
Software and System Safety: Promoting a Questioning Attitude
Terry L. Hardy

Great Circle Analytics, LLC
1238 Race Street

Denver, Colorado, USA
thardy@gcirc.com

Abstract
System safety is an accepted approach to help understand
and manage hazards and risks in complex systems in
order to prevent accidents. Many different industries use
system safety analyses and methods to help reduce the
potential for harm to people, property, and the
environment. When used correctly, system safety
methods can provide tremendous benefits, focusing
resources to reduce risk and improve safety in complex
systems. Because computing systems are increasingly
being used to control critical functions and supply safety
decision information, software may directly or indirectly
contribute to an accident. Therefore, software must be
included as part of an organization’s system safety efforts
to manage hazards and risks. However, for many
organizations, software is not effectively incorporated
into the system safety process, and questions are not
asked about whether the analyses are appropriate for
complex, automated systems. This paper will summarize
several accident reports and use those reports to illustrate
potential failures in the system safety process with respect
to software and computing systems. Lessons learned will
be discussed, and some essential questions in software
safety will be presented. This discussion is intended to
provide insights to help promote a questioning attitude
that can improve software safety and system safety
efforts.
Keywords: software safety, system safety, lessons
learned.

1 Introduction
As more advanced technology and automation are used,
transportation systems, energy production systems,
medical devices, manufacturing processes, and many
other systems continue to increase in complexity. These
complex systems create safety risks to their operators and
to the communities they serve. System safety is an
approach to help manage hazards and risks in complex
systems.

System safety is often implemented through a system
safety process. 1

Copyright © 2012, Australian Computer Society, Inc. This
paper appeared at the Australian System Safety Conference
(ASSC 2012), held in Brisbane 23-25 May, 2012. Conferences
in Research and Practice in Information Technology (CRPIT),
Vol. 145, Ed. Tony Cant. Reproduction for academic, not-for
profit purposes permitted provided this text is included.

A typical system safety process includes the following
components:

 Safety planning
 Hazard identification
 Hazard risk assessment and risk decision making
 Risk reduction and hazard controls
 Risk reduction verification
 Hazard tracking, anomaly reporting, and change

management

Of particular concern with regard to system safety are
the risks related to software and computing systems.
Software and computing systems may be safety-critical if
they:

 can cause a hazard (for example, if a software
command or automated system can inadvertently
create the potential for harm),

 control a hazard (for example, if software is
needed to prevent a mishap),

 are used in critical calculations or analyses (for
example, output from models and simulations),

 are used to test critical systems.

Software includes computer programs, procedures,
scripts, rules, and associated documentation and data
pertaining to the development and operation of a
computer system. Software can be developed by the
organization implementing the system or may be
purchased as Commercial Off-The-Shelf (COTS)
software. Software safety encompasses not just the
software but also the computing system. A computing
system includes the software and supporting hardware,
sensors, effectors, humans who interact with the system,
and data necessary for successful operation. Examples of
computing systems include Programmable Logic
Controllers (PLC) and Supervisory Control and Data
Acquisition (SCADA) systems.

In spite of the fact that software is such an important
part of complex systems, the analysis of hazards and risks
from software has been inconsistent across industries.
Hazard and safety analyses have historically been
hardware-focused. Therefore, many analysts may not
understand how to incorporate software into their system
hazard analyses, and evaluators of those analyses may not
understand what should be assessed. Organizations may
be focused on compliance to regulations, which often do
not address software, and therefore those organizations
may not properly assess or mitigate software-related
risks. As a result, organizations need to increase the
attention given to addressing the potential for hazards
related to software and computing systems.

Proc. of the Australian System Safety Conferrence (ASSC 2012)

Page 69

2 Lessons Learned: System Safety Process
Failures

Although the system safety process is an accepted
approach to reducing risk in complex systems, there are a
number of ways this process can fail to prevent an
accident, especially in systems where software and
computing systems are used. The sections that follow
present potential failures in implementation of the system
safety process, based on review of hundreds of software-
related accidents and incidents (Hardy 2012). These
sections will use findings from accident reports to provide
lessons learned on those process failures. Note that in
discussing these accidents this paper does not intend to
oversimplify the events and conditions that led to the
mishaps. Rarely is there only one identifiable cause
leading to the accident. Accidents are usually the result
of complex factors that include hardware, software,
human interactions, and procedures. The descriptions
here are meant to provide examples of where the system
safety process failed in some way and to show how
software and computing systems can play a role in those
accidents. Readers are encouraged to review the full
accident and mishap investigation reports to understand
the often complex conditions and chain of events that led
to each accident discussed here.

