
Simseer and Bugwise - Web Services for Binary-level Software

Similarity and Defect Detection

Silvio Cesare and Yang Xiang
School of Information Technology

Deakin University

Burwood, Victoria 3125, Australia

{scesare, yang}@deakin.edu.au

Abstract

Simseer and Bugwise are online web services that

perform binary program analysis: 1) Simseer identifies

similarity between submitted executables based on

similarity in the control flow of each binary. A software

similarity service provides benefit in identifying malware

variants and families, discovering software theft, and

revealing plagiarism of software programs. Simseer

additionally performs code packing detection and

automated unpacking of hidden code using application-

level emulation. Finally, Simseer uses the similarity

information from a sample set to identify program

relationships and families through visualization of an

evolutionary tree. 2) Bugwise is a service that identifies

software bugs and defects. To achieve this end, it

performs decompilation and data flow analysis. Bugwise

can identify a subset of use-after-free bugs and has

already found defects in Debian Linux. Bugwise and

Simseer are both built on Malwise, a platform of binary

analysis.
.

Keywords: computer security, software similarity,

software theft detection, plagiarism detection, bug

detection, could computing.

1 Introduction

Software similarity is an important topic with a number

of applications. It can be used in the areas of malware

detection, software theft detection and plagiarism

detection. These are the applications for which Simseer

was designed to address.

Software similarity analysis is built upon a platform of

program analysis that performs the relevant aspects of

feature extraction. This process of software analysis can

be used not only for software similarity tasks, but also to

detect software bugs and defects.

Defect Detection is the problem of finding software

bugs. Examples of bugs that defect detection can identify

are buffer overflows, divide-by-zeros, and dynamic

memory management problems such as use-after-frees.

Malware variant detection is the problem of

identifying malware that is a replicated, obfuscated, or an

evolved copy of a known malicious sample. Malware

Copyright © 2013, Australian Computer Society, Inc. This

paper appeared at the 11th Australasian Symposium on Parallel

and Distributed Computing (AusPDC 2013), Adelaide, South

Australia, January-February 2013. Conferences in Research and

Practice in Information Technology (CRPIT), Vol. 140. B.

Javadi and S. K. Garg, Eds. Reproduction for academic, not-for

profit purposes permitted provided this text is included.

variant detection can be used to attribute a sample to a

particular author or family of malware. Malware variant

detection is the problem of identifying similarity between

known malware and unknown programs.

Software theft detection identifies the unauthorized

duplication or copying of software. The purpose of this

area is to have automated ways to discover or verify

copyright infringement of software or intellectual

property. Software theft detection is the problem of

identifying unauthorized similar software.

Plagiarism detection detects student cheating in

assignments where the submission is a piece of software.

Students copying each other’s work can be broken down

into the problem of identifying similar copies of software

in the students’ submissions

1.1 Motivation

Defect Detection can reduce the cost of maintaining

software by identifying problems during quality and

assurance testing and not after the public software release

is made. Identifying software defects that impact on the

security of software means that producers of software can

stay ahead of attackers who actively try to discover these

defects themselves. Bug detection in binaries is important

to external auditors who need to validate the security of

software they are given. Binary auditing is also important

to verify the compiler and linker are working properly

without introducing new defects.

Malware detection is an important problem on the

internet today. According to the Symantec Internet Threat

Report (Symantec 2008), 499,811 new malware samples

were received in the second half of 2007. The same

vendor reported over 1.5 billion malicious code

detections in 2010 (Symantec 2011). F-Secure published,

“As much malware [was] produced in 2007 as in the

previous 20 years altogether“ (F-Secure 2007). This

growth continues today.

Malware variant detection can be used to enhance the

traditional approach of signature based malware detection

by providing more predictive power to those signatures.

Most malware today is a variant of existing malware, so

identifying variants is effective in detecting a significant

amount of malicious code that traditional approaches fail

to identify.

Software theft is a problem with significant

consequences. In 2005, a federal court determined that

the independent software vendor Compuserve be paid

$140 million by IBM to license its software or $260

million to purchase its services because it was discovered

that IBM products had illegitimately used code from

Proceedings of the Eleventh Australasian Symposium on Parallel and Distributed Computing (AusPDC 2013), Adelaide, Australia

21

Compuware without authorization (Wang et al. 2009).

