% to 86.4% on the sub-
jective portion of the documents. The approach also
shows equally good performance when only 60% por-
tion of a review document is used compared to an
entire review document.

Choi & Cardie (2008) proposed a compositional se-
mantics approach to learn the polarity of sentiments
from the sub-sentential level of opinionated expres-
sions. The compositional semantic approach breaks
the lexical constituents of an expression into different
semantic components.

Wilson et al. (2005) use instances of polar words to
detect contextual polarity of phrases from the MPQA
corpus. Each phrase detected is verified to be either
polar or non-polar phrase by using the presence of
opinionated words from a polarity lexicon. A detailed
review of other sentiment classification techniques on
different datasets is provided in Liu (2012) and Tang
et al. (2009).

2.2 BN Classifiers for Sentiment Classifica-
tion

Airoldi et al. (2006) and Bai (2011) proposed a two-
stage Markov Blanket Classifier (MBC) approach to
extract sentiments from unstructured text such as
movie reviews by using BN. The approach learns
conditional dependencies between variables (words)
in a network and finds the portion of the network
that falls within the Markov Blanket. The Tabu
Search algorithm (Glover et al. 1997), is then used
to further prune the resulting Markov Blanket net-
work for higher cross-validated accuracy. While the
use of Markov Blanket has shown to be effective in
avoiding over-fitting in BN classifiers (Friedman et al.
1997), the MBC approach finds sentiment dependen-
cies based on the ordinary presence or absence of
words in their original sentiment class only. We iden-
tify sentiment dependencies by considering multiple
sources of evidence. These include multiple sentiment
classes in the data and the natural sentiment class of
each variable which is independent of its sentiment
class in the given data.

Similarly, Chen et al. (2011) proposed a parallel
BN learning algorithm using MapReduce for the pur-
pose of capturing sentiments from unstructured text.
The technique experimented on large scale blog data
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and captures dependencies among words using mu-
tual information or entropy, with the hope of find-
ing a vocabulary that could extract sentiments. The
technique differs from Bai (2011) by using a three-
phase (drafting, thickening and thinning) dependency
search technique that was proposed in Cheng et al.
(1997). Other than using mutual information in the
drafting phase of the search technique, the work did
not capture additional sentiment dependencies using
other source of evidence.

Again, we do not focus on developing a search al-
gorithm but a scoring technique that considers mul-
tiple sentiment-dependent information as part of the
existing state-of-the-art scoring functions.

3 Problem Background

3.1 Bayesian Network (BN)

A Bayesian Network N is a graphical representation
of a joint probability distribution between a set of
random variables (Friedman & Yakhini 1996). The
network consists of two components: (1) a DAG G =
(Rn,Mr) that represents the structural arrangement
of a set of variables (nodes) Rn = {x1, ..., xn} and
a corresponding set of dependence and independence
assertions (arcs)Mr between the variables; (2) a set of
conditional probability distributions P = {pi, ..., pn}
between the parent and the child nodes in the graph.

In the DAG component, the existence of an di-
rected arc between a pair of variables xi and xj asserts
a conditional dependency between the two variables
(Cheng & Greiner 2001). The directed arc can also
be seen to represent causality between one variable
and the other (Aliferis et al. 2010), that is, variable
xy is an existential cause of variable xz, hence xy →
xz. The absence of an directed arc between a pair
of variables, however, represents a conditional inde-
pendence, such that, given a subset U of variables
from Rn, the degree of information about variable
xi does not change by knowing xj , thus I(xi, xj |U).
This also implies that p(xi|xj , U) = p(xi|U). The
parent(s) of variable xi ∈ Rn is denoted by a set
paG(xi) = xj ∈ Rn|xji ∈Mr, and paG(xi) = ∅ for
the root node.

