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Abstract 
System safety is an accepted approach to help understand 
and manage hazards and risks in complex systems in 
order to prevent accidents.  Many different industries use 
system safety analyses and methods to help reduce the 
potential for harm to people, property, and the 
environment.  When used correctly, system safety 
methods can provide tremendous benefits, focusing 
resources to reduce risk and improve safety in complex 
systems. Because computing systems are increasingly 
being used to control critical functions and supply safety 
decision information, software may directly or indirectly 
contribute to an accident. Therefore, software must be 
included  as  part  of  an  organization’s  system  safety  efforts  
to manage hazards and risks. However, for many 
organizations, software is not effectively incorporated 
into the system safety process, and questions are not 
asked about whether the analyses are appropriate for 
complex, automated systems. This paper will summarize 
several accident reports and use those reports to illustrate 
potential failures in the system safety process with respect 
to software and computing systems. Lessons learned will 
be discussed, and some essential questions in software 
safety will be presented. This discussion is intended to 
provide insights to help promote a questioning attitude 
that can improve software safety and system safety 
efforts. 
Keywords:  software safety, system safety, lessons 
learned. 

1 Introduction 
As more advanced technology and automation are used, 
transportation systems, energy production systems, 
medical devices, manufacturing processes, and many 
other systems continue to increase in complexity.  These 
complex systems create safety risks to their operators and 
to the communities they serve.  System safety is an 
approach to help manage hazards and risks in complex 
systems.   

System safety is often implemented through a system 
safety process.  1 
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A typical system safety process includes the following 
components: 

 Safety planning 
 Hazard identification 
 Hazard risk assessment and risk decision making 
 Risk reduction and hazard controls 
 Risk reduction verification 
 Hazard tracking, anomaly reporting, and change 

management 
 

Of particular concern with regard to system safety are 
the risks related to software and computing systems. 
Software and computing systems may be safety-critical if 
they:  

 can cause a hazard (for example, if a software 
command or automated system can inadvertently 
create the potential for harm), 

 control a hazard (for example, if software is 
needed to prevent a mishap), 

 are used in critical calculations or analyses (for 
example, output from models and simulations), 

 are used to test critical systems.  
 

Software includes computer programs, procedures, 
scripts, rules, and associated documentation and data 
pertaining to the development and operation of a 
computer system. Software can be developed by the 
organization implementing the system or may be 
purchased as Commercial Off-The-Shelf (COTS) 
software. Software safety encompasses not just the 
software but also the computing system. A computing 
system includes the software and supporting hardware, 
sensors, effectors, humans who interact with the system, 
and data necessary for successful operation. Examples of 
computing systems include Programmable Logic 
Controllers (PLC) and Supervisory Control and Data 
Acquisition (SCADA) systems. 

In spite of the fact that software is such an important 
part of complex systems, the analysis of hazards and risks 
from software has been inconsistent across industries. 
Hazard and safety analyses have historically been 
hardware-focused. Therefore, many analysts may not 
understand how to incorporate software into their system 
hazard analyses, and evaluators of those analyses may not 
understand what should be assessed. Organizations may 
be focused on compliance to regulations, which often do 
not address software, and therefore those organizations 
may not properly assess or mitigate software-related 
risks. As a result, organizations need to increase the 
attention given to addressing the potential for hazards 
related to software and computing systems. 
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2 Lessons Learned: System Safety Process 
Failures 

Although the system safety process is an accepted 
approach to reducing risk in complex systems, there are a 
number of ways this process can fail to prevent an 
accident, especially in systems where software and 
computing systems are used. The sections that follow 
present potential failures in implementation of the system 
safety process, based on review of hundreds of software-
related accidents and incidents (Hardy 2012).  These 
sections will use findings from accident reports to provide 
lessons learned on those process failures.  Note that in 
discussing these accidents this paper does not intend to 
oversimplify the events and conditions that led to the 
mishaps. Rarely is there only one identifiable cause 
leading to the accident.  Accidents are usually the result 
of complex factors that include hardware, software, 
human interactions, and procedures.  The descriptions 
here are meant to provide examples of where the system 
safety process failed in some way and to show how 
software and computing systems can play a role in those 
accidents. Readers are encouraged to review the full 
accident and mishap investigation reports to understand 
the often complex conditions and chain of events that led 
to each accident discussed here. 

2.1 Failing to plan  
System safety efforts must be planned, like any other 
engineering activity, and then that plan must be followed 
to be effective. Safety planning includes the planning for 
the management of system safety and emergency 
planning in the case where something could go wrong.  It 
is not enough for a plan to exist – the plan must also be 
effectively implemented, updated, and followed.  