2.1 Failing to plan
System safety efforts must be planned, like any other
engineering activity, and then that plan must be followed
to be effective. Safety planning includes the planning for
the management of system safety and emergency
planning in the case where something could go wrong. It
is not enough for a plan to exist – the plan must also be
effectively implemented, updated, and followed.

On October 26, 1992, the London Ambulance Service
(LAS) introduced a new computer aided dispatch (CAD)
system to automate call taking, resource identification,
and resource mobilization tasks. The automation was
intended to improve emergency medical services for the
city. At the time, the LAS provided ambulance service to
6.8 million people living in a 600 square mile area,
making it the largest ambulance service in the world. The
LAS received 2000-2500 calls per days, of which 1300-
1600 were emergency calls. Just a few hours after the
new computer system was introduced problems began to
surface. The system was unable to keep track of
ambulances and their locations. Multiple ambulances
were sent to the same location in some cases. The system
could not keep track of duplicate calls. And the system
began to generate so many exception messages that the
dispatchers became overwhelmed, and calls were lost. As
the system became bogged down the LAS was forced to
partially switch back to the manual system. Eight days
later the computer system quit working and the LAS had
to resort to a completely manual operation. Some
estimates stated that as many as 46 people died as a result
of the service failures.

An investigation into the incident found multiple
causes to the system failures.

 The vendor chosen to build the system was
selected primarily on the basis of price, and the
vendor’s cost estimates were unreasonably low.

 An unrealistic schedule of 11 months from start of
development to deployment was placed on the
vendor.

 At the time the system went live there were 81
open, known issues and no load testing had been
performed on the system.

 Dispatcher training was inadequate.
 The system did not function well when given

invalid or incomplete data on positions and
statuses of ambulances.

 The user interface was poorly designed and did
not respond properly to incorrect user entries.

 A memory leak in a small portion of the code led
to the failure of the system eight days after
deployment.

 Software requirements were developed without
input from key users of the system, including
dispatchers and ambulance operators.

 No quality assurance was performed on the
software, and configuration management
processes were lax.

 The system was overly complex.

The failure of the LAS CAD system was therefore a
combination of errors related to safety planning,
organizational priorities, safety management, process
quality, product design, and product verification

(Finkelstein and Dowell 1996).

2.2 Failing to accurately identify what can go
wrong

Identifying what can go wrong, also known as hazard
identification, is arguably the most important part of the
safety analysis effort. One could think of the hazard
identification step as defining the problem to be solved. If
one does not properly identify the problem then it
becomes difficult to assess the risk or postulate solutions.
Describing what can go wrong can be difficult in
complex systems, and identifying hazards takes
persistence and creativity. In addition, complex systems
using software can fail in complex ways, and some
conditions and environments are difficult to postulate.

On February 11, 2003, an employee of the Southern
Clay Plants & Pits in Gonzales, Texas was fatally injured
while performing maintenance on a reaction tank. The
U.S. Mine Safety and Health Administration (MSHA)
determined that the cause of the accident was a failure to
close and secure a manual gate valve for a steam line and
a failure to place the batch PLC in the stop mode. The
company was a surface clay mill that purchased clay and
blended, refined, milled and processed the material into
products used in paints, inks, and grease. On the day of
the accident the employee had been informed that there
had been a product change in one of the batch processing
systems. The employee was assigned to perform cleanup
duties on a reactor tank. Two valves controlled steam
entry into the tank: a manual gate valve and a butterfly
valve with an automatic pneumatic actuator. The PLC
controlled the functioning of the batch system based on
sensors that monitored material flow. At the time of the
accident the PLC was in “slurry hold” mode. In this mode
the system was programmed to actuate the steam valve

CRPIT Vol 145 (ASSC 2012)

Page 70

when the clay slurry level reached 5.5 feet. An aluminum
extension ladder used by the employee caused the level
sensor to falsely sense that slurry was in the reactor,
which resulted in the PLC sending a command to open
the steam valve. Because the manual valve had been left
open, steam at 350oF then entered the tank, fatally
burning the employee (U.S. MSHA 2003a).

2.3 Underestimating risk
After the hazard has been identified there needs to be an
understanding of the significance of the potential problem
to facilitate safety decision making. Risk assessment
helps to understand potential problems and their
significance, and helps to prioritize resources to fix the
problems identified. The concept of risk includes an
understanding of both the severity of the consequences
and likelihood of the event. Without a proper analysis of
both severity and likelihood it is possible that the risk
could be underestimated. A number of accidents
involving software and computing systems has shown
that risk is frequently underestimated or misunderstood in
these systems.