The conditional probability distributions of the
DAG G is represented by its CPT, which contains
a set of numerical parameters for each variable xi ∈
Rn. These numeric parameters are computed as the
probability of each variable given the set of parents,
p(xi|paG(Xi)). Over the set of variables in Rn, the
joint probability for the BN is therefore obtained as
follows:

p(x1, ..., xn) =
∏

Xi∈Rn

p(xi|paG(xi)) (1)

Thus, for a typical classification task, the BN clas-
sifier would learn the numerical parameters of a CPT
from the DAG structure G, by estimating some sta-
tistical information from the given data. Such in-
formation include, mutual information (MI) between
the variables and chi-square distribution (De Campos
2006). The former is based on the local score metrics
approach and the latter exhibits conditional indepen-
dence tests (CI) approach. For both approaches, dif-
ferent search algorithms are used to identify the net-
work structure. The goal is to ascertain, according to
one or more search criteria, the best BN that fits the
given data by evaluating the weight of the arc between
the variables. The criteria for evaluating the fitness
of the nodes (variables), and the arcs (parameters) in

the BN search algorithms, are expressed as fitting or
scoring functions within the BN classifier (De Cam-
pos 2006). Our goal is to ensure that those criteria
include sentiment-dependent information between the
variables. We will focus on penalizing existing local
score metrics with our sentiment augmented scoring
function for the BN classifiers, hence the SABN pro-
posed in this paper.

The local score metrics are of particular inter-
est because they exhibit a practical characteristic
that ensures the joint probability of the BN is de-
composable to the sum (or product) of the individ-
ual probability of each node (Friedman & Yakhini
1996)(De Campos 2006). To the best of our knowl-
edge, very few research papers have considered
sentiment-dependent information, as part of the fit-
ness criteria for capturing dependency between the
variables.

3.2 BN Scoring Functions

We focus on the local score metrics functions, K2,
BDeu, Entropy, AIC and MDL (De Campos 2006).
The functions define a fitness score, and a specified
search algorithm searches for the best network that
maximizes the score. Each of these functions identi-
fies frequencies of occurrence of each variable xi in the
data D and a network structure N . In this paper, we
assume that the scores generated by the scoring func-
tions are somehow näıve, thus, we attempt to mitigate
its effect on SC tasks. Firstly, we will define the pa-
rameters that are common to all the functions. We
will then describe each of the functions with their as-
sociated formula and specify their limitations to the
SC tasks.

Similar to Bouckaert (2004), we use ri(1 ≤ i ≤ n)
to denote the size or cardinality of xi. pa(xi) repre-
sents the parents of xi and the cardinality of the par-
ent set is represented by qi =

∏
xj∈pa(xi)

rj . If pa(xi)

is empty (i.e. pa(xi) = ∅), then qi = 1. The number
of instances in a dataset D, where pa(xi) gets its jth
value is represented by Nij(1 ≤ i ≤ n, 1 ≤ j ≤ qi).
Similarly, Nijk(1 ≤ i ≤ n, 1 ≤ j ≤ qi, 1 ≤ k ≤ ri)
represents the portion of D where pa(xi) gets its
jth value and xi gets its kth value such that Nij =∑ri
k=1Nijk. Obviously, N represents the size of D.
K2: This metric is a type of Bayesian scoring func-

tion proposed by Cooper & Herskovits (1992). The
function relies on series of assumptions such as pa-
rameter independence and uniform prior probability
for the network. We reiterate that instead of inde-
pendent word counts, the sentiments expressed in a
given data are better captured using conditional de-
pendency between words and their related sentiment
classes (Airoldi et al. 2006). The K2 metric is defined
as follows:

Sk2(N,D) = P (N)
n∏
i=0

qi∏
j=1

(ri − 1)!

(ri − 1 +Nij)!

ri∏
k=1

Nijk!

