
Shallow NLP techniques for Internet Search

Alex Penev Raymond Wong

National ICT Australia and School of Computer Science and Engineering,
University of New South Wales, Sydney, NSW 2052, Australia

{alexpenev,wong}@cse.unsw.edu.au

Abstract

Information Retrieval (IR) is a major component in
many of our daily activities, with perhaps its most
prominent role manifested in search engines. Today’s
most advanced engines use the keyword-based (“bag
of words”) paradigm, which concedes some inher-
ent disadvantages. We believe that natural language
(NL) is a more user-oriented, context-preservative
and intuitive mechanism for web search.

In this paper, we explore shallow NLP techniques
to support a range of NL queries over an existing
keyword-based engine. We present JASE, a web ap-
plication enveloping the Google search engine, which
performs web searches by decomposing input NL
queries and generating new queries that are more
suitable for the search engine. By using some of
Google’s syntactic operators and filters, it creates
“clever” queries to improve precision.

A preliminary evaluation was conducted to test
JASE’s accuracy, and results have been encouraging.
We conclude that the NL model has potential to not
only rival the keyword-based paradigm, but substan-
tially surpass it.

Keywords: Information Retrieval, Natural Language
Processing, Google.

1 Introduction

At present, the holy grail of IR is embodied in the
World Wide Web—an ever-growing source of self-
updating information that is easy to access yet dif-
ficult to discover.

Today’s engines use the keyword-based paradigm,
by implicitly connecting given keywords with boolean
operators (and, or, not). This model concedes cer-
tain inherent disadvantages that are becoming in-
creasingly evident as the web continues to expand—
context is lost once keywords are isolated and treated
on an individual basis, and many words carry double-
meanings. Together, these deficiencies result in larger
recall which is filled with noise, frustrating the user.

We believe that natural (or everyday) language is
the ideal mechanism for information discovery—it is
user-oriented, because it is intuitive and requires no
training. It allows users to express a query in the way
that it is rationalized and constructed in their mind,
while both providing a context and helping to disam-
biguate word senses. But NL queries such as “german

Copyright c©2006, Australian Computer Society, Inc. This pa-
per appeared at Twenty-Ninth Australasian Computer Science
Conference (ACSC2006), Hobart, Tasmania, Australia, Jan-
uary 2006. Conferences in Research and Practice in Informa-
tion Technology, Vol. 48. Vladimir Estivill-Castro and Gill
Dobbie, Ed. Reproduction for academic, not-for profit pur-
poses permitted provided this text is included.

or austrian composers born in the 1600s” and “na-
tive animals in australia, but not marsupials” show
that there is room for improvement in today’s en-
gines. More elaborate queries such as “700ml Johnnie
Walker Red Label, in Sydney for under $30” cannot
be answered at all, even when appropriate documents
are indexed by the engine.

Through practice and tribulation, users learn to
mentally cull their queries into a set of only the few
“most important” components, before sending a re-
quest to an engine. This structural rearrangement,
coupled with search engines’ treatment of keywords
as individuals, could be impeding their accuracy.

Furthermore, to become proficient at using a cer-
tain engine, users must learn its special operators.
These differ between each engine and render the
search mechanism to be unnatural, due to the in-
troduction of foreign modifiers into the query. Our
evaluation survey indicates that average Google users
are largely unaware of its operators and filters, and
rarely use them in practice.

There has been few significant advances in Inter-
net search for half a decade, and the shortcomings
of the keyword-based paradigm are likely to be glob-
ally costing millions of hours each year in labor for
wading through voluminous results. Meanwhile, the
Internet continues to grow and permeate our way of
life, and search results become larger and potentially
noisier. Therefore, we believe that NL will play a
principal role in web and media search in the near
future, because it is more intuitive and provides more
information than the current model.

In this paper, we explore shallow NLP techniques
to support NL queries over Google. We evaluate
the performance and accuracy of JASE, an applica-
tion enveloping Google, which decomposes NL queries
to form Google-friendly queries and reranks the re-
trieved results. We define a categorical classification
of searchable entities and highlight how they can be
used in conjunction with Google’s advanced operators
and filters. We propose heuristics that can be used
for the reranking step. Finally, we assess our system’s
performance for a set of keyword and NL queries.

The remainder of this paper is organized as fol-
lows; §2 provides an overview of search engines,
and defines our problem domain. §3 outlines the
algorithmically-disparate phases and data structures
of our system (explored in greater detail in §4 and
§5). We conduct a comparison of the accuracy of our
system against Google and “average Google users”
for a mix of keyword and NL queries in §6. §7 covers
related work, and §8 concludes this paper.

2 Background

As JASE is a wrapper for a search engine, it is vital
to understand how search engines work. This allows

us to determine which subprocesses are to be imple-
mented by JASE and which are delegated to Google.

2.1 Search Engines

A search engine is an online program which, for a
given query, retrieves references to web documents
that match it. In theory, a search engine has four
components:

document processor indexes new documents. In-
dices are a mapping between words and what
documents they appear in. Most engines are
spider-based, so a crawl of the web for new doc-
uments and the updating of the index is auto-
mated.

query processor inspects a user’s query and trans-
lates it into something internally meaningful.

matching function uses the above internally mean-
ingful representation to extract documents from
the index.

ranking scheme positions the more-relevant docu-
ments on top, using some relevance measure.

Users communicate with the query processor, which
is the only visible component. It carries out several
tasks, usually (but not limited to):

• tokenizing of the query to remove invalid charac-
ters, and to recognize meta-keywords or special
syntactic operators.

• removal of stopwords; words which are too com-
mon and rarely help in the search (e.g. the, a,
of, to, which).

• stemming; a process designed to improve the per-
formance of IR systems, involving normalizing
semantically similar words to their root forms
(e.g. produce, produced, producer, producers,
produces and producing map to produc-).