Software theft detection is an important area that helps

protect the high worth of intellectual property.

Plagiarism detection is important to maintain integrity

in educational environments. If students believe they will

be caught if they cheat then they are unlikely to proceed

with that unethical practice. If educators receive a high

number of assignment submissions then it may be hard to

recognize that cheating has occurred, so automated

methods are an important tool.

1.2 Innovation

Simseer is a tool that can detect similar software and

identify malware variants, discover software theft, and

reveal plagiarism. Bugwise can detect some classes of

software defects in binaries. The contributions of this

paper are as follows:

 We propose an online web service to address the

issues of malware variant detection, software theft

detection, and plagiarism detection.

 We propose an online web service to address the

issue of closed source software defect analysis.

 We use state-of-the-art algorithms in our novel

service.

 We implement and make public our services.

1.3 Structure of the Paper

The structure of this paper is as follows: Section 2

examines related work in software similarity and bug

detection. Section 3 describes a high level overview of

our aims and approach. Section 4 discusses the design

and implementation of our system as a cloud service.

Section 5 evaluates different aspects of our system.

Section 6 gives details on how to access our service.

Section 7 looks at future work. Finally, Section 8

concludes the paper.

2 Related Work

Detecting defects in software has a long history in formal

methods. Data flow analysis is used by compilers (Aho,

Sethi & Ullman 1986) and is what Bugwise uses to

perform binary analysis. Abstract interpretation, which

formalizes data flow analysis was introduced in (Cousot

& Cousot 1977). Theorem proving has been used to prove

the absence of bugs (Dijkstra 1975; Hoare 1969).

Satisfiability over Modulo Theories (SMT) extends SAT

and has been used to perform bug detection (Cadar et al.

2008; Molnar & Wagner 2007) and symbolic execution

(King 1976). Decompilation has been used to analyse

binary programs in the past including work in (Cifuentes

1994; Van Emmerik 2007) which used compilation

techniques to aid the decompilation process.

The areas relating to software similarity are malware

variant detection, software theft detection, plagiarism

detection, and code clone detection. A unified approach

to the software similarity problem is to divide the

problem into feature extraction to construct fingerprints,

known as birthmarks, and then to calculate birthmark

similarity using mathematical distance and similarity

functions. Birthmarks can be considered as strings,

vectors, sets, trees, graphs and other objects.

In malware variant detection, raw code has been used

to construct string based signatures, which is common in

Antivirus software (Griffin et al. 2009; Kephart & Arnold

1994). Kolmogorov complexity of raw code has been

used in (Wicherski 2009). The Normalized Compression

Distance was used in (Wehner 2007). Opcode

distributions are another feature used in (Bilar 2007). N-

grams were used on instructions in (Karim et al. 2005)

and evolutionary trees were constructed. Static and

dynamic API call features were used in (Ye et al. 2007)

and (Kolbitsch et al. 2009) respectively. Control flow and

data flow were used as a feature in (Christodorescu & Jha

2003; Christodorescu et al. 2005).

Control flow is the approach that Simseer uses to

construct birthmarks. Interprocedural control flow was

proposed as a feature in (Briones & Gomez 2008; Carrera

& Erdélyi 2004; Dullien & Rolles 2005; Gerald & Lori

2007; Hu, Chiueh & Shin) . Simseer uses intraprocedural

control flow of a program’s procedures and similar

techniques have been applied in (Cesare & Xiang 2010b)

(Cesare & Xiang 2010a) (Bonfante, Kaczmarek &

Marion 2008) (Kruegel et al. 2006).

In software theft detection, similar techniques have

been used. Instruction sequences were used in (Park et al.

2008). K-grams of instruction sequences were used in

(Myles & Collberg 2005). Control flow was used in (Lim

et al. 2009a, 2009b) and static API calls used in (Choi et

al. 2008, 2009).

In plagiarism detection systems such as JPlag

(Prechelt, Malpohl & Philippsen 2002) and YAP3 (Wise

1996) have used the text of raw source code as a feature.

Parse trees were used in (Son, Park & Park 2006)

allowing tree based distances to calculate similarity.

Program Dependence Graphs (PDGs) were used in (Liu

et al. 2006).

