
Sharing Information in All Pairs Shortest Path Algorithms

Tadao Takaoka and Mashitoh Hashim

Department of Computer Science, University of Canterbury
Christchurch, New Zealand

E-mail: tad@cosc.canterbury.ac.nz

Abstract

We show two improvements on time complexities of
the all pairs shortest path (APSP) problem for di-
rected graphs that satisfy certain properties. The
idea for speed-up is information sharing by n single
source shortest path (SSSP) problems that are solved
for APSP. We consider two parameters, in addition
to the numbers of vertices, n, and edges, m. First
we improve the time complexity of O(mn+n2

√
log c)

to O(mn + nc) for the APSP problem with the inte-
ger edge costs bounded by c. When c ≤ O(n

√
log n),

this complexity is better than the previous one. Next
we consider a nearly acyclic graph. We measure the
degree of acyclicity by the size, r, of a given set of
feedback vertices. If r is small, the given graph can
be considered to be nearly acyclic. We improve the
existing time complexity of O(mn + r3) for the all
pairs shortest path problem to O(mn + rn log n) by
some kind of information sharing. This complexity is
better than the previous one for all values of r under
a reasonable assumption of m ≥ n.

Keywords: All pairs shortest paths, priority queue,
sharing information, small edge costs, nearly acyclic
graph

1 Introduction

We consider the all pairs shortest path (APSP) prob-
lem for a directed graph with non-negative edge costs
under the standard computational model of addition-
comparison on distances and random accessibility by
an O(log n) bit address. The complexity for this
problem under the standard computational model is
O(mn + n2 log n) with a priority queue such as a Fi-
bonacci heap (4) or 2-3 heap (9), where delete-min is
O(log n), and decrease-key and insert are O(1). We
improve the second term of the time complexity of
the APSP problem for two special types of graphs
under this computational model. The problem is well
illustrated by the equation APSP = n × SSSP +
information sharing.

One is a directed graph with limited edge costs.
When the costs are integers bounded by small c,
we improve the existing time complexity of O(mn +
n2
√

log c) to O(mn + nc). To deal with a graph
whose edge costs are non-negative integers bounded

Copyright c©2011, Australian Computer Society, Inc. This pa-
per appeared at the 17th Computing: The Australasian The-
ory Symposium (CATS 2011), Perth, Australia,January 2011.
Conferences in Research and Practice in Information Technol-
ogy (CRPIT), Vol. 119, Alex Potanin and Taso Viglas, Ed.
Reproduction for academic, not-for-profit purposes permitted
provided this text is included.

by c, Ahuja, Melhorn, Orlin, and Tarjan (1) in-
vented the radix heap that supports the set of n
delete-min, m decrease-key and n insert operations
in O(m + n

√
log c) time, meaning the SSSP can be

solved in the same amount of time. If we apply this
algorithm n times for the APSP problem, the time
becomes O(mn + n2

√
log c).

For the priority queue we use a simple bucket sys-
tem such that the number of buckets is c and the
number of delete-min operations is at most nc for
both SSSP and APSP problems. If edge costs are be-
tween 0 and c for SSSP, the tentative distances from
which we choose the minimum distance for a vertex to
be included into the solution set take values ranging
over a band of length c. If c is small, we can reduce
the time for delete-min by looking at the small range
of values. We observe the same idea works for the
APSP problem in a better way.

The other is a directed graph which is nearly
acyclic with general edge costs of non-negative real
numbers. There can be many definitions for near-
acyclicity. Here we define it by the size r of the feed-
back vertex set, denoted by T . If r is small, we say
the given graph is nearly acyclic. For the priority
queue in SSSP as part of APSP, we use a Fibonacci
heap or 2-3 heap to choose minimum distance ver-
tices one by one and modify the distances to other
candidate vertices. The size of queue is n, whereas in
the 1-dominator decomposition described below the
size can be smaller. We traverse edges forward and
backward. When we traverse backward, we can define
the single sink problem; we compute shortest paths
from all vertices to a specified vertex, called a sink.
If we solve r single sink problems for each vertex in
T as a sink, and share the result when we solve n sin-
gle source problems, we can achieve O(mn+ rn log n)
time for the APSP problem, which is better than the
existing complexity of O(mn + r3).