• assigning a weight to each keyword/keyphrase,
to aid with ranking(Salton & Buckley 1988).

After results are retrieved by the matching function,
they are ranked by relevance based on some rank-
ing measure and set of heuristics (called the ranking
scheme). Often taken into account are:

term frequency how many times keywords appear
in the document(Luhn 1957).

inverted document frequency a value which
aims to determine how important a term
is in discriminating a document from
others(Salton 1989, Jones 1972).

semantic proximity words synonymous to a given
keyword may be matched, boosting the score of
the document.

term position keywords appearing in the title or
heading (rather than the body) should contribute
more to a document’s weight.

term proximity a document in which the query
terms are close together is considered more rele-
vant than one in which they are far apart.

cluster distance how far apart groupings of
matched terms are.

percentage of query terms matched.

In our case, JASE implements the query proces-
sor and the ranking scheme, while Google provides
the document processor and matching function. Of
course, Google utilizes its own query processor and
ranking scheme for any query that it answers, and
therefore JASE’s results will be heavily influenced by
Google’s own relevance measure. We exercise some
indirect control over these components, since JASE’s
query processor is invoked before and JASE’s ranking
scheme is invoked after Google’s.

2.2 JASE

The initial design decisions for our system were that
JASE will be a web application into which a user en-
ters free text (preferably NL) in a query box, presses
a button, and views the corresponding search results.
It should implement the query processor and rank-
ing scheme components of a search engine, so that
it can influence what was being sent to Google, and
influence what was being relayed back to the user.

Behind the scenes, JASE would invoke Google via
an API1. Google is not designed to handle NL queries,
so JASE would have to manipulate the input to make
it Google-friendly. It would also take advantage of the
syntactic operators and filters to try and improve pre-
cision. JASE would display the same information that
Google displays—a title, URL and snippet for each
matched document. We had decided not to collect
any further information regarding documents, such
as a downloading of the actual source.

2.3 Google’s API

Google (the company) provides many online services,
most important of which is Google (the search en-
gine). This engine is useful for JASE because it:

• advertises a free API (over WSDL/SOAP), al-
lowing it to be remotely queried from many pro-
gramming languages and environments.

• provides the title, URL and snippet of matched
documents, which serve as a synopsis.

• has powerful operators and filters: +, -, ˜, OR,
intitle:, inurl:, site:, filetype:, numerical ranges,
timestamps, related:, link:, and some limited
wildcard matching.

• performs stemming.

• is case-insensitive.

• ignores most punctuation.

• uses sophisticated link- and structure-based anal-
ysis to determine the importance of documents
on both global (e.g. PageRank(Page, Brin, Mot-
wani & Winograd 1998)) and per-query scales
(e.g. anchor text, keyword proximity, and
whether or not keywords appear emphasized
with markup in the document).

Some limitations of the API are that a maximum of
10 terms can be sent per query, that languages other
than English are poorly supported, and that only 10
results can be retrieved per query. Case-insensitivity
is a pro because it allows users to be sloppy, but also
a con because acronyms and proper nouns will some-
times match unrelated documents. The API is still in
the beta stage, and its functionality may be altered
at any time.

These points affect the methods and messages that
JASE can use to communicate with Google. Obvi-
ously, we cannot, for example, perform web search

1http://www.google.com/apis

using regular expressions, because the engine does not
offer such functionality.

2.4 Problem Domain

One of the challenges of applying NLP over English is
that the language allows many syntactic variations of
sentences. Semantically identical questions can usu-
ally be worded in more ways than one: how old are
you?, what is your age?, which birthday did you cel-
ebrate this year?. Questions with logical constraints
can be permuted even further; for example, with com-
poser as subject, and logical constraints on a date of
birth and nationality, we can ask for “Which com-
posers were born in Germany or Austria between 1600
and 1700?”, or “What are the names of some German
or Austrian composers born in the 1600s?”, or “In the
17th century, what famous composers were born in
either Germany or Austria?”, and many others. The
wording of the query will differ between people, but
all of these will have somethings in common—a com-
poser, a nationality German/Austrian, and a year of
birth. These are the entities that we wish to extract,
whereby two variations on the same query will yield
the same decomposition.

It is important that we restrict the types of queries
we want to handle, as the general query domain is too
overwhelming. We focus on a subset of all possible
query structures, to roughly satisfy the grammar:

• P = (K | Y | M)
where K = some keywords that form a phrase

Y = year phrase
M = money phrase

• PS = P (connective? P)+
Two or more disjoint runs of phrases. The con-
nectives will mostly be conjunctions, preposi-
tions or adverbs.

• (P | PS) negation+ P
Things that the user does not want, e.g. “[Amer-
ican presidents] [except] [Bush]”. Negations are
usually negative coordinating/correlative con-
junctions or adverbs.

• (P | PS) ‘‘in C’’ (P | PS)?
where C is some location, e.g. “[composers born]
[in Germany]”. In general, words that follow
in will rarely be locations, so we must explicitly
provide a list of permissible matches. We can
use such matches to focus queries towards certain
domains, such as .de, for the given example.

Some typical examples of the atoms include:
K = jujitsu
Y = 1920, 500 BC, “during the 90s”
M = $60, “cheaper than $10”, “between $5 and $10”
PS = “[endangered animals] in [australia]”, “[com-
posers born] [during the 1600s]”.

The above is not intended as a formal gram-
mar, but as a guide to visualize possible queries.
JASE still perform a best-effort search, irregardless
of whether a query satisfies the above grammar.

3 System Overview

Our system is active at the beginning and end of the
search session and we follow a typical Service Oriented
Architecture, with a consumer (JASE) and provider
(Google). Consequently, we are able to partition the
functionality in two disparate phases.