On October 26, 1992, the London Ambulance Service 
(LAS) introduced a new computer aided dispatch (CAD) 
system to automate call taking, resource identification, 
and resource mobilization tasks. The automation was 
intended to improve emergency medical services for the 
city. At the time, the LAS provided ambulance service to 
6.8 million people living in a 600 square mile area, 
making it the largest ambulance service in the world. The 
LAS received 2000-2500 calls per days, of which 1300-
1600 were emergency calls. Just a few hours after the 
new computer system was introduced problems began to 
surface. The system was unable to keep track of 
ambulances and their locations. Multiple ambulances 
were sent to the same location in some cases. The system 
could not keep track of duplicate calls. And the system 
began to generate so many exception messages that the 
dispatchers became overwhelmed, and calls were lost. As 
the system became bogged down the LAS was forced to 
partially switch back to the manual system. Eight days 
later the computer system quit working and the LAS had 
to resort to a completely manual operation. Some 
estimates stated that as many as 46 people died as a result 
of the service failures.  

An investigation into the incident found multiple 
causes to the system failures.  

 The vendor chosen to build the system was 
selected primarily on the basis of price, and the 
vendor’s  cost  estimates  were  unreasonably  low. 

 An unrealistic schedule of 11 months from start of 
development to deployment was placed on the 
vendor. 

 At the time the system went live there were 81 
open, known issues and no load testing had been 
performed on the system. 

 Dispatcher training was inadequate. 
 The system did not function well when given 

invalid or incomplete data on positions and 
statuses of ambulances. 

 The user interface was poorly designed and did 
not respond properly to incorrect user entries.  

 A memory leak in a small portion of the code led 
to the failure of the system eight days after 
deployment. 

 Software requirements were developed without 
input from key users of the system, including 
dispatchers and ambulance operators. 

 No quality assurance was performed on the 
software, and configuration management 
processes were lax.  

 The system was overly complex. 
 

The failure of the LAS CAD system was therefore a 
combination of errors related to safety planning, 
organizational priorities, safety management, process 
quality, product design, and product verification 

(Finkelstein and Dowell 1996). 

2.2 Failing to accurately identify what can go 
wrong 

Identifying what can go wrong, also known as hazard 
identification, is arguably the most important part of the 
safety analysis effort. One could think of the hazard 
identification step as defining the problem to be solved. If 
one does not properly identify the problem then it 
becomes difficult to assess the risk or postulate solutions. 
Describing what can go wrong can be difficult in 
complex systems, and identifying hazards takes 
persistence and creativity. In addition, complex systems 
using software can fail in complex ways, and some 
conditions and environments are difficult to postulate.   

On February 11, 2003, an employee of the Southern 
Clay Plants & Pits in Gonzales, Texas was fatally injured 
while performing maintenance on a reaction tank. The 
U.S. Mine Safety and Health Administration (MSHA) 
determined that the cause of the accident was a failure to 
close and secure a manual gate valve for a steam line and 
a failure to place the batch PLC in the stop mode. The 
company was a surface clay mill that purchased clay and 
blended, refined, milled and processed the material into 
products used in paints, inks, and grease. On the day of 
the accident the employee had been informed that there 
had been a product change in one of the batch processing 
systems. The employee was assigned to perform cleanup 
duties on a reactor tank. Two valves controlled steam 
entry into the tank: a manual gate valve and a butterfly 
valve with an automatic pneumatic actuator. The PLC 
controlled the functioning of the batch system based on 
sensors that monitored material flow. At the time of the 
accident  the  PLC  was  in  “slurry  hold”  mode.  In  this  mode  
the system was programmed to actuate the steam valve 
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when the clay slurry level reached 5.5 feet. An aluminum 
extension ladder used by the employee caused the level 
sensor to falsely sense that slurry was in the reactor, 
which resulted in the PLC sending a command to open 
the steam valve. Because the manual valve had been left 
open, steam at 350oF then entered the tank, fatally 
burning the employee (U.S. MSHA 2003a). 

2.3 Underestimating risk 
After the hazard has been identified there needs to be an 
understanding of the significance of the potential problem 
to facilitate safety decision making.  Risk assessment 
helps to understand potential problems and their 
significance, and helps to prioritize resources to fix the 
problems identified.  The concept of risk includes an 
understanding of both the severity of the consequences 
and likelihood of the event.  Without a proper analysis of 
both severity and likelihood it is possible that the risk 
could be underestimated. A number of accidents 
involving software and computing systems has shown 
that risk is frequently underestimated or misunderstood in 
these systems. 