A special type of feedback vertices are the roots
in the 1-dominator decomposition (7), (8). The 1-
dominator decomposition is a collection of maximal
acyclic parts Av dominated by root vertex v. To de-
termine shortest distances from the source to other
vertices for the SSSP problem, we can maintain only
those root vertices in a priority queue. The dis-
tance to non-root vertices can be determined with
less time complexity. Then we show the complexity
O(mn + r2 log r) for the APSP problem in (8) can be
derived as a special case of our framework. In (8), the
APSP problem was solved for the graph derived from
the set of roots.

It is still open whether the APSP problem can be
solved in O(mn) time. The best bounds for a general
directed graph are O(mn + n2 log log n) with an ex-
tended computational model by Pettie (6) and o(mn)
for an unweighted undirected graph by Chan (2). The

rest of the paper is as follows: In Section 2, we in-
troduce a simple data structure of the bucket sys-
tem. In Section 3, we define shortest path problems;
single source and all pairs. In Section 4, we show
the bucket system works well for the APSP problem
by determining shortest distances directly on vertex
pairs. In Section 5, we define the sweeping algorithm
on an acyclic graph. In Section 6 we review the the-
ory of 1-dominator decomposition and its application
to the APSP problem. In Section 7, we define nearly
acyclic graph with a set of size r of feedback ver-
tices, and show the APSP problem can be solved in
O(mn + rn log n) time. Section 8 is the conclusion.

2 Simple data structure

In this section we introduce a well known data struc-
ture of priority queue for developments in subsequent
sections. The priority queue allows insert, decrease-
key, and delete-min, and called the bucket system.
Specifically, a bucket system consists of an array of
pointers, which point to lists of items. Let list[i] be
the i-th list. If the key of item x is i, x appears in
list[i]. The array element, list[i], is called the i-th
bucket. If there is no such x, list[i] is nil. In the
bucket system, array positions play the role of key
values. To insert x is to append x to list[i] if the key
of x is i. To decrease the key of x, we decrease the
key value, say, from i to j, and move x from list[i] to
list[j]. To find the minimum, we scan the array from
the previous position of the minimum and find the
first non-nil list, say, list[i], then delete the first item
in list[i]. Since all key values of the items in the list
are equal, we can delete all the other items in O(1)
time each. Clearly the time for insert and decrease-
key are both O(1). The time for delete-min depends
on the interval to the next non-nil list. Since we are
interested in the total time for all delete-mins, we can
say the time for all delete-mins is the time spent to
scan the array plus time spent to delete items from
the lists. If the size of array is limited to c > 0, and
n delete-min operations are done, the time is O(cn).

If the length of the range of key values at any stage
is bounded by c, and the possible key values are larger
than c, to save space, we can maintain a circular struc-
ture of size c for the array list.

3 Shortest path problems

To prepare for the later development, we describe the
single source shortest path algorithm in the following.
Let G = (V, E) be a directed graph where V is the set
of vertices and E ⊆ V ×V is the set of edges. The non-
negative cost of edge (u, v) is denoted by cost(u, v).
We assume cost(v, v) = 0 and cost(u, v) =∞, if there
is no edge from u to v. We specify a vertex, s, as the
source. The shortest path from s to vertex v is the
path such that the sum of edge costs of the path is
minimum among all paths from s to v. The minimum
cost is also called the shortest distance. In Dijkstra’s
algorithm (3) given below, we maintain two sets of
vertices, S and F . The set S is the set of vertices to
which the shortest distances have been finalized by
the algorithm. The set F is the set of vertices which
can be reached from S by a single edge. We maintain
d[v] for vertex v in S or F . If v is in S, d[v] is the
(final) shortest distance to v. If v is in F , d[v] is the
distance of the shortest path that lies in S except for
the end point v. Let OUT (v) = {w|(v, w) ∈ E}, and
IN(v) = {u|(u, v) ∈ E}. The solution is in array d at
the end.