Phase One JASE acts as the query processor. The
search query is parsed and decomposed. De-
composition involves tokenizing the text to dis-
cover structural objects, such as words, numbers
and punctuation. These must be stored as some
internally-meaningful representation, which we
call the SearchTerms. The contents of this con-
tainer are the seed for generating new queries.

Phase Two JASE acts as the ranking scheme. In
Phase One, variants of the input query are sub-
mitted using the API calls, and each retrieves up
to 10 results. This leaves us with many “best”
ranked documents, as each result set has its own
top match (note that some result sets are likely
to overlap). We must perform a reranking on
the results as a whole, based on some relevance
measure. We rerank by assigning a score to each
document and sorting. Our heuristics for calcu-
lating a document’s score are described in §3.2.

3.1 SearchTerms, a link between Phases

At the beginning of Phase One, useful informa-
tion is extracted from the query, grouped and then
classified in the SearchTerms container. In Phase
Two, retrieved documents are compared against these
SearchTerms to receive a score. This container is the
connection between the phases, which are otherwise
independent. The container is composed of several
sets of “searchable entities”, which we define as:

input query as a unit phrase.

primary keyphrases extracted keywords and
keyphrases. Phrases are the most specific and
discriminatory part of queries, thus adjacent
keywords should be grouped as a phrase wher-
ever possible. A phrase may contain a singleton
word, if it happens to be bounded at both ends
by non-keywords. This set is never empty.

secondary keywords primary keyphrases are bro-
ken down into their individual atomic keywords,
each becoming a secondary keyword. This set
may be empty, since it will not contain keywords
that are already primary.

tertiary words any remainder terms from the orig-
inal query, which have not been categorized as
primary or secondary are inserted here. This set
will largely consist of stopwords.

synonyms/hyponyms/meronyms for singleton
primary/secondary words come from an external
source, such as WordNet2.

• synonyms are words with corresponding
meaning, e.g. alcohol/liquor.

• hyponyms are more-specific words, e.g.
dog/poodle.

• meronyms are parts of a larger whole, e.g.
dashboard/car.

exceptions are undesirable matches; things the user
does not want.

Two additional pieces of information are also
recorded. The first is a list of numerical upper and
lower bound tuples, used to apply numerical range
matching. As a proof-of-concept, JASE supports
dates and prices, but other ranges are possible to de-
tect and match. The second datum that we record is
a domain restriction, in order to restrict some queries
to a specific domain. At present, we handle mappings

2http://www.cogsci.princeton.edu/%7ewn/

from the ISO 31663 list, with a few obvious adjust-
ments (e.g. removal of .us).

3.2 Weighting

The SearchTerms sets are assigned base weights, rep-
resentative of the desirability of their inclusion. Each
document in a result set is assigned a score, which
is derived by comparisons against the SearchTerms.
When grading a document, we consider only the title,
URL and snippet—no extra information about docu-
ments is obtained. Using only the title/URL/snippet
allows us to evaluate JASE’s performance and accu-
racy using information which is made visible by the
search engine. Digging deeper and downloading the
source of documents may lead to more accurate scor-
ing, but is outside our scope.

As matching a phrase should be more desirable
than matching only one word of that phrase, one
would expect phrases to contribute more than words.
The location of the match (title/URL/snippet) also
affects its contribution. Table 1 defines the base
weights for the SearchTerms. These values are sub-

Entity title URL snippet
Input query 3.0 3.0 1.2
Primary 1.0 1.0 0.4
Secondary 0.5 0.5 0.2
Synonym 0.3 0.3 0.12
Hyponym 0.3 0.3 0.12
Meronym 0.3 0.3 0.12
Tertiary 0.2 0.2 0.08
Exception -10 -10 -4

Table 1: Base weights of SearchTerms entities

ject to tweaking as there is no correct answer, but
they seem to work well in practice. Certain matches
may appear in more than one set, in which case the
higher weight is used. We also use stemming, case-
mismatch and term frequency (see §5.1).

4 Phase One

This phase involves the parsing and tokenizing of the
input query, to build the SearchTerms container. Ex-
tracting the most sensible keyphrases and keywords
from the user’s NL query is critical, as Google is a
keyword-based engine and its results will heavily fluc-
tuate depending on what terms are chosen. Our strat-
egy is to create “clever” Google-specific queries, which
contain several of:
keywords are important and discriminatory words.

Keywords can be directly sent to Google.

keyphrases are sequences of keywords, where order
is important. JASE detects them by looking for
phrasal boundaries. Keyphrases must be quoted
to be recognized by Google, e.g. “vampire bats”.

exceptions are terms the user does not want, often
explicitly stated. Both word and phrase excep-
tions must be preceded with a minus, e.g. “pets
-dogs”.

domain restriction concentrates a search on a par-
ticular domain, e.g. “national park site:nz”.

synonymy refers to terms which are related to a key-
word, but they need not be specified by the user.
We are only interested in three categories: syn-
onyms, hyponyms and meronyms. Others cat-
egories exist (such as hyper/anto/pertai/holo-
nyms), but are not useful for this task. Google

3http://en.wikipedia.org/wiki/ISO 3166-1 alpha-2

will look for some synonyms if a word is pre-
ceded by a tilde; for example, the search “˜movie
-movie” matches video, film, dvd, mpeg, cinema,
soundtrack and trailer. JASE does not perform
query expansion using synonymy, but it does
look for them when scoring a document.

numerical ranges place a constraint for lower and
upper bound matches. Ranges of the form lo..[hi]
are supported by the engine, and some units are
also recognized (e.g. “beethoven symphony 8..”,
“$50..60” for price and “100..200 kg” for weight).