On January 19, 1995, an X-31 U.S. government 
research aircraft was destroyed when it crashed in an 
unpopulated area just north of Edwards Air Force Base 
while on a flight originating from the NASA Dryden 
Flight Research Center, Edwards, California. The crash 
occurred when the aircraft was returning after completing 
the third research mission of the day. The pilot safely 
ejected from the aircraft but suffered serious injuries, 
including two fractured vertebrae and a broken ankle and 
rib.  A mishap investigation board studying the cause of 
the X-31 accident concluded that an accumulation of ice 
in or on the unheated Pitot-static system of the aircraft 
provided false airspeed information to the flight control 
computers. The resulting false reading of total air 
pressure data caused the flight control system to 
automatically misconfigure for a lower speed. The 
aircraft suddenly began oscillating in all axes, pitched up 
to over 90 degrees angle of attack and became 
uncontrollable, prompting the pilot to eject. The mishap 
investigation board also faulted the safety analyses, 
performed by Rockwell and repeated by NASA, which 
underestimated the severity of the effect of large errors in 
the Pitot-static system. Rockwell and NASA had assumed 
that the flight software would use the backup flight 
control mode if this problem occurred, and this in itself 
would reduce the risk. The mishap investigation board 
noted that probability and severity were confused in this 
safety analysis; just because the risk assessment 
concluded that the probability of total pressure being lost 
was low did not mean that the consequences were any 
less severe.  This risk assessment resulted in a failure to 
recognize the safety-criticality of the Pitot tube and thus a 
failure to perform testing using both nominal and off-
nominal conditions. (Haley 1995). 

2.4 Overestimating the effectiveness of 
safeguards 

If we simply identified the hazard and assessed the risk 
we would do little to improve safety. It is the 
implementation of safeguards (hazard controls) and 

designing safety into the system that reduces the risk.  
However, these controls must be appropriate for the 
hazard considered and they must be effective.  Ineffective 
controls may provide a false sense of security, and may 
not work when needed. Automated systems may have 
weaker controls than thought, especially if human 
interaction is required. In addition, hazard controls 
themselves could introduce new, unforeseen hazards. 

On February 18, 2009, an employee was fatally 
injured at the Ravensworth Coal Preparation Plant reject 
waste bin in the Hunter Valley region of New South 
Wales, Australia. The accident occurred when 10 tons of 
waste rock were inadvertently released from the reject bin 
and   fell   onto   the   cabin   of   the   employee’s   truck.   At   the  
Ravensworth Coal Preparation Plant, raw coal was 
extracted from the mine and usable coal was separated 
from waste rock. The waste rock was transferred 
approximately 2 kilometres on conveyers to the reject 
bin. The waste rock was then loaded from the reject bin 
onto trucks and hauled away. The process of loading the 
trucks with waste rock was controlled by a PLC system. 
The PLC system included truck detection sensors, traffic 
lights, bin capacity sensing, and remote control, hand-
held transmitters used by the truck drivers. On the day of 
the accident the truck driver drove his truck under the 
reject bin delivery chute. A signal was sent from the 
handheld remote control to command the chute to open. 
The accident report stated that it was not clear whether 
the signal was sent inadvertently or intentionally. 
Opening the chute required that two of three lines of truck 
detection sensors be blocked in addition to a command 
from the remote control to assure that the truck was in the 
correct location. Each sensor line contained three sensors, 
and all three sensors had to be blocked for the entire line 
to be considered as blocked. At the time of the accident 
the truck was obscuring one line of sensors, and a second 
line of sensors was obscured by dirt on the lenses and 
therefore was not working correctly. Because two of the 
sensor lines were blocked and the remote control signal 
had been sent, the PLC automatically opened the reject 
bin chute door and dropped 10 tons of material on the 
truck cab before the driver had safely cleared the chute, 
resulting in the fatal injury (State of New South Wales 
2010). 

2.5 Failing to verify that safeguards actually 
work 

Once the control strategy has been identified and 
implemented, those controls should be validated and 
verified. Validation determines that the correct system is 
being built and verification determines that the design 
solution has met all the safety requirements. Verification 
normally includes analysis, test, inspection, and 
demonstration. Experience has shown that verifications 
that are performed using improper assumptions or are 
conducted under conditions that are different from those 
in operation can lead to an underestimation of risk. Of 
special concern in software is the failure to test using 
sufficient off-nominal conditions and considering 
hardware failures and improper inputs. 