(2)

BDeu: The metric was proposed by Buntine
(1991) as a generalization of K2. It resulted from
Bayesian Drichlet (BD) and BDe which were pro-
posed by Heckerman et al. (1995). The BD is based
on hyperparameters ηijk and the BDe is a result of
BD with additional assumptions. BDeu relies on the
sample size η as the single parameter. Since BDeu
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is a generalization of K2, it carries some of our con-
cerns expressed on K2 earlier. Most importantly, the
uniform prior probability assigned to each variable
xi ∈ pa(xi) could be replaced by the probability of
the variable belonging to a natural sentiment class
as stated earlier. We suggest that this is likely to
improve the performance of the sentiment classifier
especially on sparse data distribution. We define the
BDeu metric as follows:

SBDeu(N,D) = P (N)
n∏
i=0

qi∏
j=1

(Γ( ηqi )

Γ(Nij + η
qi

)

ri∏
k=1

Γ(Nijk + η
riqi)

Γ( η
riqi

)

(3)

Note that the function Γ(.) is inherited from BD, and
Γ(c) =

∫∞
0
e−uuc−1du (De Campos 2006).

Entropy: Entropy metric measures the distance
between the joint probability distributions of the net-
work (De Campos 2006). This allows dependency in-
formation to be identified by computing the mutual
information (or entropy) between pair of variables.
Thus, a minimized entropy between a pair of vari-
ables denotes dependency relationship, otherwise, a
large entropy implies conditional independence be-
tween the variables (Su & Zhang 2006)(Heckerman
et al. 1995). While the entropy metric has been suc-
cessful in measuring dependency information for BN
classifiers, the local probabilities involved in the met-
ric is largely computed based on conditional indepen-
dence assumption given the data (i.e. using frequency
counts for independent variables). We suggest that a
joint probability of multiple evidences could improve
the metric in BN classifiers for the SC tasks. The
metric is defined as follows:

H(N,D) = −N
n∑
i=1

qi∑
j=1

ri∑
k=1

Nijk
N

log
Nijk
Nij

(4)

AIC: The AIC metric adds a non-negative param-
eter penalization to the entropy method (De Campos
2006). The metric is specified as follows:

SAIC(N,D) = H(N,D) +K (5)

Where K is the number of parameters, such that K =∑n
i=1(ri − 1).qi.
MDL: The MDL metric is based on the mini-

mum description length principle which selects a min-
imum representative portion of the network variables
through coding (De Campos 2006). Thus, the best
BN is identified to minimize the sum of the descrip-
tion length for the data. The metric is defined as
follows:

SMDL(N,D) = H(N,D) +
K

2
logN (6)

The use of MDL has been particularly effective for
selecting dependency threshold between variables in
BN. The study in Friedman & Yakhini (1996), sug-
gests that the mean of the total cross-entropy error
is asymptotically proportional to logN

2N , which is why
the entropy metric is penalized in Equation 6.

In this paper, the proposed augmented score func-
tion is based on a straight forward Information The-
ory approach. The approach uses the entropy-based
conditional mutual information (CMI) technique to

measure the dependencies between the variables. The
local probabilities for computing the CMI between
two variables are derived as joint probability result-
ing from multiple evidences of both variables belong-
ing to the same sentiment class. This is achieved by
using a multiclass approach that measures the CMI in
each sentiment class. The sum of the CMIs over the
data is thereafter penalized using the MDL principle
as suggested in Friedman & Yakhini (1996).

4 Sentiment Augmented Score (SAS)

In this section, we will show how we derived the sen-
timent augmented score for BN. Given a dataset D
containing two or more sentiment classes, we divide
D into |C| subsets, where D1...Dc represent the sen-
timent classes which are present in D. Note that the
process of creating the SASs is similar to the process
of creating a CPT which contains the resulting net-
work parameters from a particular search algorithm,
given the data. Thus, we will create a SAS table
(SAST) from the given data, and at the later stage,
we will use the values in SAST to augment existing
scores from the original CPT.