One of the advantages of automating web search
is the ability to fire off many different queries and se-
lecting only the best results. JASE emits between two
and twenty new queries for a given search, depend-
ing on the complexity of the query, and how many
of the SearchTerms sets are utilized. Some previous
work (e.g. (Kwok, Etzioni & Weld 2001, Agichtein,
Lawrence & Gravano 2001)) has empirically shown
that such an immediate increase in recall, despite its
overhead, is a very effective. This strategy, however,
raises a few issues. Different queries must be sent each
time, prompting the need for a mechanism to formu-
late slightly variant queries, using the SearchTerms
as a seed. Each query will also have its own top re-
sult, so an equitable reranking mechanism is needed.
Finally, some documents are likely to be returned by
several queries, therefore must be clustered as one.
JASE addresses each of these points.

4.1 Detecting Keywords and Keyphrases

Known techniques for locating phrases in written
text tend to use vector-space weighting algorithms,
näıve Bayesian classifiers, inverse document frequency
(IDF) tables, lexical chains, or other statistical
means. However, these are all intended to be applied
to whole documents, and are trained on a specific
corpus. In contrast, we are dealing with a single line
of input, ranging from one to maybe fifteen words.
Such confined input makes it difficult to use statisti-
cal models, especially since many phrases will contain
proper nouns and not be found in any corpora. From
these, we feel that an IDF table is the only suitable
approach.

Another NLP technique is to deduce the parts of
speech using a Part Of Speech tagger. These can be
rule-based(Brill 1992, Brill 1995) and follow patterns,
unigram or n-gram based, or Hidden Markov Model
based(Charniak 1994, Charniak 1997, Collins 1996)
and follow probability. The tagger can be used to
detect phrases by collecting disjoint runs of nouns
and adjectives. Many taggers exist, but JASE does
not use one. Instead, JASE guesses the location of
phrasal boundaries by splitting on stopwords, using
our own custom 99-word list (a hybrid of Google’s
and Snowball’s4, with additions). Since stopwords
are those with a poor IDF, this strategy emulates the
use of an IDF table to some degree.

This means that the “naturality” of the language
used is important for adequately deducing phrases.
On par with previous NL systems that we have played
with, it is not difficult to construct complicated but
unnatural-sounding queries to confuse JASE. For our
evaluation (§6), we used sensibly-worded queries. Our
shallow NLP approach works well for many of the
TREC queries, and using deeper NLP will only serve
to improve accuracy.

4http://www.snowball.tartarus.org

4.2 Detecting a domain restriction and nu-
merical ranges

JASE pattern matches the user’s query for countries.
If preceded by in, in the, from or from the, it will
focus approximately half of the generated queries to-
wards that country’s domain. Most country domains
have some web pages written in English, so it not
unreasonable to carry out such searches.

JASE also pattern matches year and monetary
phrases, to demonstrate how numerical ranges can be
extracted. It handles many cases, best illustrated by
some examples (Table 2). Date matching is capped
at year 9999. If a lower or upper bound of a mon-
etary range is not specified, JASE assumes 10% for
the lower bound and a string of nines to one more
significant figure for the upper bound.

Phrase Range
Rock stars in the 60s 1960..1969
Rock stars in their 60s 60..69

Rock stars before the 60s 0..1959
Wars before 1066 0..1065
Wars during 1066 1066..1066

Roman emperors before 20 BC 21..99
A Kodak camera cheaper than $200 $20..200
A Kodak camera, over $60000 $60000..999999

$49.99 Playstation controller N/A
$49 Playstation controller $49..50

Playstation controller between $49 and 60 $49..60

Table 2: Some examples of handled ranges

5 Phase Two

This phase deals with the reranking of all query
results, using relevance heuristics against the
SearchTerms constructed in Phase One.

All documents are assigned a numerical score (or
weight) based on the relevance measure. The docu-
ments are sorted, and only the top 20 are displayed to
the user. As mentioned previously, JASE only uses
the synopsis of a document (title/URL/snippet) to
weigh a document.

Two morphological processes are carried out be-
fore documents are inspected—folding case and stem-
ming. The original synopsis is used for case com-
parison; case-insensitive match is performed on the
lower-case version, and stem matching is performed
on the stemmed version. As Google uses stemming,
it is possible to encounter a partial match in the doc-
ument synopsis, which needs to be rewarded. We use
a Porter stemmer(Porter 1980).

5.1 Relevance Measure and Heuristics

Upon meeting a document in the result set, its synop-
sis scanned for entities within the SearchTerms sets.
As described in §3.2, certain sets are more important
than others and contribute different base weights,
and the location of a match also affects the contri-
bution. It is furthermore influenced by the nature of
the match:

• if a term is indirectly matched via stemming, its
contribution is penalized by 25%.

• if case agrees, its contribution is boosted by ei-
ther 25% if it appears in the title/URL, or 10%
otherwise.

• if a term is matched via some numerical range,
its contribution is penalized by 25%.

• if every primary and secondary term is matched
at least once, the overall document score is
boosted by 50%.

These figures are subjective and there is no correct
answer, but they work well in practice.

5.2 Overall Score of a Document

A näıve algorithm to determine the total score for
a document would be to sum all individual contri-
butions for all SearchTerms entities. If an entity is
matched, it contributes its base weight less penalties
plus bonuses, and if it is not matched, it contributes
nil. This approach suffers the problem that repeti-
tive matching of a single entity, while matching few
or even none of the others, results in a score that
unfairly represents the document. This weakness be-
comes more evident with small result sets like JASE’s,
as they are more volatile to fluctuations in rating.
JASE cannot get an “averaging out” effect without
retrieving far larger results sets, and the snippet only
partially communicates the content of a document.