On November 16, 2000, the Space Technology and 
Research Vehicles (STRV) microsatellites STRV 1-C and 
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STRV 1-D were launched on an Ariane 5 launch vehicle. 
STRV 1-C was intended to perform accelerated life 
testing of new components and materials in the high 
radiation environment of geosynchronous transfer orbit. 
STRV 1-D carried additional experiments. Two weeks 
after launch STRV 1-C displayed control problems; 
STRV 1-D exhibited the same problems a few days later. 
Eventually, both spacecraft lost communications with the 
ground. Investigations after the loss of the spacecraft 
found that a software error provided continuous current, 
instead of a short pulse, to latching relays. The 
continuous current heated the relays and degraded their 
insulation, which resulted in a short circuit that disabled 
the main receiver. A secondary receiver existed for 
redundancy, but this secondary receiver had been isolated 
by a trip switch. The trip switch required a ground 
command to be reset, and this could not be done without 
communications through the primary receiver. The 
problem was traced to a software specification that did 
not incorporate a requirement to command the relays by 
pulse. The problem was not found on the ground because 
the test software drove the relays with pulsed signals 
(Harland and Lorenz 2005). 

2.6 Inadequate hazard tracking and anomaly 
reporting processes 

Accident analyses often show that clues existed before 
the mishap occurred.  Such clues frequently take the form 
of anomalies observed during the life cycle of a project.  
Therefore, learning from failure is critical to improving 
safety and preventing accidents. Anomalies discovered in 
the life cycle development must be properly reported to 
learn from those problems. In addition, a closed loop root 
cause and corrective action process must be in place to 
translate the documented anomalies into safety actions. 
That process must assure that hazard reports are re-
evaluated as problems are found.  

On August 12, 1998, the Titan IV A-20 launch vehicle 
lifted off from Florida. The rocket was carrying a 
classified National Reconnaissance Office payload. 
Approximately 40 seconds into flight the launch vehicle 
pitched down and began to break up, then automatically 
destroyed itself when the Inadvertent Separation Destruct 
System initiated the destruct sequence as soon as one of 
the solid rocket motors separated from the core booster. 
The payload was lost, although there were no injuries as a 
result of the accident. The accident investigation board 
found that exposed wires shorted during flight, causing an 
intermittent outage of the Missile Guidance Computer 
(MGC), which in turn lost the signal to the Inertial 
Measurement Unit (IMU) used to guide the rocket. The 
MGC recovered power, but the IMU then provided a false 
indication that the launch vehicle had pitched up and to 
the left (it had in fact been flying on the correct course). 
To compensate for the perceived pitch up, the MGC 
commanded the launch vehicle to pitch down and to the 
right. The aerodynamic stresses from these movements 
exceeded the structural margins of the launch vehicle and 
the rocket began to break up, ultimately destroying itself. 
The accident investigation board did not identify the 
source of the wire damage leading to the short circuit. 
However, the board reviewed historical records and 

identified hundreds of wiring faults and defects at the 
factory that were later discovered by inspection, and 
found previous incidents of short circuits while in flight. 
The board noted that the guidance system design was a 
causal factor because the timing signal from the MGC to 
the IMU was unable to withstand power transients that 
could reset the computer (U.S. Air Force 1999). 

2.7 Failing to adequately manage change 
While change is a normal part of the engineering process, 
there is no such thing as a minor change with respect to 
software safety. All changes to safety-critical systems 
must be evaluated because even minor changes can have 
major safety impacts. This typically means that 
organizations must have robust change management and 
configuration management systems, and changes must be 
factored back into the hazard analysis. 