On January 19, 1995, an X-31 U.S. government
research aircraft was destroyed when it crashed in an
unpopulated area just north of Edwards Air Force Base
while on a flight originating from the NASA Dryden
Flight Research Center, Edwards, California. The crash
occurred when the aircraft was returning after completing
the third research mission of the day. The pilot safely
ejected from the aircraft but suffered serious injuries,
including two fractured vertebrae and a broken ankle and
rib. A mishap investigation board studying the cause of
the X-31 accident concluded that an accumulation of ice
in or on the unheated Pitot-static system of the aircraft
provided false airspeed information to the flight control
computers. The resulting false reading of total air
pressure data caused the flight control system to
automatically misconfigure for a lower speed. The
aircraft suddenly began oscillating in all axes, pitched up
to over 90 degrees angle of attack and became
uncontrollable, prompting the pilot to eject. The mishap
investigation board also faulted the safety analyses,
performed by Rockwell and repeated by NASA, which
underestimated the severity of the effect of large errors in
the Pitot-static system. Rockwell and NASA had assumed
that the flight software would use the backup flight
control mode if this problem occurred, and this in itself
would reduce the risk. The mishap investigation board
noted that probability and severity were confused in this
safety analysis; just because the risk assessment
concluded that the probability of total pressure being lost
was low did not mean that the consequences were any
less severe. This risk assessment resulted in a failure to
recognize the safety-criticality of the Pitot tube and thus a
failure to perform testing using both nominal and off-
nominal conditions. (Haley 1995).

2.4 Overestimating the effectiveness of
safeguards

If we simply identified the hazard and assessed the risk
we would do little to improve safety. It is the
implementation of safeguards (hazard controls) and

designing safety into the system that reduces the risk.
However, these controls must be appropriate for the
hazard considered and they must be effective. Ineffective
controls may provide a false sense of security, and may
not work when needed. Automated systems may have
weaker controls than thought, especially if human
interaction is required. In addition, hazard controls
themselves could introduce new, unforeseen hazards.

On February 18, 2009, an employee was fatally
injured at the Ravensworth Coal Preparation Plant reject
waste bin in the Hunter Valley region of New South
Wales, Australia. The accident occurred when 10 tons of
waste rock were inadvertently released from the reject bin
and fell onto the cabin of the employee’s truck. At the
Ravensworth Coal Preparation Plant, raw coal was
extracted from the mine and usable coal was separated
from waste rock. The waste rock was transferred
approximately 2 kilometres on conveyers to the reject
bin. The waste rock was then loaded from the reject bin
onto trucks and hauled away. The process of loading the
trucks with waste rock was controlled by a PLC system.
The PLC system included truck detection sensors, traffic
lights, bin capacity sensing, and remote control, hand-
held transmitters used by the truck drivers. On the day of
the accident the truck driver drove his truck under the
reject bin delivery chute. A signal was sent from the
handheld remote control to command the chute to open.
The accident report stated that it was not clear whether
the signal was sent inadvertently or intentionally.
Opening the chute required that two of three lines of truck
detection sensors be blocked in addition to a command
from the remote control to assure that the truck was in the
correct location. Each sensor line contained three sensors,
and all three sensors had to be blocked for the entire line
to be considered as blocked. At the time of the accident
the truck was obscuring one line of sensors, and a second
line of sensors was obscured by dirt on the lenses and
therefore was not working correctly. Because two of the
sensor lines were blocked and the remote control signal
had been sent, the PLC automatically opened the reject
bin chute door and dropped 10 tons of material on the
truck cab before the driver had safely cleared the chute,
resulting in the fatal injury (State of New South Wales
2010).

2.5 Failing to verify that safeguards actually
work

Once the control strategy has been identified and
implemented, those controls should be validated and
verified. Validation determines that the correct system is
being built and verification determines that the design
solution has met all the safety requirements. Verification
normally includes analysis, test, inspection, and
demonstration. Experience has shown that verifications
that are performed using improper assumptions or are
conducted under conditions that are different from those
in operation can lead to an underestimation of risk. Of
special concern in software is the failure to test using
sufficient off-nominal conditions and considering
hardware failures and improper inputs.