Creating an appropriate CPT or SAST is chal-
lenging, especially when there is a sheer number of
variables in the given data (Cheng et al. 1997). In
fact, local search algorithms such as K2, Hill Climb-
ing, TAN, Simulated annealing, Tabu search and Ge-
netic search have been developed to address this chal-
lenge (Friedman et al. 1997). Thus, we do not intend
to repeat the sophisticated local search process in our
augmented scoring technique. We use a straight for-
ward approach that computes CMI as the dependency
between a pair of variables, given a subset Dc. The
resulting scores for each pair of variables is stored into
the SAST. Equation 7 computes the CMI for a pair of
variables. Note that this process is equivalent to the
drafting phase proposed in Cheng et al. (1997) or the
Chow and Liu algorithm in Chow & Liu (1968). We
can therefore focus on computing the local probabili-
ties P (xi) and P (xj) for the CMI. In this work, each
local probability encodes the sentiment dependency
information as a joint probability of multiple senti-
ment evidences. We suggest that the joint probability
is better than using the ordinary variable presence or
single frequency count.

CMI(xi, xj |C) =
∑
xi,xj ,c

P (xi, xj , c)

log
P (xi, xj , c)

P (xi|c), P (xj |c)

(7)

4.1 Local probabilities for CMI

In order to compute the local probabilities P (xi) and
P (xj), we adopt Bayesian probability (Lee 2012), to
calculate the joint probability from multiple senti-
ment evidences. Bayesian probability encodes a gen-
erative model or likelihood p(D|θ) of the dataset with
a prior belief p(θ) to infer a posterior distribution
p(θ|D), see Equation 8. The idea is to determine a
favourable posterior information of a particular vari-
able belonging to its observed class, such that, the
conditional mutual information between two depen-
dent variables xi and xj increases when the posterior
information for both variables in the same class is
large.
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p(θ|D) =
p(D|θ)p(θ)
p(D)

(8)

However, in sentiment oriented documents such as
product reviews, it is very common to observe vari-
ables that belong to different classes in one senti-
ment class. Pang et al. (2002) referred to such sce-
nario as thwarted expectation. For example, a “pos-
itive” review document may contain certain “nega-
tive” words used to express dissatisfaction about an
aspect of a product despite some level of satisfaction
that the product might offer. With this kind of prob-
lem, it is much probable that a dependency network
that is learned with ordinary frequency counts of each
variable (regardless of the sentiment class) would no
doubt leads to inaccurate sentiment classifiers. Fig-
ure 1 shows a sample BN resulting from a product
review dataset upon performing attribute selection.
In that network, variable After has a 1.0 probabil-
ity of belonging to the negative and positive classes,
respectively. Similarly, variable not has a 0.723 prob-
ability of belonging to a “positive” class rather than
“negative”. Every other variables in the network, has
a split probabilities between both classes. Our aim is
to remove the contrasting variables such as After and
not from the dependency network or at least minimize
its influence in the network such that the quality of
the network is improved for sentiment classification.

Class

easy

perfect

notAftergreatlove return

back

Figure 1: An example Bayesian network from product
reviews.

Thus, in this work, we compute the posterior in-
formation for each variable by considering its prior
information and joint likelihood or observation from
all the classes available in the data.

The prior information is computed using the nat-
ural sentiment or polarity scores from SentiWordNet
(Esuli & Sebastiani 2006). SentiWordNet gives the
polarity scores of corresponding synsets for each En-
glish word. However, the polarity scores are often
different for each of the synset entries. A synset con-
tains multiple semantic or polarity interpretation of
a given word. Each interpretation has three differ-
ent polarities values. That is, a synset entry (word)
would have a positive, negative, and neutral polarity
scores which varies depending on the semantic inter-
pretation of the word. An example of such words is
great. Its fourth synset entry in SentiWordNet has
0.25 positive, 0.625 negative, and 0.125 neutral polar-
ity scores, respectively.