Code clone techniques are based on the software

similarity problem. It is the problem of identifying

duplicate or similar fragments of code in a piece of

software. Approaches have included using raw source

code as a birthmark in (Ducasse, Rieger & Demeyer

1999) and for large scale applications in (Kamiya,

Kusumoto & Inoue 2002; Livieri et al. 2007). Abstract

Syntax Trees (ASTs) were used in (Baxter et al. 1998).

PDGs were proposed in (Krinke 2001).

Birthmark similarity is the next step after feature

extraction and birthmark creation. Distance metrics for

strings, vectors, sets, trees, and graphs exist. For strings,

the Levenshtein distance is the minimum number of

insertions, deletions, and substitutions to transform one

string to another. Sequence alignment is often used in

bioinformatics including the optimal local sequence

alignment, known as the Smith-Waterman algorithm.

Vector distance metrics include the Manhattan distance or

the classic Euclidean distance. Cosine similarity is a

popular vector similarity measure. Set similarity includes

the Dice Coefficient and the Jaccard Index. Trees and

graphs have edit distances to describe the number of basic

operations to transform one object to another. Maximum

common subtrees or subgraphs are other measures used to

identify similarity and distance.

CRPIT Volume 140 - Parallel and Distributed Computing 2013

22

3 Our Approach

The aims of this work are to provide a web service to

score and visualize similarity between executable

binaries, and also to provide a web service to detect

software defects in binaries. To perform software

similarity scoring and defect detection, we employed

some of our previous work, Malwise, to do the backend

processing.

Malwise performs software similarity scoring by using

control flow within a binary as a signature. Control flow

is considered invariant under common program

transformations and is effective at detecting program

variants.

Malwise can also perform general static analysis of

binaries. It does this by disassembling the binary,

translating the disassembly to an intermediate language,

and then performing decompilation, data flow, and other

analyses. Data flow analysis combined with

decompilation is capable at detecting some defects from

some classes of bugs in binaries.

4 System Design and Implementation

The system uses two Virtual Private Servers (VPS) in the

cloud and could potentially be scaled into larger server

farms. One server is the web frontend and one server is

the scan server. The servers have 1GB of memory each.

The workflow for the web service involving all

components is shown in Fig. 1. The user interface is a

submission system that returns a results page.

4.1 The Web Frontend

Both Simseer and Bugwise are accessed by web

frontends. Bugwise is almost functionally equivalent in

its processing, so Simseer will be explained in depth.

The web frontend is the user interface to the Simseer

cloud service and the landing page and the final result is

shown in Fig. 2. And Fig. 3. A user of the service can

submit a ZIP archive of executables which are

subsequently transferred to and processed by the server.

Our implementation is coded in the server side PHP

programming language. The PHP code is responsible for

rate limiting the number of submission requests per IP

address by maintaining a record of submissions to the

system in a MySQL database.

The PHP code launches a shell script which takes over

handling of the archive submission. The script checks that

the ZIP archive is valid, does not contain an excessive

number of samples, does not contain symbolic links as

archive members, and does not contain archive member

names using special characters.

The system logs that a submission to the system has

been made and makes a copy of the submission content

into storage. The script launches a C++ compiled

program that acts as a client in a client-service protocol

with the scan server. The protocol enables transmission of

files that will be processed by the scan server.

Communication with the scan server is performed over an

SSH port forwarded tunnel which allows security in the

client-server protocol.

4.2 The Scheduling Work Queue

The scan server listens locally on a TCP port which is

connected via an SSH tunnel back to the web frontend.

The C++ implemented server component launches the

Malwise backend to process files received. However,

scheduling must occur so that the server does not

consume excessive resources. Thus receipt and

processing of files is queued so that only 1 job is active at

any given time. The number of parallel jobs can be

arbitrary, however due to the single core nature of our

Virtual Private Server (VPS) scan server, running jobs in

parallel does not result in an increase in performance.

Additionally, running multiple jobs in parallel places

more restrictions on memory usage per instance which we

wanted to avoid. Once a job has been scheduled and the

ZIP archive or binary received from the web frontend

host, a script is launched to process the file and launch the

Web Frontend Scan Server

Script Scheduler

Script

Malwise
Evolutionary

Tree Creation

SSH Tunnel

SSH Tunnel (Simseer)

Store and

Display

Results

SSH Tunnel (Bugwise)

Figure 1. Web services work flow.