On October 24, 2002, a grinder exploded at the 
Foreman Quarry and Plant in Foreman, Arkansas. An 
operator was killed when flammable waste fuel covered 
him and ignited. The operator had started the pump for 
solid waste fuel processing when the accident occurred. 
The U.S. MSHA stated that the cause of the accident was 
that the safety monitoring system designed to shut off the 
waste fuel system pump had not been maintained so that 
it functioned properly. The Foreman Quarry and Plant, 
operated by Ash Grove Cement Company, mined 
limestone and processed it for use in Portland cement. 
Kilns were used in the processing, and these kilns were 
heated by burning coal, natural gas, and liquid waste fuel. 
The liquid waste fuel was delivered by truck or railcar 
and pumped into large storage tanks. From the storage 
area it was pumped through a grinder to reduce the 
particle size of the solids in the fuel. Two independent 
systems monitored and controlled the waste fuel delivery. 
A Foxboro Intelligent Automation Distribution Control 
System (I/A DCS) monitored and recorded normal 
operating parameters. The Foxboro also issued audible 
and visual alarms that were available at the plant control 
room. A PLC provided basic start up and shutdown of the 
system and responded to commands from the Foxboro. 
On the day of the accident the Foxboro sensed that the 
fuel delivery pressure was low, apparently due to 
blockage in the line. As designed, the Foxboro sent a 
command to the PLC to shut down the pumps. However, 
the PLC failed to respond and the pumps kept running. 
Three months prior to the accident this PLC had been 
installed; this was supposed to be a simple replacement of 
an older PLC of similar capability. However, the Foxboro 
had not been connected to the newer PLC, and the 
connections remained to the older non-functioning PLC. 
The system had never been tested with the new PLC. A 
test had been scheduled three days prior to the accident 
but had been aborted when a pump failed during the test; 
the test had never been rescheduled. The accident report 
stated that the blockage may have broken free just prior to 
the accident. With the pumps running, the pressure 
elevated   significantly   and   a   “water   hammer”   effect  
caused overpressurization in the system at the grinder. 
The grinder was torn loose from its base, spraying fuel 
and pulling loose a 480-volt cable that ultimately served 
as an ignition source (U.S. MSHA 2003b). 
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2.8 Weak safety culture  
Most accidents are the result of a confluence of factors, 
and not just the result of failures of components or 
systems. Since the greatest threats to safety often 
originate in organizational issues, many industries have 
begun to realize that making the system safer requires 
improvements   in   the   organization’s   safety   culture.    
However, not all organizations have been successful in 
improving and maintaining organizational safety. 

On April 21, 2010, the chief engineer on the container 
ship Ever Excel died when he became trapped between 
the  top  of  the  ship’s  passenger  lift  and  the  edge  of  the  lift  
shaft. According to the U.K. Marine Accident 
Investigation Branch (MAIB), at the time of the accident 
the ship was undergoing a routine compliance inspection 
in Kaohsiung, Taiwan. The second engineer was unable 
to open the lift shaft doors to complete the inspection. 
The chief engineer tried to solve the problem and entered 
the lift car, climbed through an escape hatch, climbed on 
top of the lift car, and closed the hatch. The second 
engineer incorrectly believed that the chief engineer had 
set the controls to manual mode to take control of the lift 
car. Therefore, the second engineer released the 
emergency stop button then turned the reset key attached 
to the lift door. By closing the emergency hatch door the 
chief engineer had disabled the first safety barrier, an 
interlock that would not allow the lift to operate with the 
door open. The second engineer removed the second 
safety barrier, the emergency stop, by releasing the 
emergency stop and resetting the system. As a result, the 
lift returned to its normal automatic operating mode, and 
the lift automatically moved upwards, trapping and 
asphyxiating the chief engineer. The MAIB report noted 
that the crew had failed to follow manufacturer-suggested 
procedures in performing lift maintenance. The report 
also stated that the crew was unable to release the chief 
engineer after the accident and damaged the lift because 
they had not practiced emergency operation of the lift. In 
addition, the report identified a weak safety culture in the 
organization,  stating,  “It  was  evident  that  completing  the  
task was considered more important than working 
safely.”  The  report  went  on  to  state  that  communications  
were poor, risk assessments were not completed, there 
was little feedback provided to the crew on safe 
procedures, the company did not make use of previous 
accident and incident reports, and auditing was 
ineffective (U.K. MAIB 2011). 

3 Overall Software Safety Lessons Learned 
The accidents and incidents described here illustrate that 
there are significant challenges in the software safety 
discipline, and that organizations often fail to perform 
effective software safety efforts as part of an overall 
system safety approach. Some broad lessons learned that 
emerge from the examination of hundreds of accidents 
(Hardy 2012) include the following. 

 Decisions made in the acquisition and planning 
phases of development can profoundly affect 
safety. Planning typically involves trade-offs 
between many different facets of the program, 
including cost, schedule, performance, and 
safety. Poor planning can lead to unexpected 

safety consequences, and many safety decisions 
are actually made in the planning and acquisition 
phase. However, software safety personnel are 
often not included in early phases of a program 
when those critical decisions are being made. In 
addition, adequate resources may not be 
allocated to the software safety effort. This can 
result in a failure to perform hazard analyses and 
identify safety requirements early in the program 
when these activities provide the most impact. 