Clearly, such a biased boost due to multiple match-
ing of a single entity is inappropriate. But at the same
time, we do not want to ignore recurring matches en-
tirely, because it is desirable for every match to con-
tribute “something”. To deflate the volatility of re-
current matches, we use a recessive geometric sum to
calculate the score of a document:

score(doc) =
1
G

+
en∑

e=e1

j∑
i=1

ωi

2i−1

where {e1..en} are the n searchable entities in the
SearchTerms. The set of weights {w1..wj} represent
the contributions by the j occurrences of entity e
matched in doc’s synopsis. This set of weights is
sorted in descending order to maximize the overall
result.

Such a summation guarantees that every occur-
rence of a matched entity e contributes to the
document, but no entity can contribute more than
twice its highest individual match to the overall
document score (recall

∑∞
i=1

1
2i−1 = 2). This satisfies

our above desiderata that superfluous entity fre-
quency should not bias a document “too much”, but
that every occurrence of any entity should contribute.

Furthermore, the reciprocal of Google’s suggested
rank, G, is augmented to a document score. This
bonus contributes as much as 1.0 point for Google’s
topmost result, and is worth the same as a match-
ing of a primary keyphrase in the title. Because this
bonus diminishes for lower ranks in Google’s list, it
is a means of discriminating between documents that
receive similar scores against the SearchTerms, but
appear in different ranks in the original results.

5.3 Reranking Documents

The previous section describes how a score is assigned
to a document. However, some queries may overlap
and documents may be met more than once. We do
not wish to display the same document several times
over, so the scores for a certain document must be
accumulated. Possibilities include a running total, an
average, or a recessive geometric sum like the previ-
ous section. We use the geometric sum because it is
a middle ground between the running total and the
average—two methods which work well in most cases,
but spectacularly fail for some scenarios.

Once documents are reordered, the top 20 are dis-
played to the user.

6 Evaluation

This section serves as a summary of our system’s ac-
curacy and performance. All results in this section
were carried out during Oct 2004.

6.1 Accuracy

An evaluation survey was prepared, and answered by
8 volunteers. All were fluent in English, and all con-
firmed that they use Google at least once per week,
with more than half using it daily. Participants were
of mixed age (18–49), mixed gender and mixed na-
tionalities (USA, Australia, UK, France and Switzer-
land). One participant had a computer science back-
ground. We feel that this sample represents “average”
Google users to a reasonable degree.

Participants were first asked about their searching
prowess, shown in Table 3.

Question Yes No
Do you know of operators: +, -, “”? 75% 25%
Do you use them? 38% 73%
Do you know of filters: site, inurl, intitle? - 100%
Do you know of indirect matchers: ˜, x..y? - 100%

Table 3: Supplementary questions answered by par-
ticipants

While most knew of the plus, minus and
quotes operators—used for inclusion, exclusion and
phrases—only half of those admitted to actually us-
ing them in practice. A small proportion were famil-
iar with the site: filter only, but none of the other
operators.

Our survey contained 14 query topics in roughly
increasing complexity, which are listed in Table 4.
Some queries consisted of only keywords, while others
were written in NL. We opted to avoid relying on the
TREC test set, because many web documents explic-
itly quote the TREC queries in the context of TREC,
yet are unrelated to the topic at hand. Only q6–q9
are TREC queries.

Id Query
q1 microsoft
q2 belgian comic strip characters

q3 endangered animals in australia
q4 what happened at the final in the 2002 world cup?

q5 German or Austrian composers born in the 1600s

q6 what is the treatment for alzheimer’s?
q7 how much sugar does Cuba export and which coun-

tries import it?

q8 the consequences of implantation of silicone gel
breast devices

q9 what diseases have hair loss as a symptom?

q10 important discoveries in medicine during the 1600s
q11 A used Toyota Camry 1998 model, in Sydney be-

tween $5000 and $10000
q12 700ml Johnnie Walker Red Label in Sydney for un-

der $30

q13 Famous people born on May 1 between 1900 and
1950

q14 I want to do Artificial Intelligence in the best uni-

versity in Australia

Table 4: Base weights of SearchTerms sets

A scale from 1 to 5 was defined (1 being poor, 5
being excellent). For each query, the top ten Google5

results were provided. Participants were asked to rate
the result set based on their impressions and opinions

5http://www.google.com

in regard to accuracy. Participants were then asked to
perform their own search using the search engine, and
could rewrite the query in any way using any tactics
they wished. Their goal was to find relevant docu-
ments that satisfied the query. They then proceeded
to rate their own results. Finally, participants rated
JASE’s results for the original query. In all cases,
participants were encouraged to view the actual doc-
uments retrieved by visiting the hyperlinks.

JASE received favorable ratings, outperforming
Google for some queries, while being approximately
equal for the remainder. This result was not
unexpected—for simple keyword queries, JASE dis-
plays almost exactly what Google does, but for more
complex queries, its Google-optimized queries and
reranking appeared to improve accuracy.

But as one of the aims of this work was to show
that NL queries can be used to improve the precision
of web searches, we were more interested in how JASE
would fare against the participants themselves. Fig-
ure 1 shows how each of Google, the participants and
JASE performed for each query. A 95% confidence
interval is provided, using the t-distribution.

Google’s Accuracy
This form of web search represents “unskilled”
searching. Participants rated the Google’s raw
search results for each verbatim query. Simple
keyword-only queries received high scores, but
ratings gradually fell as queries became more
complex and involved NL. This behavior was ex-
pected.

Participants’ Accuracy
This form of web search represents “semi-skilled”
searching. Participants used the given query to
create their own new query based on their expe-
rience and knowledge of the search engine, and
evaluated the results. Observed tactics included
phrasal search, domain restrictions, and query
expansion. As expected, participants were able
to slightly outperform the “unskilled” search.