Proceedings of the Eleventh Australasian Symposium on Parallel and Distributed Computing (AusPDC 2013), Adelaide, Australia

23

Malwise system. For Simseer, the script unpacks the

archive ready for Malwise to process. For Bugwise, the

binary is passed on directly.

4.3 Malwise Backend

Simseer and Bugwise both use the Malwise backend. The

difference between Simseer and Bugwise is the module

list that Malwise uses. The Malwise backend is coded in

C++ and consists of 100,000 Lines of Code (LOC).

Malwise is launched as a standalone program from the

scheduler launched script. It is possible to use Malwise as

a daemon and avoid the cost of repeated program loading

when submitting jobs. However, the reliability of the

system as a whole is increased when we launch Malwise

as a standalone program for each job because if a scan

then causes a crash it is contained to an individual job. If

Malwise was run as a daemon and allowed jobs to be

queued then all jobs would be lost if the program failed.

Even though we launch jobs separately, the service

allows for scalability because jobs could potentially be

launched on server farms behind the interface. Likewise,

the system still maintains a global view of jobs being

launched - it stores copies of the binaries submitted to the

service. This allows us to perform offline analysis and

correlation to determine if novel samples are being

submitted to the service or if known samples are the

primary source of submissions.

The backend is modular and allows for loading of

modules at program startup defined by an XML

configuration file. A sample of the differences between

the configuration for Simseer and Bugwise is shown in

Fig. 8 and Fig. 9. Malwise returns its results in XML.

This XML is transferred back across the SSH tunnel to

the client on the web frontend host where it is stored for

processing.

4.3.1 Simseer

The modules we have deployed to implement Simseer

are:

 Packer Detection using Entropy Analysis

 Automated Unpacking using Application-level

Emulation.

 Control Flow Decompilation

 Software Similarity Detection using Q-Grams of

Decompiled Control Flow Graphs

The automated unpacker is a module to remove

obfuscations and encryptions by revealing the hidden

code (Cesare & Xiang 2010a). Packing is common in

most malware. To deploy the automated unpacker we

needed to make available the Windows system libraries.

The reason for this is that the emulator requires libraries

to implement dynamic linking of the emulated guest

programs.

We used two types of configurations to Malwise with

the above module list. In the first configuration,

processing executables creates a signature for the

software similarity detection. In the second configuration,

the signature database is assumed to be already filled.

Figure 2. The Simseer landing page.

Figure 3. Simseer results.

Figure 4. Program relationship visualization.

CRPIT Volume 140 - Parallel and Distributed Computing 2013

24

Thus Simseer is split into two phases – signature database

creation and software similarity detection. The script

handling the launching of Malwise calls Malwise once for

each phase, and therefore two times in total.

4.3.2 Bugwise

The modules we have deployed to implement Bugwise

are:

 Intermediate Language Optimisation

 Decompilation Modules

 Linux

 Data Flow Analysis

 Double-free Detection

The intermediate language optimisations are a set of

compiler style optimisations that operates over the

intermediate language Malwise uses to represent x86

assembly code. The optimisations that are implemented

are:

 Dead Code Elimination

 Copy propagation

 Constant folding

 Constant propagation

The decompilation modules translate stack based local

variables to native variables in the intermediate language.

This allows the data flow analysis to identify problems

such as use-after-frees and double-frees.

A Linux specific module is used to identify the

beginning of the main() function via the

__libc_start_main library call.

The data flow analysis module enables a variety of

analyses such as:

 Reaching Definitions

 Upwards Exposed Uses

 Reaching Copies

Finally, the double-free detection module uses the data

flow analysis to discover use of the free pointer after a

free() without a reassignment of the pointer. In practice,

Bugwise has found software defects in Debian Linux

given only access to the binary executables.

4.4 Simseer Evolutionary Tree Visualization

A phylogenetic or evolutionary tree is a visual

representation of the evolutionary relationships between

species based on similarity between features or

characteristics. Species closer to the tree in relation to the

number of branches or branch lengths are more closely

related. Simseer uses evolutionary trees to visualize the

relationships between programs and their variants. This

visualization is useful because program variants are

typically derivatives and modified versions of their

upstream source.