In this work, we focus on the “positive” and “neg-
ative” sentiments, thus we will only consider posi-
tive and negative polarity scores from SentiWordNet.
The challenge however, is to compute an absolute and
single polarity score for each word from its multiple
synset entries. First, we compute the score for each
polarity independently and then find the polarity that
maximizes the other. The score for the positive or

negative polarity of all synset entries for a given word
is computed as follows:

scoreφ(w) =
1

ε

ε∑
i=1

Ec(ei) (9)

where scoreφ(w) is the score for each polarity of the
given word w, ε is the number of synset entries E for
the word, c is the polarity or category (i.e. positive
or negative) and ei is each synset entry. Thus, the
prior or absolute polarity score for w is computed as
follows:

POLφ(w) = argmax
c∈C

scoreφ(w) (10)

where POLφ(w) is the maximum polarity score com-
puted with respect to either positive or negative cat-
egory c from all the syset entries.

We compute the likelihood information using a
multi-class approach. Given a set of sentiment classes
C, the probability of a variable belonging to its “first”
observed sentiment class, is calculated as a joint prob-
ability of independently observing the variable in its
first observed sentiment class and every other senti-
ment classes, C1...Cn. Thus, the likelihood informa-
tion is computed as follows:

p(x1, ..., xC |D) =
C∏
c=1

p(xc|D) (11)

Where p(xc|D) is the probability of a variable x be-
longing to a class c given the data D.

Given the data, our aim is to minimise the effect of
the variables which might have appeared in a wrong
(false positive) class as a result of thwarted expecta-
tion that was suggested in Pang et al. (2002), thereby
biasing the dependency structure. Common examples
are negation and objective words such as not and Af-
ter as illustrated with Figure 1. If the word “not” for
example, has a probability of 0.723 in a first observed
“positive” class and a probability of 0.496 in the other
negative class, then its likelihood of actually belong-
ing to the “positive” class would be 0.359. Note that
each probability is independent in this case as both
probabilities do not sum to 1.

In addition, the prior or natural sentiment score
(see Equation 10) obtained from SentiWordNet regu-
lates the likelihood further, ensuring that the proba-
bility of a variable belonging to its first observed class
is also conditioned on the natural sentiment class of
the word which is independent of the data. With vari-
able not having a probability of 0.625 negative from
SentiWordNet, the posterior Bayesian probability is
0.149. This means the probability of the variable be-
longing to the negative class is higher (i.e. 0.85), and
thus, should not be allowed to have strong depen-
dency on a “true positive” variable. We suggest that
this technique is more reliable than using the highest
probability from both classes at the expense of accu-
racy (e.g. using only 0.723 and without the prior).

Thus, using the Bayesian probability defined in
Equation 8, we substitute the likelihood information
p(x1, ..., xC |D) to p(D|θ) and the prior information
POLφ(w) to p(θ). Note that P (D) is the sum of the
two independent probabilities used in the likelihood
(i.e. 0.723 and 0.496).

4.2 Sentiment Dependency Score

Having computed the local probabilities P (xi) and
P (xj) using the Bayesian probability approach, we
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compute the conditional mutual information as the
dependency information between pair of variables in
each class. Thus, we store the dependency informa-
tion in the sentiment augmented score table, SAST.
Again, the SAST is similar to the conventional CPT.
The obvious difference is that sentiment information
have been used to generate SAST. However, since
we are using conditional mutual information to com-
pute dependencies between variables, certain depen-
dency threshold needs to be met in order to gener-
ate a reliable sentiment dependencies between each
pair of variables in the SAST. As mentioned earlier,
Friedman & Yakhini (1996) suggested that the mean
of the total cross-entropy (mutual information) error

is asymptotically proportional to logN
2N . Using that

MDL principle, we defined the threshold value as fol-
lows:

Θxi,xj
=

logNc
2Nc

(12)

where Θxi,xj
is the sentiment dependency threshold

between a pair of variables xi and xj , Nc is the size of
the data for a particular training class. Note that we
generated individual SAST for each sentiment class
in our data. In this work, a pair of variables xi and
xj have strong sentiment dependency and get stored
into the appropriate SAST, if and only if, the condi-
tional mutual information CMI(Xi, Xj |C) > Θxi,xj

.
Otherwise, we store a zero value to the corresponding
slot in the SAST.