JASE’s Accuracy
This form of web search represents “skilled”
searching. Participants rated JASE’s search re-
sults for each verbatim query. JASE kept up
with both unskilled and semi-skilled searches for
the simpler queries—which were mostly keyword-
based to test the accuracy of JASE’s reranking—
but maintained a lead for the second half of
queries, which were written in NL and high-
lighted JASE’s advantage of dispatching multi-
ple queries and usage of an engine’s filters and
operators.

One observation is that JASE’s confidence interval
does not overlap the others for some of the NL queries.
According to the t-test, this is a statistically signifi-
cant result. The queries that caused this (q5, q10,
q12 and q13) highlight JASE’s advantage of using
Google’s filters and operators (the ones used here were
“”, +, ˜ and numerical range). These queries shared
in common a need to match text which was implied,
but not explicitly stated. Most other queries did not
have such implications, and relied on direct keyword-
matching. JASE received high ratings there too, most
likely due to its increase in recall by retrieving results
from multiple queries, and subsequent reranking of
results. This conclusion is consistent with previous
works (see §7).

The results indicate that JASE outperformed the
users themselves for this query set, which involved
queries of various difficulty. This suggests that NL
queries may be used to improve the accuracy of web
search, through shallow NLP systems such as JASE.

Figure 1: Mean rating per query, with 95% CIs

While expert users may be able to match or surpass
the precision of such a system, the system should be
beneficial to average users, who are unfamiliar with
the esoteric art of accurate web search.

6.2 Performance

As a synchronous wrapper around Google, JASE is
inherently slower than Google. There are three sep-
arate time periods involved from the moment a user
inputs their query for processing until the moment
the results are displayed:
GT Google time, consumed by the search engine in

answering our queries. It is conveniently re-
ported by the API methods.

CT Communication time (round trip time - GT).
Timing begins with the invocation and return
from the SOAP library routines.

JT JASE time, time during which JASE’s code is
active, including bootstrapping of any libraries
and classes.

The time periods are mutually exclusive, and the total
time taken is TT = JT + CT + GT. Depending on the
complexity of the input, JASE emits up to about 20
queries in total.

Our empirical tests indicated that JT ≈ 0.11 TT,
GT ≈ 0.21 TT and CT ≈ 0.68 TT. The biggest per-
formance cost, CT, represents networking and com-
munication. The tests suggested that our prototype
was not inefficient, as the bulk (89%) of loading time
was consumed externally. Our prototype took just
under 20 seconds to load for the more complicated
queries, because we submitted queries serially. This
value may be greatly decreased by issuing queries in
parallel, but speed was not our goal.

Participants in our evaluation were asked their
opinions on search response times. All agreed that
an extra 5 seconds wait on top of Google’s average
response time (which is between 0–0.5s) in order to
produce more accurate results is admissible. In fact,
75% agreed that even 20s was admissible. Such an
answer hints at web users’ desideration for a system
such as JASE.

7 Related Work

Many NLP search systems have been made to date.
In particular, a form of NL search called Question-
Answering Systems have been well-explored (e.g.

(Katz 1991, Kwok et al. 2001, Prager, Brown, Coden
& Radev 2000, Ravichandran & Hovy 2002)).

QAS accept wh-questions (who, when, where,
what, why) and return a definitive answer. QAS are
related to search engines because they retrieve infor-
mation from a source based on a query. Unlike search
engines, QAS provide an answer, rather than a list of
top “hits”. To do this, QAS need to have at least some
idea of what the user is searching for. As such, QAS
usually extract knowledge from the query itself—is
the user asking for a person, a date, a location, an
object, or what? On the other hand, search engines
use whatever input they have been given with mini-
mal restrictions on format and structure. QAS have
much stronger restrictions on the structure of the in-
put, in order to make it possible to determine what
the user is looking for.

START(Katz 1991) was the first online QAS,
and focused entirely on geography and MIT-specific
knowledge. It used subject-relation-object tuples to
extract the subject, relation and object from a given
query, and then performed a pattern match for the tu-
ple in its knowledge base (KB). The knowledge base
was built from a similar process of detecting tuples
from scanned documents. START’s KB was highly-
edited, and non-scalable, and the system could not
provide an answer to a query if it failed to match the
tuple. Future work(Katz & Lin 2000) found ways to
automate the expansion of the KB, but the process
was impractically slow.

Search engines, on the other hand, provide refer-
ences to documents, irregardless if they answer the
user’s questions or not, and rarely try to “under-
stand” the query.

Ionaut(Abney, Collins & Singhal 2000) was an in-
teractive NL search engine, and used a local cache
of documents for its KB with a small coverage. Its
most interesting feature was to list related hyperlinks
to a given query to branch into different queries, as
a means of an iterative search. From experience with
it, we feel that its accuracy was lacking, but the in-
teractivity feature was its best asset.

Limited KB coverage is a hurdle that can be over-
come. In 1993, MURAX(Kupiec 1993) used boolean
searching over an online encyclopaedia, by formulat-
ing queries based on the phrasal content of the input
wh-question. Noun-phrase hypotheses were extracted
from the retrieved results, and new queries were in-
dependently made to confirm the hypotheses. Its ac-
curacy was poor, but the concepts of multiple queries
and formulating different queries inspired some future

works.
Tritus6 was an NL search engine(Agichtein et al.

2001) that could use either Google or Altavista as
its KB. It handled simple wh-questions that matched
specific templates, but used the engines’ syntactic
operators to improve precision. The authors per-
formed comparisons between different engines, and
argued that Google was superior to both Jeeves and
Altavista, and that Tritus’ Google-optimized queries
outperformed raw Google. We consider their testing
to be inconclusive, as it is unfair to pipe direct NL
queries to a keyword-based engine. An evaluation of
this type must involve the users of the engine them-
selves, who know better than to submit NL queries;
the users’ employment of the engine should be the
real competitor. One further difference between Tri-
tus and JASE is that our work attempts to handle a
broader range of input (by not using templates), and
that JASE received no training.