The web frontend host is responsible for processing

the XML results returned by Malwise. One of the

responsibilities of the script launched on the web host is

to create and render an evolutionary tree of the

submissions. The XML returned by Malwise scores the

similarity between each sample. The script transforms the

XML into a distance matrix. Distance is calculated as 1 –

Figure 5. Simseer processing time.

Figure 6. Malwise processing time.

klez.a

klez.b

klez.c

klez.d

klez.g

klez.h

netsky.aa

netsky.e

asciitext

Figure 7. Simseer samples.

 <ModuleGroup>

 <Name>Scan</Name>

 <Run>Packer Detection Using Entropy</Run>

 <Run>Unpacker Using Application Level Emulation</Run>

 <Run>Structuring</Run>

 <Run>NGram Structuring</Run>

 </ModuleGroup>

Figure 8. Simseer configuration.

 <ModuleGroup>

 <Name>Scan</Name>

 <Run>Code Optimsation 1</Run>

 <Run>Linux Arch</Run>

 <Run>Pre Decompiler Data Flow Analysis</Run>

 <Run>X86 Decompiler Data Flow Analysis</Run>

 <Run>Decompiler Data Flow Analysis</Run>

 <Run>Code Optimsation 2</Run>

 <Run>IRDataFlowAnalysis</Run>

 <Run>Double Free Detection</Run>

 </ModuleGroup>

Figure 9. Bugwise configuration.

Proceedings of the Eleventh Australasian Symposium on Parallel and Distributed Computing (AusPDC 2013), Adelaide, Australia

25

similarity. This distance matrix is then analysed to create

an evolutionary tree using the PHYLIP software package

(Felsenstein 2005). The PHYLIP package uses the

neighbour joining method (Saitou & Nei 1987) to

construct an evolutionary tree. The evolutionary tree is

described by the Newick tree format which gives such

information as branch lengths in the tree. The Newick

tree file is processed to render a figure suitable for

display. The figure is then transformed to a PNG image

and stored on the web host. An example of the tree

visualization is shown in Fig. 4.

4.5 Results Processing

The results shown to the user are different depending on

whether Simseer or Bugwise is being used.

4.5.1 Simseer

To display the results, the Malwise XML similarity

results are displayed as an HTML table. The background

colour of the table cells are proportional to how similar

the samples are. The lighter the colour, the more similar

the programs are. If the programs are not variants of each

other, the table cell is left unshaded. The evolutionary

tree image of the programs is shown on the same page.

The results processing is performed after submitting an

archive to the system and may also be accessed at a later

time. Later viewing of the results is achieved by

accessing a PHP page to reprocess the Malwise XML

results and displaying the permanently stored

evolutionary tree image. To specify which archive is

requested to be processed, an MD5 digest of the ZIP

archive is passed as a parameter to the web page using the

GET HTTP method.

4.5.2 Bugwise

Bugwise lists the double frees detection in a HTML table.

The double free detector returns the address of the code in

the disassembly for both frees that are involved in the

bug. To be able to use the results effectively, an analyst

must be familiar with reverse engineering. For people

performing binary analysis without source this skill is

expected.

5 Efficiency of Malwise as a Web Service

We performed an evaluation of the time it takes to

process 9 samples using the Simseer web service. We did

this by writing a Python script to submit the samples to

the web service over HTTP and read the results. The

samples we used to perform this test are shown in Fig. 9.

Eight samples were malware and 1 sample was some

ASCII text which should not be found similar to any of

the executables. We submitted the 9 samples as a ZIP

archive to a local machine running the Simseer web

service. We performed this test 100 times. A mean time

of 8.53 seconds was recorded with a standard deviation of

0.06 seconds. The results are shown graphically in Fig. 5.

We performed a similar evaluation on the samples, but

this time we ran the tests by command line and without

performing the program visualization using evolutionary

trees. This test gives us a base line for Malwise, upon

which Simseer is based. The comparison between

Malwise (Fig. 9) and Simseer (Fig. 8) demonstrates how

effective the web service is (Fig. 8) when compared to

using the system without the web interface (Fig. 9). The

mean processing time for 100 iterations was 7.89 seconds

with a standard deviation of 0.11 seconds. The results are

shown graphically in Fig. 6.

The overhead of Simseer as a web service, excluding

varied upload times of different speed networks, is 0.64

seconds. These results show that providing Simseer as a

web service is efficient and does not add significant

overhead to Malwise.