Algorithm 1
1 for v ∈ V do d[v] :=∞;
2 d[s] := 0; F := {s}; // s is source
3 Organize F in a priority with d[s] as key;
4 S := ∅;
5 while S 6= V do begin
6 Find v in F with minimum key and

delete v from F ;
7 S := S ∪ {v};
8 for w ∈ OUT (v) do begin
9 if w is not in S then
10 if w is in F then
11 d[w] := min{d[w], d[v] + cost(v, w)}
12 else begin

d[w] := d[v] + cost(v, w);
F := F ∪ {w}

end
13 Reorganize F into queue with new d[w];
14 end
15 end.

Line 6 is delete-min, line 11 is decrease-key, and
line 12 is insert. In this and next section, we assume
edge costs are integers and cost(v, w) ≤ c for all v, w ∈
V for a positive integer c.

To have a small range for the key values in F , we
state and prove the following well known lemma.

Lemma 1 For any v and w in F , we have |d[v] −
d[w]| ≤ c

Proof
Take arbitrary v and w in F such that d[v] ≤ d[w].
Since w is directly connected with S, we have some u
in S such that d[w] = d[u] + cost(u, w). On the other
hand, we have d[u] ≤ d[v] from the algorithm. Thus
we have d[w] − d[v] = d[u]− d[v] + cost(u, w) ≤ c.

From this we see that the time for Algorithm 1
is O(m + cn), and space requirement is O(c + n) if
we use a circular structure for list. If we maintain c
buckets in a Fibonacci or 2-3 heap, we can show the
time is O(m + n log c).

If we use IN(v) at line 8, and cost(u, v) in lines
11 and 12, we are solving the problem in reverse or-
der from sink s. We call this version, Algorithm 2,
the single sink (shortest path) problem, which will be
used in Section 7.

Algorithm 2
1 for v ∈ V do d[v] :=∞;
2 d[s] := 0; F := {s}; // s is the sink.
3 Organize F in a priority with d[s] as key;
4 S := ∅;
5 while S 6= V do begin
6 Find v in F with minimum key

and delete v from F ;
7 S := S ∪ {v};
8 for u ∈ IN(v) do begin
9 if u is not in S then
10 if u is in F then
11 d[u] := min{d[u], d[v] + cost(u, v)}
12 else begin d[u] := d[v] + cost(u, v);

F := F ∪ {u}
end

13 Reorganize F into queue with new d[u];
14 end
15 end.

4 All pairs shortest path problem

If we use Algorithm 1 n times to solve the all pairs
shortest path problem with the same kind of priority

queue, the time would be O(mn + n2c). In this sec-
tion we improve this time complexity to O(mn+nc).
Precisely speaking this complexity can be O(mn +
min{nc, n2

√
log c}), as we can switch between the

bucket system and the radix heap depending on the
value of c. We call Dijkstra’s algorithm vertex ori-
ented, since we expand the solution set S of vertices
one by one. We modify the hidden path algorithm
(5), which we call pair-wise, since we put pairs into
the solution set one by one. Let (u, v) be the short-
est edge in the graph. Then obviously cost(u, v) is
the shortest distance from u to v. The second short-
est edge also gives the shortest distance between the
two end points. Suppose the second shortest is (v, w).
Then we need to compare cost(u, v) + cost(v, w) and
cost(u, w). If cost(u, v) + cost(v, w) < cost(u, w), or
(u, w) does not exist, we abbreviate the path (u, v, w)
by < u, w > and call it a pseudo edge with cost
cost(u, v) + cost(v, w). It is possible to keep track of
actual paths, but we focus on the distances of pseudo
edges. As the algorithm proceeds, we maintain many
pseudo edges with costs which are the costs of the cor-
responding paths. We maintain pseudo edges with the
costs defined in this way as keys in a priority queue.
The hidden path algorithm is slightly modifed in the
following. An edge e = (u, v) is optimal if cost(u, v)
is the shortest distance from u to v, that is, if edge
(u, v) is returned by the delete-min operation in the
following algorithm.