Finally, we reiterate our ultimate goal to penalize
the dependency score from any of the existing scor-
ing functions described in Section 3.2. Scoring func-
tions such as K2 identifies dependency relationships
by computing a parent-child score for a pair of vari-
ables xi and xj and checks if it maximizes a base
score calculated as the total influence of a variable
xi on other variables in the data. We suggest that,
for a sentiment classification task, the base score has
highly minimized entropy in its current state, due to
false positive variables as highlighted earlier. Thus,
we penalize the base score of the existing scoring func-
tion by the SAST’s sentiment dependency score be-
tween a pair of variables xi and xj . Arguably, this
method creates reliable dependency network struc-
tures for training a sentiment classifier. Hence, we
refer to this dependency network as Sentiment Aug-
mented Bayesian Network (SABN). The sentiment
dependency score for the SABN is defined below and
it is computed as the sum of the conditional mutual
information scores for the pair of variables xi and xj
over all the sentiment classes.

ScoreSD(xi, xj) =
C∑
c=1

CMI(xi, xj |C) (13)

where C is the set of sentiment classes and
CMI(xi, xj |C) is the conditional mutual information
score defined in Equation 7.

4.3 Summary of the SABN Algorithm

Algorithm 1 and Algorithm 2 are the two main algo-
rithms involved in SABN. We will give a summary of
the two algorithms as follows.

The purpose of Algorithm 1 is to generate the
SAST which contains the CMIs between pairs of vari-
ables in the dataset. More importantly, sentiment in-
formation have been used to compute the local prob-
abilities for each CMI. The algorithm takes as input a

dataset D containing a set of labelled instances that
are partitioned into a subset of classes Dc. For each
subset Dc, CMI is computed for each pair of vari-
ables. Note that each CMI is checked against a MDL
threshold. CMIs that are above the threshold are
stored into the SASTc for the corresponding subset
Dc. Thus, the algorithm outputs a set of SAST to
be used in Algorithm 2. Again, the SAST is simi-
lar to the conventional CPT but with encoded sen-
timent information as part of the local probabilities
that compute the CMI.

Finally, Algorithm 2 creates the sentiment depen-
dency network as the BN. The algorithm takes as in-
puts the generated SAST1,...,C for the set of classes
and the dataset D. For each variable in D, a base
score is calculated using a specified base score func-
tion from the existing scoring function. The parent-
child dependency score is also computed between each
pair of variables using the specified parent-child de-
pendency score function. Further, we compute our
sentiment dependency score using the sum of CMIs
for a specified pair of variables over the set of SASTs.
The sentiment dependency score is then used to pe-
nalize the base score of the specified scoring function.
If a parent-child dependency score is larger than the
penalized base score, then a dependency exists be-
tween the selected pair of variables and then stored
in the network. Thus, the output of the algorithm
is the sentiment augmented Bayesian network that is
used to build the sentiment classifier.

Algorithm 1 SAST(D)

Input : A set of labelled instances D.
Output : A set of Sentiment Augmented Score Ta-
bles for all pairs of variables xi and xj .

Steps
1: Partition instances D into subsets of classes Dc.
2: SAST1,...,C = empty.
3: for each subset Dc in D do
4: Compute the local probabilities P (xi) and

P (xj) with Equation 8.
5: Use the local probabilities to compute CMI for

each pair of variables xi and xj using Equation
7.

6: Compute the MDL threshold Θ with Equation
12.