We take the previous results into account when

considering Bugwise. Bugwise is much slower than

Simseer due to the data flow analysis that is required for

bug detection. We see no significant overhead in

launching Bugwise since it uses the same web frontend

and scheduling code as Simseer.

6 Availability

The Simseer service is free to use. It can be accessed on

the web at http://www.foocodechu.com/?q=simseer-a-

software-similarity-web-service. The Bugwise service is

also free to use and can be accessed on the web at

http://www.foocodechu.com/?q=node/19. We have

implemented rate limiting to restrict the number of scans

per day per IP address. We have also limited the number

of samples that can be submitted per ZIP archive to the

Simseer, and limited the size of the binary that can be

submitted to the Bugwise service. As the service grows,

we may relax some of these constraints.

7 Future Work

One thing we would like to do is replace our custom

scheduling work queue with an enterprise messaging

system such as RabbitMQ. Enterprise-level messaging

systems have guarantees on reliabilities in the case of

transmission or network failures. Using such a system

would improve our reliability. Enterprise messaging also

leads to an easy solution to distributed scan servers as we

can have a single producer of messages on the web front

end, and consumers in multiple scan servers.

We would also like to implement more flexibility in

which modules are used in launching Simseer and

Bugwise. Malwise has many modules available, and

multiple options are available for software similarity

scoring and defect detection.

Another possibility is using any-time clustering on the

stream of samples that are given to Simseer. In this

approach, cluster analysis is performed incrementally as

objects are given to the system sequentially. An any-time

phylogenetic tree analysis could follow on from any-time

clustering. Any-time clustering could provide intelligence

into new families of malware that are given to Simseer.

This could benefit analysts in determining if a new

sample relates to an existing family is something never

seen before or relatively new.

Bugwise could be extended by treating bug detection

instead as bug management. An automated bug reporting

system could be used to submit, remove, and verify bugs

that it discovers. This type of approach has been used

successfully in network vulnerability management and we

think that there exists many parallels.

CRPIT Volume 140 - Parallel and Distributed Computing 2013

26

http://www.foocodechu.com/?q=simseer-a-software-similarity-web-service
http://www.foocodechu.com/?q=simseer-a-software-similarity-web-service
http://www.foocodechu.com/?q=node/19

8 Conclusion

In this paper we have demonstrated novel services to 1)

score and visualize the software similarity of executable

binary programs 2) detect software defects in binaries.

The Simseer and Bugwise services are deployed as cloud

services and are free to use. Simseer can be used to

identify malware variants, detect software theft, and

reveal plagiarism of software programs. Bugwise has

already found real defects in Debian Linux. Simseer and

Bugwise are built as a modular extension to our Malwise

binary analysis platform. It demonstrates the versatility of

our system that we can launch both services using only

slightly different parameters with separate configurations.

We performed an evaluation on the overhead incurred by

making our Malwise platform using web services. We

found that such an overhead was minimal and not

significant. We are the first to make a public service that

analyses executable binaries in these contexts and see the

area of cloud based software analysis and similarity

detection as having future growth.

9 References

Aho, AV, Sethi, R & Ullman, JD 1986, Compilers:

principles, techniques, and tools, Addison-Wesley,

Reading, MA.

Baxter, ID, Yahin, A, Moura, L, Sant'Anna, M & Bier, L

1998, 'Clone detection using abstract syntax trees', in p.

368.

Bilar, D 2007, 'Opcodes as predictor for malware',

International Journal of Electronic Security and Digital

Forensics, vol. 1, no. 2, pp. 156-68.

Bonfante, G, Kaczmarek, M & Marion, JY 2008,

'Morphological Detection of Malware', in International

Conference on Malicious and Unwanted Software, IEEE,

Alexendria VA, USA, pp. 1-8.

Briones, I & Gomez, A 2008, 'Graphs, Entropy and Grid

Computing: Automatic Comparison of Malware', in Virus

Bulletin Conference, pp. 1-12.

Cadar, C, Ganesh, V, Pawlowski, PM, Dill, DL & Engler,

DR 2008, 'EXE: automatically generating inputs of

death', ACM Transactions on Information and System

Security TISSEC (2008), vol. 12, no. 2, pp. 10:1-:38.