 Communication barriers between software 
engineers, hardware engineers, safety 
personnel, and management are common. No 
one person can fully understand a complex 
system, especially one with software. Therefore, 
multiple individuals and organizations must 
interact and trade information to effectively 
reduce risk. This means that different parts of 
the organization must learn  to  speak  each  other’s  
language. Communications between customers 
and suppliers must also be open and frequent. 
Misunderstandings and miscommunication are 
often contributors to accidents. Some of those 
misunderstandings come from inadequate 
requirements management efforts. 

 Software hazard causes are oversimplified or 
focused only on failures. Review of a number of 
hazard reports from different organizations has 
shown that software hazard causes and controls 
often do not provide sufficient detail or clarity. 
Software causes may be generically stated as 
“software  error,”  instead  of  defining  specifically  
the software functionality that can lead to an 
undesirable outcome. The focus is often on 
failure of the functionality to work, but other 
causes, such as inadvertent operation, may be 
ignored. Interfaces, especially those between 
software and hardware, may be misunderstood, 
and interactions between components are not 
explored. The software hazard analyses may not 
pay enough attention to those cases where the 
software works exactly as intended, but the 
implemented functionality is unsafe.  

 Risks may be underestimated and optimistically 
evaluated. Risk assessments allow organizations 
to make decisions about uncertain futures given 
existing knowledge. Assessing the risk of 
software-related systems presents challenges in 
large part because the evaluation of the 
likelihood of the hazard is difficult. Instead of 
using that limitation as an opportunity to 
carefully consider many different risk factors, 
organizations instead may create optimistic 
projections of what they want to happen. Or they 
may equate past success with low risk, ignoring 
the fact that testing and operations cannot 
feasibly consider all combinations of possible 
inputs. 

 Hazard controls may rely on good software 
processes and testing. System safety efforts 
should follow the design order of precedence, 
where the first approach is to try to design out 
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the hazard or minimize the risks through design 
selection. Software is no different in this regard. 
Yet organizations may still focus on quality 
control and quality assurance efforts, such as 
focusing on good software processes or 
extensive unit testing, to prove that the design is 
safe. However, software processes and testing 
will not prevent an accident if the software 
design is flawed with respect to safe system 
operations. 

 There   may   be   a   failure   to   ask   “what   if   the  
hazard   controls   don’t   work?” Organizations 
may implement what appear to be effective 
controls, but then do not take the analysis any 
further. While organizations certainly 
understand that those controls may fail, they do 
not take the next step and ask what happens if 
they do not perform their function or perform the 
function incorrectly. Organizations make 
optimistic assumptions about the ability of the 
system, including hardware, software, and 
humans, to come to the rescue when the 
undesired event happens. 

 Testing tends to focus on functional operation 
and not off-nominal conditions. Testing can be 
expensive, and most organizations are limited in 
the resources they can apply to testing. 
Therefore, the focus is naturally on making sure 
the system meets the requirements. This is 
necessary, but not sufficient. Many accidents 
have shown what can happen if testing does not 
include off-nominal scenarios and abnormal 
conditions. Testing should not just address what 
is required but also include what can go wrong.  

 Testing may not provide information on 
subsystem and component interactions. Software 
and computing system accidents occur most 
often because of unanticipated interactions, not 
because the software was poorly coded. A 
number of accidents have occurred when no 
component failed in the conventional sense, but 
the interaction of components caused a system 
failure. Therefore, a significant focus of safety 
testing must be on a fully integrated system, 
with testing of end-to-end events. That testing 
must include stressing of the software, and 
should include interactions of the software with 
hardware, humans, and environments. Many 
verification efforts however fail to perform 
sufficient integrated system testing, or include 
operator interaction in that testing.  

 Anomalies may not be factored into the design 
or hazard analysis. Learning from failure and 
problems is essential to safety. These problems 
provide clues of accidents yet to come. 
Therefore, software problem reports, like those 
of hardware, should be part of a larger root cause 
and corrective action system. These problem 
reports should include issues found during actual 
operation. Yet organizations do not always take 
these problems seriously or use those problems 
to look for issues that could lead to system 

failure. Software does not have to be perfect to 
be safe, and not all errors impact safety. But 
errors in safety-critical functions should be 
investigated and corrected. Conversely, 
organizations may incorrectly assume that a lack 
of anomalies or mishaps implies that the system 
is safe; in fact, latent errors could exist, and 
these errors may contribute to an accident. 

 Software change management and hazard 
analyses processes may not be integrated. 
Engineering by its very nature is an activity that 
requires change, and changes occur in the 
hardware, software, processes, and organizations 
throughout development and into operation. 
While a number of organizations may have 
strong configuration and change management 
practices, those practices do not always integrate 
with the hazard analysis process.  Hazards may 
fall through the cracks if those processes are not 
integrated. 