7: if CMI > MDL threshold Θxi,xj then
8: Store the CMI into SASTc columns xi, xj

and xj , xi, respectively.
9: else
10: Store 0 into SASTc columns xi, xj and xj , xi,

respectively.
11: end if
12: end for
13: Return SAST1,...,C

5 Experiments and Results

We conducted set of experiments using the proposed
SABN algorithm on different product reviews. We
then compared the accuracy with the ordinary BN
classifier and a state-of-the-art sentiment classifica-
tion technique.
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Algorithm 2 SABN(SAST1,...,C , D)

Input : A set of SAST1,...,C , training instances D.
Output : Sentiment Augmented Bayesian Network.

Steps
1: SABN = empty
2: for each variable xi and xj in D do
3: Get BaseScore(xi) from a specified base score

function in the search algorithm.
4: Get ParentChild(xi, xj) from a specified

parent-child score function in the search algo-
rithm.

5: ScoreSD = 0.
6: for each subset SASTc in SAST1,...,C do
7: ScoreSD = ScoreSD + SASTc(xi, xj)
8: end for
9: Penalize BaseScore(xi) with ScoreSD
10: if ParentChild(xi, xj) > BaseScore(xi) then
11: Add dependency between xi and xj in

SABN.
12: end if
13: end for
14: Return SABN

5.1 Datasets and Baselines

Our datasets consist of Amazon online reviews from
three different product domains3 that were manually
crawled by Blitzer et al. (2007). These include video,
music, and kitchen appliances. Each product domain
consists of 1000 positive reviews and 1000 negative
reviews, hence each domain has 2000 balanced set of
instances. According to Blitzer et al. (2007), positive
reviews were selected using a star rating of greater
than 3 and negative reviews used a star rating of less
than 3. Other ratings were discarded due to the ambi-
guity of their polarities. Note that 60% training and
40% testing sets were used on all domains. Table 1
shows details of the three datasets.

Table 1: Details of the three review datasets.

Dataset Instances Neg/Pos Attributes
Kitchen 2000 1000/1000 1290
Music 2000 1000/1000 1292
Video 2000 1000/1000 1326

As our baseline, we implemented the popular sen-
timent classification technique in Pang & Lee (2004)
using NB and SVM classifiers on our datasets with
the same testing-to-training ratio. We also included
additional baseline by using the ordinary BN without
our proposed algorithm.

5.2 Data preparation

We implemented our algorithm within the
weka.classifiers.bayes package of the WEKA4

data mining framework. The SentiWordNet library5

including the lexicon file were also incorporated into
the same Weka directory. Further, we prepared our
datasets according to the WEKA’s ARFF format by
concatenating the positive and negative reviews for
each domain and created a string data file in ARFF
format. The string data file was then converted

3http://www.cs.jhu.edu/ mdredze/datasets/sentiment/
4http://www.cs.waikato.ac.nz/ml/weka/
5http://sentiwordnet.isti.cnr.it/download.php

to TFIDF data file in ARFF format using String-
ToWordVector filter with default settings. Note that
the TFIDF format is just a processable numerical
representation of the text variables that is supported
by the bayes package. Arguably, the representation
still maintains the dependency relationship between
the words (variables) as in the original string format.

5.3 Results

Table 2: Accuracies of SABN and baseline classifiers
on Amazon product reviews.

Dataset SABN Baseline-
BN

Baseline-
NB

Baseline-
SVM

Kitchen 75.5% 70.7% 75.3% 76.3%
Music 74.4% 68.4% 73.9% 71.5%
Video 81.5% 72.6% 80.0% 77.1%

Table 2 shows the accuracies of the proposed SABN
alongside other baseline classifiers. Baseline-BN rep-
resents the ordinary BN classifier in Weka. Baseline-
NB and Baseline-SVM denote the implemented base-
line technique on NB and SVM-SMO classifiers re-
spectively. For both NB and SVM, we use the pres-
ence and absence of unigram features as suggested
in Pang & Lee (2004). Note that both SABN and
Baseline-BN used the SimpleEstimator with α = 0.5
and K2 search algorithm with the Bayes/K2 scoring
function.