Algorithm 3

1 for (u, v) ∈ V × V do d[u, v] :=∞;
// array d is the container for the result.

2 for (u, v) ∈ E do d[u, v] := cost(u, v);
F := {< u, v > |(u, v) ∈ E};

3 Organize F in a priority queue with
d[u, v] as a key for e =< u, v >;

4 S := {(v, v)|v ∈ V };
5 while |S| < n2 do begin
6 Let e =< u, v > be the minimum

pseudo edge in F ;
7 Delete e from F ; S := S ∪ {e};
8 if < u, v > is an edge then begin
9 Mark e = (u, v) optimal;

10 for t ∈ V do update(t, u, v);
11 end;
12 for w ∈ V such that (v, w) is optimal do

update(u, v, w);
13 end;
14 procedure update(u, v, w) begin
15 if < u, w >/∈ S then begin
16 if < u, w > is in F then

d[u, w] := min{d[u, w], d[u, v] + cost(v, w)}
17 else begin d[u, w] := d[u, v] + cost(v, w);

F := F ∪ {< u, w >} end;
18 Reorganize F into queue with the new key ;
19 end
20 end

We perform decrease-key or insert in the procedure
update, which takes O(1) time each. Update is to ex-
tend a pseudo edge with an optimal edge appended
at the end. Note that update at line 10 is neces-
sary because when pseudo edge < t, u > was updated,
the edge (u, v) might not have been an optimal edge
yet. The total time taken for all updates is obvi-
ously O(m∗n), where m∗ is the number of optimal
edges. We perform delete-min operations at lines 6-
7. If c < n2, several pseudo edges with the same
cost may be returned from the same bucket. In this
case, those pseudo edges are processed in batch mode

without calling the next delete-min. The correctness
is seen from the fact that if a pseudo edge is returned
at line 6, the corresponding path is an extension of
a pseudo edge in S with an extension by an optimal
edge at the end. The following lemma is similar to
Lemma 1, from which subsequent results can be de-
rived. It guarantees the number of different key values
in the priority queue is bounded by c.

Lemma 2 For any < u, v > and < w, y > in F , we
have |d[u, v]− d[w, y]| ≤ c

Proof Let < u, v > and < w, y > in F be such that
d[u, v] ≤ d[w, y]. Let < w, y > be an extension of
some pseudo edge < w, x > in S with an optimal
edge (x, y), we have d[w, y] = d[w, x] + cost(x, y). On
the other hand, we have d[w, x] ≤ d[u, v] from the
algorithm. Thus we have d[w, y] − d[u, v] = d[w, x] −
d[u, v] + cost(x, y) ≤ c.

We have the following obvious lemma.

Lemma 3 The number of different shortest distances
for the all pairs shortest path problem for the graph
with edge cost bounded by c is at most c(n− 1).

Theorem The all pairs shortest path problem can be
solved in O(m∗n + nc) time, where m∗ is the number
of optimal edges, satisfying m∗ ≥ n.

For small c ≤ m∗, the time becomes O(m∗n). If
c ≤ m, since m∗ ≤ m, the time becomes O(mn). If
c > O(n

√
log n), we can switch to the radix heap.

The complexity of deletes in line 7 is O(n2), which is
absorbed into O(m∗n) if m∗ ≥ n. We can assume this
if the graph is connected when direction of edges is re-
moved. Algorithm 3 can be regarded as simultaneous
execution of SSSP’s.

In the paper (5), pseudo edges are extended back-
ward. We can extend pseudo edges into both direc-
tions, forward and backward. This version will re-
duce the number of delete-min operations, but it is
not known whether we can improve the asymptotic
complexity.

5 Acyclic graphs and sweeping algorithm

To discuss a nearly acyclic graph, we start with an
algorithm for the simpler case of an acyclic graph.
Let G = (V, E) is an acyclic graph. Edge costs are
non-negative real numbers from this point onwards.