On November 16, 2000, the Space Technology and
Research Vehicles (STRV) microsatellites STRV 1-C and

Proc. of the Australian System Safety Conferrence (ASSC 2012)

Page 71

STRV 1-D were launched on an Ariane 5 launch vehicle.
STRV 1-C was intended to perform accelerated life
testing of new components and materials in the high
radiation environment of geosynchronous transfer orbit.
STRV 1-D carried additional experiments. Two weeks
after launch STRV 1-C displayed control problems;
STRV 1-D exhibited the same problems a few days later.
Eventually, both spacecraft lost communications with the
ground. Investigations after the loss of the spacecraft
found that a software error provided continuous current,
instead of a short pulse, to latching relays. The
continuous current heated the relays and degraded their
insulation, which resulted in a short circuit that disabled
the main receiver. A secondary receiver existed for
redundancy, but this secondary receiver had been isolated
by a trip switch. The trip switch required a ground
command to be reset, and this could not be done without
communications through the primary receiver. The
problem was traced to a software specification that did
not incorporate a requirement to command the relays by
pulse. The problem was not found on the ground because
the test software drove the relays with pulsed signals
(Harland and Lorenz 2005).

2.6 Inadequate hazard tracking and anomaly
reporting processes

Accident analyses often show that clues existed before
the mishap occurred. Such clues frequently take the form
of anomalies observed during the life cycle of a project.
Therefore, learning from failure is critical to improving
safety and preventing accidents. Anomalies discovered in
the life cycle development must be properly reported to
learn from those problems. In addition, a closed loop root
cause and corrective action process must be in place to
translate the documented anomalies into safety actions.
That process must assure that hazard reports are re-
evaluated as problems are found.

On August 12, 1998, the Titan IV A-20 launch vehicle
lifted off from Florida. The rocket was carrying a
classified National Reconnaissance Office payload.
Approximately 40 seconds into flight the launch vehicle
pitched down and began to break up, then automatically
destroyed itself when the Inadvertent Separation Destruct
System initiated the destruct sequence as soon as one of
the solid rocket motors separated from the core booster.
The payload was lost, although there were no injuries as a
result of the accident. The accident investigation board
found that exposed wires shorted during flight, causing an
intermittent outage of the Missile Guidance Computer
(MGC), which in turn lost the signal to the Inertial
Measurement Unit (IMU) used to guide the rocket. The
MGC recovered power, but the IMU then provided a false
indication that the launch vehicle had pitched up and to
the left (it had in fact been flying on the correct course).
To compensate for the perceived pitch up, the MGC
commanded the launch vehicle to pitch down and to the
right. The aerodynamic stresses from these movements
exceeded the structural margins of the launch vehicle and
the rocket began to break up, ultimately destroying itself.
The accident investigation board did not identify the
source of the wire damage leading to the short circuit.
However, the board reviewed historical records and

identified hundreds of wiring faults and defects at the
factory that were later discovered by inspection, and
found previous incidents of short circuits while in flight.
The board noted that the guidance system design was a
causal factor because the timing signal from the MGC to
the IMU was unable to withstand power transients that
could reset the computer (U.S. Air Force 1999).

2.7 Failing to adequately manage change
While change is a normal part of the engineering process,
there is no such thing as a minor change with respect to
software safety. All changes to safety-critical systems
must be evaluated because even minor changes can have
major safety impacts. This typically means that
organizations must have robust change management and
configuration management systems, and changes must be
factored back into the hazard analysis.

On October 24, 2002, a grinder exploded at the
Foreman Quarry and Plant in Foreman, Arkansas. An
operator was killed when flammable waste fuel covered
him and ignited. The operator had started the pump for
solid waste fuel processing when the accident occurred.
The U.S. MSHA stated that the cause of the accident was
that the safety monitoring system designed to shut off the
waste fuel system pump had not been maintained so that
it functioned properly. The Foreman Quarry and Plant,
operated by Ash Grove Cement Company, mined
limestone and processed it for use in Portland cement.
Kilns were used in the processing, and these kilns were
heated by burning coal, natural gas, and liquid waste fuel.
The liquid waste fuel was delivered by truck or railcar
and pumped into large storage tanks. From the storage
area it was pumped through a grinder to reduce the
particle size of the solids in the fuel. Two independent
systems monitored and controlled the waste fuel delivery.
A Foxboro Intelligent Automation Distribution Control
System (I/A DCS) monitored and recorded normal
operating parameters. The Foxboro also issued audible
and visual alarms that were available at the plant control
room. A PLC provided basic start up and shutdown of the
system and responded to commands from the Foxboro.
On the day of the accident the Foxboro sensed that the
fuel delivery pressure was low, apparently due to
blockage in the line. As designed, the Foxboro sent a
command to the PLC to shut down the pumps. However,
the PLC failed to respond and the pumps kept running.
Three months prior to the accident this PLC had been
installed; this was supposed to be a simple replacement of
an older PLC of similar capability. However, the Foxboro
had not been connected to the newer PLC, and the
connections remained to the older non-functioning PLC.
The system had never been tested with the new PLC. A
test had been scheduled three days prior to the accident
but had been aborted when a pump failed during the test;
the test had never been rescheduled. The accident report
stated that the blockage may have broken free just prior to
the accident. With the pumps running, the pressure
elevated significantly and a “water hammer” effect
caused overpressurization in the system at the grinder.
The grinder was torn loose from its base, spraying fuel
and pulling loose a 480-volt cable that ultimately served
as an ignition source (U.S. MSHA 2003b).