As emphasised in Table 2, we observed the pro-
posed SABN to have similar and in some cases im-
proved performance compared to the baseline classi-
fiers. For example, SABN recorded better improve-
ments with average of 3.1% and 5.3% over the three
baselines on Music and Video domains, respectively.
We also note that the accuracies on the Amazon video
reviews seems to be lower than the accuracies that
were reported on the IMDb video reviews by Pang
& Lee (2004). We suggest that this is a trade-off in
sentiment classification on different datasets and/or
domains as could be observed in our experiment on
different Amazon domains. In addition, we believe
that increased size of dataset, that is beyond the lim-
ited 1000 Amazon reviews, could further improve the
accuracy of the SABN classifier.

In further experiments, we evaluated the perfor-
mance of the SABN with reduced attribute sets since
attribute selection tends to improve BN’s accuracy
(Airoldi et al. 2006). Thus, we ranked and reduced
the set of attributes for each of our dataset by using
the “AttributeSelection” filter in Weka. Specifically,
we used the InfoGainAttributeEval evaluator with the
ranker search algorithm. We used up to top-ranked
50 attributes for each domain and we performed clas-
sification with SABN and the Baseline-BN using 10-
folds cross validation. For each domain, we report the
number of attributes with the best accuracy. Table
3 shows the accuracies of the two classifiers on the
three datasets.
With the attribute selection, we see that the accura-
cies of both SABN and Baseline-BN increased except
for the Video domain. Again, we suggest that the
accuracy of the SABN on the video domain could be
improved with large dataset that may contain more
representative attributes. Nevertheless, the accuracy
of the SABN is still better than the Baseline-BN on
the Video domain with the reduced attributes. We
also performed experiment by using SABN with other
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Table 3: Accuracies of SABN and Baseline-BN with
the best ranked attribute sets.

Dataset Ranked
Attributes

SABN Baseline-
BN

Kitchen 50 75.7% 71.4%
Music 30 74.6% 69.7%
Video 50 77.8% 72.9%

scoring functions reported in Section 3.2 using the re-
duced attributes. The result in Table 4, shows that
those scoring functions did not improve the result for
SABN beyond the Bayes/K2 scoring function used in
the earlier experiments. This is consistent with the
comparative study conducted in De Campos (2006)
on BN scoring functions.

Table 4: Experimental results using SABN with dif-
ferent scoring functions.

Function Kitchen Music Video
K2/Bayes 75.7% 74.6% 77.8%
MDL 75.2% 71.7% 73.5%
BDeu 75.3% 71.8% 73.5%
Entropy 73.4% 70.0% 74.4%
AIC 75.2% 71.7% 72.8%

In terms of computational complexity, the SABN
classifier has a training time complexity of O(n2.D)
and a testing time complexity of O(n), where n rep-
resents the count of the variables in the dataset and
D denotes the size of the dataset. We believe this
complexity is comparable with those of popular state-
of-the-art classifiers, such as reported in Su & Zhang
(2006). Overall, we have observed the SABN classifier
to have reasonable performance that shows a promis-
ing research pathway for using Bayesian Network as
a competitive alternative classifier for sentiment clas-
sification tasks.

6 Conclusion

In this study, we have proposed a sentiment aug-
mented Bayesian network (SABN) classifier. The pro-
posed SABN uses a multi-class approach to compute
sentiment dependencies between pairs of variables by
using a joint probability from different sentiment evi-
dences. Thus, we calculated a sentiment dependency
score that penalizes existing BN scoring functions and
derived sentiment dependency network structure us-
ing the conditional mutual information between each
pair of variables in a dataset. We performed sen-
timent classification on three different datasets with
the resulting network structure. Experimental results
show that the proposed SABN has comparable, and
in some cases, improved calcification accuracy with
state-of-the-art sentiment classifiers. In future, we
will experiment with SABN on cross-domain datasets
and large scale sentiment datasets.
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