Carrera, E & Erdélyi, G 2004, 'Digital genome mapping–

advanced binary malware analysis', in Virus Bulletin

Conference, pp. 187-97.

Cesare, S & Xiang, Y 2010a, 'Classification of Malware

Using Structured Control Flow', in 8th Australasian

Symposium on Parallel and Distributed Computing

(AusPDC 2010).

Cesare, S & Xiang, Y 2010b, 'A Fast Flowgraph Based

Classification System for Packed and Polymorphic

Malware on the Endhost', in IEEE 24th International

Conference on Advanced Information Networking and

Application (AINA 2010).

Choi, S, Park, H, Lim, H & Han, T 2008, 'A static

birthmark of binary executables based on API call

structure', Advances in Computer Science–ASIAN 2007.

Computer and Network Security, pp. 2-16.

Choi, S, Park, H, Lim, H & Han, T 2009, 'A static API

birthmark for Windows binary executables', Journal of

Systems and Software, vol. 82, no. 5, pp. 862-73.

Christodorescu, M & Jha, S 2003, 'Static analysis of

executables to detect malicious patterns', paper presented

to Proceedings of the 12th USENIX Security Symposium.

Christodorescu, M, Jha, S, Seshia, SA, Song, D & Bryant,

RE 2005, 'Semantics-aware malware detection', in

Proceedings of the 2005 IEEE Symposium on Security

and Privacy (S&P 2005), Oakland, California, USA.

Cifuentes, C 1994, 'Reverse compilation techniques',

Queensland University of Technology.

Cousot, P & Cousot, R 1977, 'Abstract interpretation: a

unified lattice model for static analysis of programs by

construction or approximation of fixpoints', in Sixth

Annual ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, Los Angeles,

California, pp. 238-52.

Dijkstra, EW 1975, 'Guarded commands, nondeterminacy

and formal derivation of programs', Communications of

the ACM, vol. 18, no. 8, pp. 453-7.

Ducasse, S, Rieger, M & Demeyer, S 1999, 'A language

independent approach for detecting duplicated code', in p.

109.

Dullien, T & Rolles, R 2005, 'Graph-based comparison of

Executable Objects (English Version)', in SSTIC.

F-Secure 2007, 'F-Secure Reports Amount of Malware

Grew by 100% during 2007', retrieved 19 August 2009,

<http://www.f-secure.com/en_EMEA/about-

us/pressroom/news/2007/fs_news_20071204_1_eng.html

>.

Felsenstein, J 2005, PHYLIP (phylogeny inference

package), version 3.6, Joseph Felsenstein.

Gerald, RT & Lori, AF 2007, 'Polymorphic malware

detection and identification via context-free grammar

Proceedings of the Eleventh Australasian Symposium on Parallel and Distributed Computing (AusPDC 2013), Adelaide, Australia

27

homomorphism', Bell Labs Technical Journal, vol. 12,

no. 3, pp. 139-47.

Griffin, K, Schneider, S, Hu, X & Chiueh, T 2009,

'Automatic Generation of String Signatures for Malware

Detection', in Recent Advances in Intrusion Detection:

12th International Symposium, RAID 2009, Saint-Malo,

France.

Hoare, CAR 1969, 'An axiomatic basis for computer

programming', Communications of the ACM, vol. 12, no.

10, pp. 576-80.

Hu, X, Chiueh, T & Shin, KG 'Large-Scale Malware

Indexing Using Function-Call Graphs', in Computer and

Communications Security, Chicago, Illinois, USA, pp.

611-20.

Kamiya, T, Kusumoto, S & Inoue, K 2002, 'CCFinder: a

multilinguistic token-based code clone detection system

for large scale source code', IEEE Transactions on

Software Engineering, pp. 654-70.

Karim, ME, Walenstein, A, Lakhotia, A & Parida, L

2005, 'Malware phylogeny generation using permutations

of code', Journal in Computer Virology, vol. 1, no. 1, pp.

13-23.

Kephart, JO & Arnold, WC 1994, 'Automatic extraction

of computer virus signatures', in 4th Virus Bulletin

International Conference, pp. 178-84.

King, JC 1976, 'Symbolic execution and program testing',

Communications of the ACM, vol. 19, no. 7, pp. 385-94.