CRPIT Vol 145 (ASSC 2012)

Page 72

2.8 Weak safety culture
Most accidents are the result of a confluence of factors,
and not just the result of failures of components or
systems. Since the greatest threats to safety often
originate in organizational issues, many industries have
begun to realize that making the system safer requires
improvements in the organization’s safety culture.
However, not all organizations have been successful in
improving and maintaining organizational safety.

On April 21, 2010, the chief engineer on the container
ship Ever Excel died when he became trapped between
the top of the ship’s passenger lift and the edge of the lift
shaft. According to the U.K. Marine Accident
Investigation Branch (MAIB), at the time of the accident
the ship was undergoing a routine compliance inspection
in Kaohsiung, Taiwan. The second engineer was unable
to open the lift shaft doors to complete the inspection.
The chief engineer tried to solve the problem and entered
the lift car, climbed through an escape hatch, climbed on
top of the lift car, and closed the hatch. The second
engineer incorrectly believed that the chief engineer had
set the controls to manual mode to take control of the lift
car. Therefore, the second engineer released the
emergency stop button then turned the reset key attached
to the lift door. By closing the emergency hatch door the
chief engineer had disabled the first safety barrier, an
interlock that would not allow the lift to operate with the
door open. The second engineer removed the second
safety barrier, the emergency stop, by releasing the
emergency stop and resetting the system. As a result, the
lift returned to its normal automatic operating mode, and
the lift automatically moved upwards, trapping and
asphyxiating the chief engineer. The MAIB report noted
that the crew had failed to follow manufacturer-suggested
procedures in performing lift maintenance. The report
also stated that the crew was unable to release the chief
engineer after the accident and damaged the lift because
they had not practiced emergency operation of the lift. In
addition, the report identified a weak safety culture in the
organization, stating, “It was evident that completing the
task was considered more important than working
safely.” The report went on to state that communications
were poor, risk assessments were not completed, there
was little feedback provided to the crew on safe
procedures, the company did not make use of previous
accident and incident reports, and auditing was
ineffective (U.K. MAIB 2011).

3 Overall Software Safety Lessons Learned
The accidents and incidents described here illustrate that
there are significant challenges in the software safety
discipline, and that organizations often fail to perform
effective software safety efforts as part of an overall
system safety approach. Some broad lessons learned that
emerge from the examination of hundreds of accidents
(Hardy 2012) include the following.

 Decisions made in the acquisition and planning
phases of development can profoundly affect
safety. Planning typically involves trade-offs
between many different facets of the program,
including cost, schedule, performance, and
safety. Poor planning can lead to unexpected

safety consequences, and many safety decisions
are actually made in the planning and acquisition
phase. However, software safety personnel are
often not included in early phases of a program
when those critical decisions are being made. In
addition, adequate resources may not be
allocated to the software safety effort. This can
result in a failure to perform hazard analyses and
identify safety requirements early in the program
when these activities provide the most impact.

 Communication barriers between software
engineers, hardware engineers, safety
personnel, and management are common. No
one person can fully understand a complex
system, especially one with software. Therefore,
multiple individuals and organizations must
interact and trade information to effectively
reduce risk. This means that different parts of
the organization must learn to speak each other’s
language. Communications between customers
and suppliers must also be open and frequent.
Misunderstandings and miscommunication are
often contributors to accidents. Some of those
misunderstandings come from inadequate
requirements management efforts.

 Software hazard causes are oversimplified or
focused only on failures. Review of a number of
hazard reports from different organizations has
shown that software hazard causes and controls
often do not provide sufficient detail or clarity.
Software causes may be generically stated as
“software error,” instead of defining specifically
the software functionality that can lead to an
undesirable outcome. The focus is often on
failure of the functionality to work, but other
causes, such as inadvertent operation, may be
ignored. Interfaces, especially those between
software and hardware, may be misunderstood,
and interactions between components are not
explored. The software hazard analyses may not
pay enough attention to those cases where the
software works exactly as intended, but the
implemented functionality is unsafe.