 Human-software interactions have significant 
safety implications that are often 
underestimated. Humans interact with hardware 
and software in positive and negative ways. 
Organizations may not understand the 
importance of human-software interactions or 
pay as much attention as they should to displays 
and control panels. In addition, they may make 
changes to user interfaces and information flow 
on critical systems without adequate assessment. 
Organizations may count on operators saving the 
day when a bad day occurs in complex, 
software-intensive systems, but they may not 
provide proper tools and training to enable 
operators to perform those safety-critical 
functions. 

 Support software may be as critical to safety as 
control software but may not be included in 
safety analyses. The focus of most software 
safety efforts is naturally on software that 
directly controls an operation. But software and 
computing systems show up in many different 
parts of the system, and this support software 
may turn out to be safety-critical. Support 
software, including models and simulations, may 
be just as hazardous as controlling software, but 
it is often not thoroughly examined.  

 Hazard analyses and safety systems may not be 
updated using operations and maintenance 
experience. It is usually during the initial 
operating phases that the most is learned about 
the system. However, organizations may fail to 
feed what is learned in operations and 
maintenance back into their safety analyses.  

4 Promoting a Questioning Attitude in 
Software and System Safety 

It is important to promote the use of system safety 
methodologies and analyses.  It is difficult to understand 
and then decrease the risk of complex technologies 
without the use of a structured approach to identifying 
and controlling hazards.  However, as discussed above, 

CRPIT Vol 145 (ASSC 2012)

Page 74



lessons learned from past accidents and experiences point 
to the importance of cultivating and encouraging a 
questioning attitude toward all aspects of the system 
safety process, especially where software and computing 
systems are important for safety. Implementation failures 
can occur in any of the system safety process steps.  We 
should use lessons learned such as those described in this 
paper to help us understand how previous efforts failed to 
prevent accidents, and how our own efforts might be 
similar. We should require compelling evidence before 
concurring with the analysis.  

Most importantly, we should ask critical questions 
about the overall software and system safety process. By 
asking focused questions we can challenge assumptions. 
Such questions can stimulate thinking and get people to 
open up about the risks. Good questions allow us to view 
the system holistically, rather than just as the sum of its 
parts. Examples of such questions include the following: 

 Do plans reflect how business is really done?  
Are plans reviewed?  Do plans have unrealistic 
schedules or resource allocations?  Is software 
part of that planning? Poor or unrealistic plans 
may reflect an organization that does not truly 
place a priority on safety activities. 

 Is there a convincing story that the safety 
analysis is complete and thorough, and that 
software’s   contributions   to   hazards   have   been  
identified?  Did the analyst use multiple tools 
(fault tree, hazard analysis, etc.) to perform the 
analysis?  Were checklists, accident reports, 
previous experience, or a combination of those 
employed?  Failure to show that the problem is 
being looked at from multiple perspectives could 
be an indication that there are holes in the 
analysis and that significant problems may not 
be identified. 

 Are the reports detailed enough? Are causes 
descriptive? Does the logic make sense and is it 
complete? Do controls match up with the causes, 
showing a one-to-one or many-to-one relation?   
Lack of detail could be an indication of 
insufficient knowledge of the system, or lack of 
information on the system. 

 Are the hazard controls primarily procedural 
rather than design changes, safety features or 
devices?  Is there an overreliance on humans and 
software   to   “save   the   day”?   Overreliance on 
operational controls may indicate a weak safety 
design. 

 Can the control strategy actually be implemented 
and verified?  Is the control strategy so complex 
that it will be impossible to determine whether it 
will work when needed? Is the control truly 
effective? Are controls truly independent?  
Complex controls or overlapping control 
strategies may be an indication of a weak safety 
design.   

 Has the risk assessment truly considered the 
worst case? What is the basis for the likelihood 
levels? Has the risk assessment considered lower 
severity but higher likelihood cases? Is the risk 
analyzed by cause and by phase? Failure to 

provide good answers to these questions 
indicates a potential misunderstanding of the 
risk. 

 Are problems found in test and design included 
in the hazard reports and factored into the 
design? Failure to incorporate problems and 
corrective actions is an indication of the 
potential to miss serious design flaws. 
 

These questions help to identify whether the system 
safety process is robust. However, we must also ask 
questions related specifically to the use of software and 
computing systems in complex systems. The best 
questions come from real-world examples of accidents 
where software has been a contributor. Some examples of 
questions are as follows, and others can be found in 
Hardy (2011). 

 Have safety-critical software, commands, and 
data been identified? 