Algorithm 4 Sweeping algorithm

1 Topologically sort V and assume
without loss of generality V = {v1, · · · , vn}
where (vi, vj) ∈ E ⇔ i < j;

2 d[v1] := 0;
//v1 is the source. This value, 0, will be modified in
//Algorithm 6

3 for i := 2 to n do d[vi] :=∞;
4 for i := 1 to n do
5 for vj such that (vi, vj) ∈ E do
6 d[vj] := min{d[vj], d[vi] + cost(vi, vj)}.

Obviously the time for this algorithm is O(m + n).
Similarly to Algorithm 2, we can define a single sink
algorithm for an acyclic graph, which sweeps the
graph in reverse topological order.

In the next section, we try to find acyclic struc-
tures from the given graph, and apply the above al-
gorithm to those structures.

6 1-dominator decomposition

We review the theory of acyclic decomposition devel-
oped in (7) for use in the next section. Let G = (V, E)
be given. We say Av is an acyclic structure dominated
by v if Av−v induces an acyclic subgraph of G, every
vertex in Av is reachable from v, and every path from
outside of Av to any vertex in Av must go through v.
Av can be defined as the fixed point by the following
iterative definition.

Av ← {v};
Av ← Av ∪ {w|IN(w) ⊆ Av ∧ IN(w) 6= ∅};

The set V can be decomposed into Av1
, ..., Avr

such
that they are mutually disjoint and maximal, which
is called the 1-dominator decomposition of G. Each
vi is called the root of the maximal acyclic structure
Avi

. The following recursive algorithm actually com-
putes acyclic structures Av’s. The above definition
looks like a breadth-first approach. The following al-
gorithm, called ”forward DFS”, computes Av’s one
by one in the depth-first fashion. When the algo-
rithm visits a vertex, it decreases the counter, which
is initialized to the number of incoming edges, and
backtracks. If the counter becomes 0, the algorithm
goes through the vertex, or unlocks it. We can define
backward acyclic structures and “backward DFS” by
using IN instead of OUT . By default we mean for-
ward.

Algorithm 5 Forward-DFS
1 procedure DFS(v);
2 begin
3 for each w in OUT (v) do begin
4 if w 6= v0 then begin
5 count[w] := count[w]− 1;
6 if count[w] = 0 then begin
7 is root[w] := false;
8 Add w to Av0

;
9 DFS(w);

10 end
11 end
12 end
13 end
14 begin /* main program */
15 for each v in V do begin
16 is root[v] := true;
17 Av := {v};
18 end
19 for each v in V do begin
20 for each w in V do count[w] := |IN(w)|;
21 v0:=v; count(v0):=count(v0)+1;

//prevents re-traversal of v0

22 DFS(v);
23 end
24 end // v is a root if is root[v] = true

If w is included in the set Av0
by this algorithm, we

say w is dominated by v0.

Lemma 4 (8) If w ∈ Av, then Aw ⊆ Av. For u 6= v,
if Au and Av are maximal, Au ∩Av = φ.

Some Aw may be included by another Av later, in
which case is root[w] becomes false at line 7. After
computation is over, the collection of maximal Av’s
are set-wise unique in the sense that there may be
Au = Av for some u 6= v. The time for this algo-
rithm is O(mn). In (8), an O(m) time algorithm
for this decomposition is described. For our claim
of time complexity, this algorithm is sufficient. The
following algorithm computes the single source prob-
lem from source s with O(m+ r log r) time, given the
1-dominator decomposition.

We maintain only the roots and s in the priority
queue. A border vertex w in Av is one whose out-
going edges, if any, go to the roots w of other maximal
Aw. The set EOUT (v) (E for extended) is the set of
roots to which there are edges from border vertices of
Av. In the sweeping algorithm for Av in Algorithm 6,
all out-going edges are processed in topological order
of Av, including those going from border vertices to
the roots of other maximal acyclic sturctures.