 Risks may be underestimated and optimistically
evaluated. Risk assessments allow organizations
to make decisions about uncertain futures given
existing knowledge. Assessing the risk of
software-related systems presents challenges in
large part because the evaluation of the
likelihood of the hazard is difficult. Instead of
using that limitation as an opportunity to
carefully consider many different risk factors,
organizations instead may create optimistic
projections of what they want to happen. Or they
may equate past success with low risk, ignoring
the fact that testing and operations cannot
feasibly consider all combinations of possible
inputs.

 Hazard controls may rely on good software
processes and testing. System safety efforts
should follow the design order of precedence,
where the first approach is to try to design out

Proc. of the Australian System Safety Conferrence (ASSC 2012)

Page 73

the hazard or minimize the risks through design
selection. Software is no different in this regard.
Yet organizations may still focus on quality
control and quality assurance efforts, such as
focusing on good software processes or
extensive unit testing, to prove that the design is
safe. However, software processes and testing
will not prevent an accident if the software
design is flawed with respect to safe system
operations.

 There may be a failure to ask “what if the
hazard controls don’t work?” Organizations
may implement what appear to be effective
controls, but then do not take the analysis any
further. While organizations certainly
understand that those controls may fail, they do
not take the next step and ask what happens if
they do not perform their function or perform the
function incorrectly. Organizations make
optimistic assumptions about the ability of the
system, including hardware, software, and
humans, to come to the rescue when the
undesired event happens.

 Testing tends to focus on functional operation
and not off-nominal conditions. Testing can be
expensive, and most organizations are limited in
the resources they can apply to testing.
Therefore, the focus is naturally on making sure
the system meets the requirements. This is
necessary, but not sufficient. Many accidents
have shown what can happen if testing does not
include off-nominal scenarios and abnormal
conditions. Testing should not just address what
is required but also include what can go wrong.

 Testing may not provide information on
subsystem and component interactions. Software
and computing system accidents occur most
often because of unanticipated interactions, not
because the software was poorly coded. A
number of accidents have occurred when no
component failed in the conventional sense, but
the interaction of components caused a system
failure. Therefore, a significant focus of safety
testing must be on a fully integrated system,
with testing of end-to-end events. That testing
must include stressing of the software, and
should include interactions of the software with
hardware, humans, and environments. Many
verification efforts however fail to perform
sufficient integrated system testing, or include
operator interaction in that testing.

 Anomalies may not be factored into the design
or hazard analysis. Learning from failure and
problems is essential to safety. These problems
provide clues of accidents yet to come.
Therefore, software problem reports, like those
of hardware, should be part of a larger root cause
and corrective action system. These problem
reports should include issues found during actual
operation. Yet organizations do not always take
these problems seriously or use those problems
to look for issues that could lead to system

failure. Software does not have to be perfect to
be safe, and not all errors impact safety. But
errors in safety-critical functions should be
investigated and corrected. Conversely,
organizations may incorrectly assume that a lack
of anomalies or mishaps implies that the system
is safe; in fact, latent errors could exist, and
these errors may contribute to an accident.

 Software change management and hazard
analyses processes may not be integrated.
Engineering by its very nature is an activity that
requires change, and changes occur in the
hardware, software, processes, and organizations
throughout development and into operation.
While a number of organizations may have
strong configuration and change management
practices, those practices do not always integrate
with the hazard analysis process. Hazards may
fall through the cracks if those processes are not
integrated.

 Human-software interactions have significant
safety implications that are often
underestimated. Humans interact with hardware
and software in positive and negative ways.
Organizations may not understand the
importance of human-software interactions or
pay as much attention as they should to displays
and control panels. In addition, they may make
changes to user interfaces and information flow
on critical systems without adequate assessment.
Organizations may count on operators saving the
day when a bad day occurs in complex,
software-intensive systems, but they may not
provide proper tools and training to enable
operators to perform those safety-critical
functions.

 Support software may be as critical to safety as
control software but may not be included in
safety analyses. The focus of most software
safety efforts is naturally on software that
directly controls an operation. But software and
computing systems show up in many different
parts of the system, and this support software
may turn out to be safety-critical. Support
software, including models and simulations, may
be just as hazardous as controlling software, but
it is often not thoroughly examined.

 Hazard analyses and safety systems may not be
updated using operations and maintenance
experience. It is usually during the initial
operating phases that the most is learned about
the system. However, organizations may fail to
feed what is learned in operations and
maintenance back into their safety analyses.