Also in 2001, MULDER(Kwok et al. 2001) tried
to scale QA to the Web, using Google as back-end.
Like MURAX and Tritus, it generated multiple new
queries from the input, to increase recall. Query
generation was achieved by rearranging the input
wh-question to match the potential phrasing of its
answer—when asked “what is the capital of Sudan”,
it would look for documents containing “the capital of
Sudan is”. MULDER worked on the assumption that
the Web is host to more truths than falsities, there-
fore wh-questions could be answered by collating the
results and clustering them. The largest cluster was
considered as the correct answer, due to the original
assumption. MULDER used deep NLP, but imposed
structural limitations on its input queries. We have
not had the opportunity to test it, as it has not been
available for several years. We believe that MUL-
DER would have performed well for trivia questions
because they are frequently cited online, but that it
would have had difficulty in answering more elaborate
queries such as those in the introduction, for which
a rearrangement of the query is unlikely to appear in
any online documents.

AskJeeves7 is advertised as a QAS, but its menu-
driven dialogue is more inherent to search engines. It
allows searching for both keywords and wh-questions.
To answer a NL question, the text must match one
its question templates; otherwise, web results are
retrieved from Teoma8. If a template is matched,
AskJeeves provides links to authoritative sites which
are known to answer that question. This strategy
requires human editors to map the templates to the
authoritative sites, and does not scale well. It takes
little effort to formulate a NL wh-query which fails
to match a template, yet is competently answered by
a raw Google search. (Kwok et al. 2001) empirically
argues that AskJeeves is limited and awkward to use,
and performs poorer than Google.

Intermezzo(Flank 1998) used NLP techniques to
retrieve images from an image database based on NL
queries, achieving a precision of almost 90%. The con-
tent of each image was identified via captions, which
were manually written. One of Intermezzo’s inter-
esting features was using WordNet to match related
terms in the caption to increase the score of an im-
age. This strategy proved effective as the images show
physical objects, which have large collections of ap-
plicable hypo/hypernyms and mero/holonyms. Such
a strategy of boosting term weights using WordNet’s
synsets is less effective for web queries over large docu-
ment collections, since matching hyper- and holonyms
is less appropriate.

6http://tritus.cs.columbia.edu
7http://www.ask.com
8http://www.teoma.com

Keyword-extraction has a long history and is a
component in most IR fields. Several recent ap-
proaches to deducing the keyphrases in a piece of text
exist (Turney 1999, Turney 2000, Munoz 1996, Frank,
Paynter, Witten, Gutwin & Nevill-Manning 1999).
However, these methods are intended to extract
phrases from entire documents by employing holis-
tic statistical models, while we are interested with
extracting useful words and phrases from a single-
sentence query. Hence, the algorithms from such
works do not apply.

JASE shares the ideas of many of these previous
works, such as using an NL wrapper around a boolean
data source, and the submission of multiple queries.
Because it is not a QAS, it is fundamentally different
to MURAX and MULDER in that it imposes less re-
strictions on input, but therefore cannot use the query
structure to its advantage. Tritus was a hybrid, re-
trieving hyperlinks like a search engine, but handling
wh-questions and using the structure of the input to
its advantage like a QAS.

Our work aims to be a search engine, but without
being able to significantly rely on the structure of
the query. The work presented in this paper is most
closely related to MULDER and Tritus.

8 Conclusions

This paper has outlined some simple strategies to
support NL queries over a keyword-based engine
(Google). We have presented an evaluation of a
search engine wrapper, JASE, that handles both key-
word and NL queries. We parse, tokenize and ex-
tract searchable entities from the query, and catego-
rize them into weighted sets. We dispatch multiple
queries, and then use the sets against our ranking
heuristics to weigh and rerank the retrieved results.
Although only shallow NLP techniques were used,
they seem work well for many cases, as indicated by
our evaluation. Our evaluation survey furthermore
revealed that our participants were all willing to sacri-
fice a large amount of performance in lieu of accuracy,
therefore the submission of multiple queries is a jus-
tifiable strategy, and may be incorporated in current
engines.

Future expansions that we are exploring include
deep NLP—a tagger(Brill 1992, Brill 1995) coupled
with an IDF table will greatly improve phrase bound-
ary detection. Geographical locations can be detected
using a gazetteer, allowing domain restrictions to be
used more liberally. Finally, collecting multiple snip-
pets for the top few documents should help improve
reranking. This is our preferred way of expanding
a document’s summary (as opposed to downloading
the entire document from the Google Cache), and is
achieved by using a combination of site:, allinurl: and
allintitle:, coupled with an extra keyword to variate
the snippet.

The process of parsing and tokenizing the input
to detect important searchable entities is obvious, as
these are tasks that the human mind perform when
presented with a query topic. But strategies such as
submitting multiple queries and reranking of large re-
sult sets are only fit for computers. Our evaluation
survey revealed that average Google users seldom use
its operators and filters, which could be adding noise
to their searches and costing them time. It there-
fore appears beneficial to provide a transparent sys-
tem that utilizes the power of such strategies behind
the scenes, rather than educate everyone to become
an expert user. Such a system could accept NL as in-
put, because it is the most intuitive “query language”
and provides more information to the engine than the
current paradigm.

Our experiments show that the users were able to
make use of their own experience of the engine, their
awareness of its idiosyncrasies and/or some trial and
error to formulate a better query than a given NL
topic, and slightly improve on precision. Yet they
still favored JASE’s results in many cases, which em-
phasizes an automaton’s advantage of redundant and
monotonous computation, and use of an engine’s syn-
tactic operators and filters.