Kolbitsch, C, Comparetti, PM, Kruegel, C, Kirda, E,

Zhou, X, Wang, XF & Santa Barbara, UC 2009,

'Effective and efficient malware detection at the end host',

in 18th USENIX Security Symposium.

Krinke, J 2001, 'Identifying similar code with program

dependence graphs', in p. 301.

Kruegel, C, Kirda, E, Mutz, D, Robertson, W & Vigna, G

2006, 'Polymorphic worm detection using structural

information of executables', Lecture notes in computer

science, vol. 3858, p. 207.

Lim, H, Park, H, Choi, S & Han, T 2009a, 'A method for

detecting the theft of Java programs through analysis of

the control flow information', Information and Software

Technology, vol. 51, no. 9, pp. 1338-50.

Lim, H, Park, H, Choi, S & Han, T 2009b, 'A Static Java

Birthmark Based on Control Flow Edges', in Computer

Software and Applications Conference (COMPSAC '09),

pp. 413-20.

Liu, C, Chen, C, Han, J & Yu, PS 2006, 'GPLAG:

detection of software plagiarism by program dependence

graph analysis', paper presented to Proceedings of the

12th ACM SIGKDD international conference on

Knowledge discovery and data mining, Philadelphia, PA,

USA.

Livieri, S, Higo, Y, Matushita, M & Inoue, K 2007,

'Very-large scale code clone analysis and visualization of

open source programs using distributed CCFinder: D-

CCFinder', in Proceedings of the 29th international

conference on Software Engineering (ICSE '07), pp. 106-

15.

Molnar, DA & Wagner, D 2007, Catchconv: Symbolic

execution and run-time type inference for integer

conversion errors, Technical Report UCB/EECS-2007-

23, EECS Department, University of California,

Berkeley.

Myles, G & Collberg, C 2005, 'K-gram based software

birthmarks', paper presented to Proceedings of the 2005

ACM symposium on Applied computing, Santa Fe, New

Mexico.

Park, H, Choi, S, Lim, H & Han, T 2008, 'Detecting code

theft via a static instruction trace birthmark for Java

methods', in pp. 551-6.

Prechelt, L, Malpohl, G & Philippsen, M 2002, 'Finding

plagiarisms among a set of programs with JPlag', Journal

of Universal Computer Science, vol. 8, no. 11, pp. 1016-

38.

Saitou, N & Nei, M 1987, 'The neighbor-joining method:

a new method for reconstructing phylogenetic trees',

Molecular biology and evolution, vol. 4, no. 4, pp. 406-

25.

Son, J-W, Park, S-B & Park, S-Y 2006, 'Program

Plagiarism Detection Using Parse Tree Kernels', in Q

Yang & G Webb (eds), PRICAI 2006: Trends in Artificial

Intelligence, Springer Berlin / Heidelberg, vol. 4099, pp.

1000-4.

Symantec 2008, Symantec internet security threat report:

Volume XII, Symantec.

Symantec 2011, 'Internet Security Threat Report', vol. 16.

Van Emmerik, MJ 2007, 'Static Single Assignment for

Decompilation', The University of Queensland.

CRPIT Volume 140 - Parallel and Distributed Computing 2013

28

Wang, X, Jhi, Y-C, Zhu, S & Liu, P 2009, 'Behavior

based software theft detection', paper presented to

Proceedings of the 16th ACM conference on Computer

and communications security, Chicago, Illinois, USA.

Wehner, S 2007, 'Analyzing worms and network traffic

using compression', Journal of Computer Security, vol.

15, no. 3, pp. 303-20.

Wicherski, G 2009, 'peHash: A Novel Approach to Fast

Malware Clustering', in Usenix Workshop on Large-Scale

Exploits and Emergent Threats (LEET'09), Boston, MA,

USA.

Wise, MJ 1996, 'YAP3: improved detection of

similarities in computer program and other texts',

SIGCSE Bull., vol. 28, no. 1, pp. 130-4.

Ye, Y, Wang, D, Li, T & Ye, D 2007, 'IMDS: intelligent

malware detection system', in Proceedings of the 13th

ACM SIGKDD international conference on Knowledge

discovery and data mining.

Proceedings of the Eleventh Australasian Symposium on Parallel and Distributed Computing (AusPDC 2013), Adelaide, Australia

29

CRPIT Volume 140 - Parallel and Distributed Computing 2013

30