4 Promoting a Questioning Attitude in
Software and System Safety

It is important to promote the use of system safety
methodologies and analyses. It is difficult to understand
and then decrease the risk of complex technologies
without the use of a structured approach to identifying
and controlling hazards. However, as discussed above,

CRPIT Vol 145 (ASSC 2012)

Page 74

lessons learned from past accidents and experiences point
to the importance of cultivating and encouraging a
questioning attitude toward all aspects of the system
safety process, especially where software and computing
systems are important for safety. Implementation failures
can occur in any of the system safety process steps. We
should use lessons learned such as those described in this
paper to help us understand how previous efforts failed to
prevent accidents, and how our own efforts might be
similar. We should require compelling evidence before
concurring with the analysis.

Most importantly, we should ask critical questions
about the overall software and system safety process. By
asking focused questions we can challenge assumptions.
Such questions can stimulate thinking and get people to
open up about the risks. Good questions allow us to view
the system holistically, rather than just as the sum of its
parts. Examples of such questions include the following:

 Do plans reflect how business is really done?
Are plans reviewed? Do plans have unrealistic
schedules or resource allocations? Is software
part of that planning? Poor or unrealistic plans
may reflect an organization that does not truly
place a priority on safety activities.

 Is there a convincing story that the safety
analysis is complete and thorough, and that
software’s contributions to hazards have been
identified? Did the analyst use multiple tools
(fault tree, hazard analysis, etc.) to perform the
analysis? Were checklists, accident reports,
previous experience, or a combination of those
employed? Failure to show that the problem is
being looked at from multiple perspectives could
be an indication that there are holes in the
analysis and that significant problems may not
be identified.

 Are the reports detailed enough? Are causes
descriptive? Does the logic make sense and is it
complete? Do controls match up with the causes,
showing a one-to-one or many-to-one relation?
Lack of detail could be an indication of
insufficient knowledge of the system, or lack of
information on the system.

 Are the hazard controls primarily procedural
rather than design changes, safety features or
devices? Is there an overreliance on humans and
software to “save the day”? Overreliance on
operational controls may indicate a weak safety
design.

 Can the control strategy actually be implemented
and verified? Is the control strategy so complex
that it will be impossible to determine whether it
will work when needed? Is the control truly
effective? Are controls truly independent?
Complex controls or overlapping control
strategies may be an indication of a weak safety
design.

 Has the risk assessment truly considered the
worst case? What is the basis for the likelihood
levels? Has the risk assessment considered lower
severity but higher likelihood cases? Is the risk
analyzed by cause and by phase? Failure to

provide good answers to these questions
indicates a potential misunderstanding of the
risk.

 Are problems found in test and design included
in the hazard reports and factored into the
design? Failure to incorporate problems and
corrective actions is an indication of the
potential to miss serious design flaws.

These questions help to identify whether the system
safety process is robust. However, we must also ask
questions related specifically to the use of software and
computing systems in complex systems. The best
questions come from real-world examples of accidents
where software has been a contributor. Some examples of
questions are as follows, and others can be found in
Hardy (2011).

 Have safety-critical software, commands, and
data been identified?

 Do hazard controls for software-related causes
combine good practices and specific safeguards?

 Do standards exist for software peer reviews and
other design reviews?

 Is software and system testing adequate, and do
tests include sufficient off-nominal conditions?

 Is the computing system design overly complex?
 Is the design based on unproven technologies?
 What happens if the software locks up?
 Are the sensors used for software decisions fault

tolerant?
 Has software mode transition been considered?
 Has consideration been given to the order of

commands and out of sequence inputs?
 Will the software and system start up and shut

down in a known, safe state?
 Are checks performed before initiating

hazardous operations?
 Will the software properly handle spurious

signals and power outages?

These are by no means all the questions a decision

maker should ask, and positive answers to these questions
provide no assurance that an accident will be prevented.
These questions should encourage critical thinking and
generate additional safety questions to provide further
insight on system risk. A failure to ask these questions
could mean that the potential for an accident is higher
than we had assumed.

We also have a responsibility as system safety
practitioners to share our doubts and questions with
decision makers to allow them to understand what we do
not know and where uncertainties exist. In particular, we
should:

 Avoid oversimplifying the potential hazard
causes. Identifying hazard causes in complex,
automated systems can be a difficult process,
and decision makers should be made aware of
the challenges in performing this activity.

Proc. of the Australian System Safety Conferrence (ASSC 2012)

Page 75

 Do not downplay uncertainties, especially with
likelihoods. Obtaining credible reliability
estimates for software may not be possible for
new systems, and qualitative risk assessments
should be supplemented with analyses of other
factors such as complexity, maturity, degree of
system testing, and so on.