 Do hazard controls for software-related causes 
combine good practices and specific safeguards? 

 Do standards exist for software peer reviews and 
other design reviews? 

 Is software and system testing adequate, and do 
tests include sufficient off-nominal conditions?  

 Is the computing system design overly complex? 
 Is the design based on unproven technologies? 
 What happens if the software locks up? 
 Are the sensors used for software decisions fault 

tolerant? 
 Has software mode transition been considered? 
 Has consideration been given to the order of 

commands and out of sequence inputs? 
 Will the software and system start up and shut 

down in a known, safe state? 
 Are checks performed before initiating 

hazardous operations? 
 Will the software properly handle spurious 

signals and power outages? 
 
These are by no means all the questions a decision 

maker should ask, and positive answers to these questions 
provide no assurance that an accident will be prevented. 
These questions should encourage critical thinking and 
generate additional safety questions to provide further 
insight on system risk. A failure to ask these questions 
could mean that the potential for an accident is higher 
than we had assumed. 

We also have a responsibility as system safety 
practitioners to share our doubts and questions with 
decision makers to allow them to understand what we do 
not know and where uncertainties exist. In particular, we 
should: 

 Avoid oversimplifying the potential hazard 
causes. Identifying hazard causes in complex, 
automated systems can be a difficult process, 
and decision makers should be made aware of 
the challenges in performing this activity.  
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 Do not downplay uncertainties, especially with 
likelihoods. Obtaining credible reliability 
estimates for software may not be possible for 
new systems, and qualitative risk assessments 
should be supplemented with analyses of other 
factors such as complexity, maturity, degree of 
system testing, and so on. 

 Do not self-censor, especially with respect to 
hazard controls. When safety practitioners are 
aware that a contract has been issued which 
limits the choices of hazard controls, it is natural 
to eliminate options from consideration. 
However, the decision maker should be aware 
that such choices are being made. 

 Provide alternatives, but discuss the tradeoffs in 
risk. Rather   than   simply   saying   “no”   to   an 
activity, safety practitioners should provide the 
decision maker with options, then clearly 
describe the risk of each option. 

 Discuss the limitations of the testing and 
verification efforts. It is practically impossible to 
test every possible combination of software 
inputs, or test every possible hardware or 
software configuration to be used. Decision 
makers should be made aware of these 
limitations.  

 Be clear about the effects of failures and 
changes during development and the potential 
for increased risk. Problems discovered during 
development and in operation, and changes 
resulting from problem fixes and upgrades, can 
have major impacts on safety. 

 Use accidents and incidents to provide support 
for safety conclusions. Decision makers will 
respond more favorably to our conclusions if 
there is concrete evidence to back up our claims. 
We should use available accident and incident 
reports to provide that evidence. These  “stories”  
will also resonate better than statistics with 
decision makers in making our case. 

It is up to all stakeholders to look for those conditions 
that could lead to an accident and to recognize that the 
worst can happen. This means we should all express 
concerns about safety management and engineering when 
necessary based on our knowledge, experience, and 
judgment, and based on lessons learned from accidents. 
We must ask questions to understand the potential for 
harm, to understand the steps taken to assure that the risks 
have been reduced, and to assure that there is proof that 
hazard controls are effective. And we must openly and 
honestly communicate what we do not know. We will 
never eliminate risk, nor do we want to. Without risk 
there is no reward. But it is up to all of us to promote and 
encourage a questioning attitude to ensure that we are 
knowledgeable of those risks and to assure that the risks 
have been appropriately reduced. 

5 Summary 
System safety can provide immense benefits to any 
industry, especially those designing, building, and 
operating complex systems using software and computing 
systems. By proactively identifying hazards, assessing 

and characterizing risks, and taking actions to reduce 
those risks, organizations can prevent accidents and 
reduce the potential for death, injury, property damage, 
and environmental impacts.  However, poor system safety 
analyses can result in precious resources being used on 
low risk activities while larger risks are ignored.  When 
applied inappropriately, system safety methods can lead 
to overconfidence and result in an underestimation of 
certain important risks.  System safety efforts should be 
promoted and advocated, but we should also promote a 
questioning attitude to further the discipline.  We should 
understand the ways that these analyses can provide 
misleading results, especially in software-intensive 
systems, and we should examine the ways in which risk 
can increase by the actions we take. Lessons learned in 
the form of accidents and experiences in implementing 
the system safety process should be used to fuel those 
questions. It is through a questioning attitude that system 
safety and software safety efforts can accomplish their 
main goal -- preventing accidents.  
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