This algorithm takes O(m+r log r) time since each
edge is processed in line 8, the total size of EOUT ’s
is O(m) and only at most r vertices are maintained
in the queue. If we use this algorithm for n sources,
the APSP problem can be solved in O(mn+nr log r)
time, which will be improved in the next section. We
can also define a single sink version of this algorithm
with backward acyclic structures, which will be used
in the next section.

Algorithm 6

1 d[s] := 0;
2 F := {s}; // A Fibonacci or 2-3 heap is used

for the priority queue.
3 Organize F in a priority queue with d[s] as key;
4 S := ∅;
5 while S 6= V do begin
6 Find v in F with minimum key and

delete v from F ;
7 S := S ∪Av; // In the next, d[v] is used

for the initial distance from v.
8 Perform Sweeping Algorithm on Av from v

as source;
9 for w ∈ EOUT (v) do begin
10 if w /∈ S then //w is the root of another Aw.
11 if w /∈ F then F := F ∪ {w};
12 Reorganize F into queue with new d[w];
13 end
14 end.

7 Near acyclicity by feedback vertices

A more general definition of a nearly acyclic graph
is by the set of feedback vertices, T . Let r = |T |.
By definition, the induced graph, G′, from the com-
plement T ′ = V − T becomes an acyclic graph. If
r is small, the given graph is nearly acyclic. Note
that the set of the roots obtained in the 1-dominator
decomposition is a set of feedback vertices.

Next we define the reduced graph GT = (T, ET),
where T is the set of feedback vertices, and ET is the
set of edges defined as follows: an edge (vi, vj) for
vi, vj ∈ T exists if there is a path from vi to vj and
its cost is that of the shortest path from vi to vj that
goes only through the acyclic part T ′ except for end
points vi and vj . If there is no path this cost can be
defined as infinity.

The costs of (vi, vj) ∈ ET from each vi to all other
vj are computed by applying the sweeping algorithm
with the source vi on the original graph that is mod-
ified in such a way that the edges from v ∈ T other
than from vi are cut off. In (8), the APSP prob-
lem for GT is solved, and the solution is shared by n
single source problems. If a standard cubic time al-
gorithm is used for APSP, this causes the complexity
of O(mn + r3) since the number of edges |ET | can be
O(r2). In case that T is the set of roots from the 1-
dominator decomposition, |ET | can be bounded by m,
resulting in the total complexity of O(mn + r2 log r).

Now the new APSP algorithm is described. We
solve single sink problems for all vertices in T , and
the result is shared by n single source problems. In

other words, we do not use the graph GT . We de-
fine a generalized single source (GSS) problem (10)
by changing the initialization in the SSSP algorithm.
Instead of setting d[s] = 0 and d[v] =∞ for all other
v, we set all d[v] to arbitrary values, say xv and start
the main iteration. This is equivalent to assume a hy-
pothetical source v0 and set the edge cost of (v0, v) to
xv. We can generalize other algorithms, single sink,
forward and backward sweeping algorithms into the
GSS versions. Let graph GA be the graph obtained
from G by removing all incoming edges to vertices in
T . From the definition of T , GA is an acyclic graph.

The APSP algorithm follows. We call the algo-
rithm the 1-dominator version if the roots of the 1-
dominator decomposition is used for T , and the feed-
back vertex version when a set of feedback vertices is
used for T . Let D[u, v] be the shortest distance from
u ∈ V to v ∈ T after the single sink problems are
solved in line 1. Array D also serves as the container
for the final result.