 Do not self-censor, especially with respect to
hazard controls. When safety practitioners are
aware that a contract has been issued which
limits the choices of hazard controls, it is natural
to eliminate options from consideration.
However, the decision maker should be aware
that such choices are being made.

 Provide alternatives, but discuss the tradeoffs in
risk. Rather than simply saying “no” to an
activity, safety practitioners should provide the
decision maker with options, then clearly
describe the risk of each option.

 Discuss the limitations of the testing and
verification efforts. It is practically impossible to
test every possible combination of software
inputs, or test every possible hardware or
software configuration to be used. Decision
makers should be made aware of these
limitations.

 Be clear about the effects of failures and
changes during development and the potential
for increased risk. Problems discovered during
development and in operation, and changes
resulting from problem fixes and upgrades, can
have major impacts on safety.

 Use accidents and incidents to provide support
for safety conclusions. Decision makers will
respond more favorably to our conclusions if
there is concrete evidence to back up our claims.
We should use available accident and incident
reports to provide that evidence. These “stories”
will also resonate better than statistics with
decision makers in making our case.

It is up to all stakeholders to look for those conditions
that could lead to an accident and to recognize that the
worst can happen. This means we should all express
concerns about safety management and engineering when
necessary based on our knowledge, experience, and
judgment, and based on lessons learned from accidents.
We must ask questions to understand the potential for
harm, to understand the steps taken to assure that the risks
have been reduced, and to assure that there is proof that
hazard controls are effective. And we must openly and
honestly communicate what we do not know. We will
never eliminate risk, nor do we want to. Without risk
there is no reward. But it is up to all of us to promote and
encourage a questioning attitude to ensure that we are
knowledgeable of those risks and to assure that the risks
have been appropriately reduced.

5 Summary
System safety can provide immense benefits to any
industry, especially those designing, building, and
operating complex systems using software and computing
systems. By proactively identifying hazards, assessing

and characterizing risks, and taking actions to reduce
those risks, organizations can prevent accidents and
reduce the potential for death, injury, property damage,
and environmental impacts. However, poor system safety
analyses can result in precious resources being used on
low risk activities while larger risks are ignored. When
applied inappropriately, system safety methods can lead
to overconfidence and result in an underestimation of
certain important risks. System safety efforts should be
promoted and advocated, but we should also promote a
questioning attitude to further the discipline. We should
understand the ways that these analyses can provide
misleading results, especially in software-intensive
systems, and we should examine the ways in which risk
can increase by the actions we take. Lessons learned in
the form of accidents and experiences in implementing
the system safety process should be used to fuel those
questions. It is through a questioning attitude that system
safety and software safety efforts can accomplish their
main goal -- preventing accidents.

6 References
Finkelstein, A., and J. Dowell (1996): “A comedy of
errors: the London Ambulance Service case study,” 8th
International Workshop on Software Specification and
Design.

Haley, D. (1995): “Ice Cause of X-31 Crash,” National
Aeronautics and Space Administration Dryden Flight
Research Center, Edwards, California, NASA Press
Release 95-203.

Hardy, T.L. (2011): Essential Questions in System Safety:
A Guide for Safety Decision Makers, AuthorHouse.

Hardy, T.L. (2012): Software and System Safety:
Accidents, Incidents, and Lessons Learned,
AuthorHouse.

Harland, D.M., and R.D. Lorenz (2005): Space System
Failures: Disaster and Rescues of Satellites, Rockets,
and Space Probes, Praxis Publishing.

State of New South Wales (2010): “Fatality involving
David Hurst Oldknow Ravensworth Underground
Mine Coal Preparation Plant Reject bin 802 18
February 2009,” May 2010.

United Kingdom Marine Accident Investigation Branch
(2011): “Report on the investigation into the fatal
accident to the chief engineer in the lift shaft on board
Ever Excel in Kaohsiung, Taiwan on 21 April 2010,”
Report No 6/2011.

United States Air Force (1999): “Titan IVA-20 Accident
Investigation Board Summary,” January 15, 1999.

United States Mine Safety and Health Administration
(2003a): “Report of Investigation: Fatal Other Accident
(Steam Burns), February 11, 2003, Southern Clay
Plants & Pits Southern Clay Prod. Inc., Gonzales,
Gonzales County, Texas,” Mine I.D. No. 41-00298.

United States Mine Safety and Health Administration
(2003b), “Report of Accident: Exploding Vessels
Under Pressure Accident, October 24, 2002, Foreman
Quarry and Plant, Ash Grove Cement Company,
Foreman, Little River County, Arkansas,” Mine I.D.
No. 03-00256.

CRPIT Vol 145 (ASSC 2012)

Page 76