We believe our results indicate that NL search sys-
tems such as JASE can have practical use in society,
and that the NL paradigm can be used to improve
the precision of web search.

References

Abney, S., Collins, M. & Singhal, A. (2000), Answer
extraction, in ‘Proceedings of the Sixth Applied
Natural Language Processing Conference’, Mor-
gan Kaufmann, pp. 296–301.

Agichtein, E., Lawrence, S. & Gravano, L. (2001),
Learning search engine specific query transfor-
mations for question answering, in ‘World Wide
Web’, pp. 169–178.

Brill, E. (1992), A simple rule-based part of speech
tagger, in ‘Proceedings of the Third Conference
on Applied Natural Language Processing’.

Brill, E. (1995), ‘Transformation-based error-driven
learning and natural language processing: A case
study in part-of-speech tagging’, Computational
Linguistics 21(5), 543–565.

Charniak, E. (1994), Statistical language learning, in
‘Language and Computers 12’, The MIT Press.

Charniak, E. (1997), ‘Statistical techniques for natu-
ral language parsing’, AI Magazine 18(4), 33–44.

Collins, M. J. (1996), A new statistical parser based
on bigram lexical dependencies, in ‘Proceed-
ings of the 34th conference on Association for
Computational Linguistics’, Morgan Kaufmann,
pp. 184–191.

Flank, S. (1998), A layered approach to nlp-based in-
formation retrieval, in ‘Proceedings of the 36th
ACL and 17th COLING’, Morgan Kaufmann,
pp. 397–403.

Frank, E., Paynter, G., Witten, I., Gutwin, C.
& Nevill-Manning, C. (1999), Domain-specific
keyphrase extraction, in ‘Proceedings of the Six-
teenth International Joint Conference on Artifi-
cial Intelligence’, Morgan Kaufmann, pp. 668–
673.

Jones, K. S. (1972), ‘A statistical interpretation of
term specificity and its application to retrieval’,
Journal of Documentation 28(1), 11–21.

Katz, B. (1991), ‘Text processing with the start natu-
ral language system’, Text, ConText, and Hyper-
Text: writing with and for the computer pp. 55–
76.

Katz, B. & Lin, J. (2000), Rextor: A system for gen-
erating relations from natural language, in ‘Pro-
ceedings of the ACL 2000 Workshop on Natural
Language Processing and Information Retrieval’.

Kupiec, J. (1993), Murax: a robust linguistic ap-
proach for question answering using an on-line
encyclopedia, in ‘Proceedings of the 16th an-
nual international ACM SIGIR conference on
Research and development in information re-
trieval’, ACM Press, pp. 181–190.

Kwok, C., Etzioni, O. & Weld, D. (2001), Scaling
question answering to the web, in ‘World Wide
Web’, pp. 150–161.

Luhn, H. P. (1957), ‘A statistical approach to mech-
anized encoding and searching of literary infor-
mation’, IBM Journal of Research and Develop-
ment, 4(4), 600-605.

Munoz, A. (1996), Compound key word generation
from document databases using a hierarchical
clustering ART model. IDA, Amsterdam.

Page, L., Brin, S., Motwani, R. & Winograd, T.
(1998), ‘The pagerank citation ranking: Bring-
ing order to the web’, Stanford Digital Library
Technologies Project.

Porter, M. (1980), An algorithm for suffix stripping,
in ‘Program’, Vol. 14, pp. 130–137.

Prager, J., Brown, E., Coden, A. & Radev, D. (2000),
Question-answering by predictive annotation, in
‘Proceedings of the 23rd Annual International
ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval’, ACM Press,
pp. 184–191.

Ravichandran, D. & Hovy, E. (2002), Learning sur-
face text patterns for a question answering sys-
tem, in ‘Association for Computational Linguis-
tics Conference’.

Salton, G. (1989), Automatic Text Processing: the
Transformation, Analysis, and Retrieval of In-
formation by Computer, Addison-Wesley Long-
man Publishing Co., Inc.

Salton, G. & Buckley, C. (1988), ‘Term-weighting
approaches in automatic text retrieval’, Infor-
mation Processing and Management 24(5), 513–
523.

Turney, P. (1999), ‘Learning to extract keyphrases
from text’, Technical Report ERB-1057, Na-
tional Research Council, Institute for Informa-
tion Technology.

Turney, P. (2000), ‘Learning algorithms for keyphrase
extraction’, Information Retrieval 2(4), 303–336.

8.1 Appendix: Sample

Figure 2 is a screenshot of our prototype for q13, with the corresponding Google results in Figure 3. Both
images date to the time of our evaluation (Oct 2004).

In June 2005, we revisited the top Google hits for this query. The top 10 hits were different to before,
perhaps due to PageRank fluctuations and new documents being introduced. JASE’s results were, in turn,
equally affected. We inspected each of Google’s top 20 hits and decided that 3 were relevant, but only one of
them appeared in the top 10. JASE managed to extract 8 relevant documents, of which 6 were in its top 10.
We were able to identify four times as many “famous people” (to answer the query) from JASE’s top 10 hits
than from Google’s top 20 hits.

Figure 2: JASE’s top results for q13

Figure 3: Google’s top results for q13

	Introduction
	Background
	Search Engines
	JASE
	Google's API
	Problem Domain

	System Overview
	SearchTerms, a link between Phases
	Weighting

	Phase One
	Detecting Keywords and Keyphrases
	Detecting a domain restriction and numerical ranges

	Phase Two
	Relevance Measure and Heuristics
	Overall Score of a Document
	Reranking Documents

	Evaluation
	Accuracy
	Performance

	Related Work
	Conclusions
	Appendix: Sample