Algorithm 7 All pairs shortest paths
1 for each v in T solve the single sink problem for

sink v;
2 for each u in V begin
3 Compute shortest distances from u to all v ∈ T ′

by performing the forward sweeping
algorithm on T ′;

4 for each v in T do d[v] := D[u, v];
5 Compute shortest distances to all v ∈ T ′

by performing the GSS forward sweeping
algorithm on GA with the current d;

6 for each v in T ′ do D[u, v] := d[v];
7 end

Line 1 takes O(mr + rn log n) time for general T ,
and O(mr+r2 log r) time for T from the 1-dominator
decomposition. In those two cases, Algorithm 2 and
the single sink version of Algorithm 6 are used respec-
tively. This effort is shared by the following single
source problems. Line 3 takes O(mn) time in to-
tal. Line 4 takes O(rn) time in total. Lines 5 and
6 take O(mn) time in total. Thus the total time is
O(mn + rn log n) for the general feedback vertex ver-
sion and O(mn+r2 log r) for the 1-dominator version.
Other times, such as those for 1-dominator decom-
position, topological ordering of T ′, are absorbed in
these complexities. It is possible to change directions
of edges all through the algorithm. The definition of
r must be modified accordingly.

8 Concluding remarks

We improved the time bounds for the all pairs short-
est path problem for special types of graphs by shar-
ing some information among single source problems.
In one type, the edge costs are bounded by a small in-
teger c. In this case, a simple bucket system is shared.
We assumed the distance values continuously occupy
the band of length c. If the values are sparse, there is
a room for further speed-up.

The other type is a nearly acyclic graph where we
have a small size r of the set of feedback vertices. In
this case the result of r single sink problems is shared
by n single source problems in a restricted form.
One such set of feedback vertices is the set of root
vertices in the 1-dominator decomposition, which is
treated as a special case of general feedback vertices.
It remains to be seen how much we can extend
the concept of nearly acyclic graph by identifying
an appropriate feedback vertex set. Note that the
minimum feedback vertex set is NP-complete.

Added in revision. We came to know the fastest
bucket system for delete-min, decrease-key and insert
with small integers for SSSP is by Thorup (11). The
time is O(m + n log log c). Regarding the comment
after Lemma 3, we can switch to Thorup’s bucket
system, when c > O(n log log n).

Acknowledgment The authors acknowledge that
the constructive comments by the reviewers were very
helpful when the paper was revised.

References

[1] Ahuja, K., K. Melhorn, J.B. Orlin, and R.E. Tar-
jan, Faster algorithms for the shortest path prob-
lem, Jour. ACM, 37 (1990) 213-223.

[2] Chan, T., All-Pairs Paths for Unweighted Undi-
rected Graphs in o(mn) Time, Proc. Symp. Dis-
crete Algo. (SODA 06), 514-523 (2006)

[3] Dijkstra, E.W., A note on two problems in con-
nexion with graphs, Numer. Math. 1 (1959) 269-
271. 1343-1345.

[4] Fredman, M.L. and R,E, Tarjan, Fibonacci heaps
and their uses in improved network optimization
algorithms, Jour. ACM 34 (1987) 596-615.

[5] Karger, D.R., D. Koller, and S. J. Phillips, Find-
ing the hidden path: the time bound for all-
pairs shortest paths, SIAM Jour. Comput. 22
(1993)1199-1217.

[6] Pettie, S., A new approach to all-pairs shortest
paths on real-weighted graphs, Theoretical Com-
puter Science, 312(1), 47-74 (2004)

[7] Saunders, S. and T. Takaoka, Improved shortest
path algorithms for nearly acyclic graphs, Theo-
retical Computer Science, 293(3), 535-556 (2003)

[8] Saunders, S. and T. Takaoka, Solving short-
est paths efficiently on nearly acyclic directed
graphs, Theoretical Computer Science, 370(1-3),
94-109 (2007)

[9] Takaoka, T., Theory of 2-3 Heaps, COCOON
’99, Lecture Notes in Computer Science (1999)

[10] Takaoka, T., Shortest path algorithms for nearly
acyclic directed graphs, Theoretical Computer
Science, 203(1): 143–150, August 1998

[11] Thorup, M., Integer Priority Queues with De-
crease Key in Constant Time and the Single
Source Shortest Paths Problem, Proc. ACM
Symp. Theory of Comp. (STOC 2003) 149 – 158,
2003

[12] Vuillemin, J., A data structure for manipulating
priority queues, Comm. ACM 21 (1978) 309-314.

