
Software engineering class eating its own tail

Samuel Mann
Information Technology

Otago Polytechnic, Dunedin NZ
smann@tekotago.ac.nz

Lesley Smith
Information Technology

Otago Polytechnic, Dunedin NZ
lsmith@tekotago.ac.nz

Abstract
This paper describes an experiment where software
engineering students were given the task of developing
a project management system for use in capstone
projects. The Agile Development Framework, which
is a combination of agile and structured methodologies,
is introduced. Using examples of student work, the
paper describes the effect on learning of this recursive
approach to learning software engineering.

Keywords: Software engineering projects, computer
education

1 Introduction
In this paper we describe the results of an experiment
in teaching software engineering. By means of a
project based teaching approach, students were given
the task of developing software for teaching software
engineering.

Teaching software engineering at undergraduate level
poses the challenge of presenting a robust discipline to
students while reflecting industry currency, as software
engineering methodologies have been continuously
evolving since inception.

In previous papers we describe the ongoing
development of an approach to teaching software
engineering (Mann and Smith, 2001, 2004, 2006).

A disadvantage of the project based approach is that
students focus excessively on learning the subject
matter of the project, rather than the software
engineering process that is the objective of the course.
The research question for this paper is – can we
harness this incidental learning by selecting the
development of a project management tool as the class
project?

1.1 Context
Software Engineering is a one semester course in the
second year in three year degree in Information
Technology. It is a compulsory pre-requisite for the
capstone project and as such it gives the students the

Copyright © 2007, Australian Computer Society, Inc. This
paper appeared at the Ninth Australasian Computing
Education Conference (ACE2007), Ballarat, Victoria,
Australia, January 2007. Conferences in Research in Practice
in Information Technology, Vol. 66. Samuel Mann and
Simon Eds. Reproduction for academic, not-for profit
purposes permitted provided this text is included.

tools for undertaking their projects (Mann and Smith,
2004, 2006).

The course is taught using a project based approach,
following a strategy of making it real (“real projects
for real clients”) and following an “empowerment”
approach (Robinson 1994, Smith, Mann and Buissink-
Smith 2001). The approach should incorporate a real-
life client to mirror an industry experience. It should be
flexible (to demonstrate adaptability to change, both in
the project and in teaching). It should have a user
focus – rather than a plan focussed approach, and it
should be applicable over a wide variety of projects,
including hardware and network based projects.

Iterations of the course have included a ship safety
system, an online motivation project, an animal ethics
management system, systems for a maritime museum,
a job management system for engineering firms, and a
student management system.

A key question in this project based approach to
software engineering is the choice of project. In Smith
and Mann (2004) we examined our history of such
projects and developed a set of guidelines for the
selection of the project. In addition to being real,
exciting and interesting, we stated that the project
should

 “facilitate teaching the structure of the
chosen methodology. For early stage
developments the client should have an idea
of a business problem, but not a
solution…facilitate teaching each of the
methodologies’ range of tools and
techniques. The more creative projects are
better for logical design work but are
difficult to apply to data modelling”. (Smith
and Mann, 2004)

In Mann and Smith (2005) we investigated the
relationship between project methodology, the scale of
the project, and student learning. The value of a
formal methodology in providing a pathway was
demonstrated by a large and complex project:

“At the onset I had no clue of being able to
do what was required, so I didn’t have a
preconception about what it would look like.
I did not think we could do it and definitely
not me. Now I see it can be done…”
(Student review)

A potentially huge project, though, can have a
disempowering effect, as it was clearly not feasible and
students lost interest. Poor groups responded by
scoping this project very small, to the extent of
developing little more than login systems.

“When we first looked at the brief for
Captain Black we thought that the scope for
the project had the potential to be much
larger than anything we could confidently
develop” (student review)

At the other end of the scale, a very small project can
further shrink as students lose interest as a result of
feeling that a formal approach is overkill. In the mid
range are projects that turn out to be much bigger than
students’ initial understanding.

These examples demonstrate a relationship between
the project and the learning of the actual subject:
software engineering.

“We felt disadvantaged, the other groups
had members who had worked in business
and knew what the system should do”
(student review)

A disadvantage of the project based approach is that
students focus excessively on learning the subject
matter of the project, rather than the software
engineering process that is the objective of the course.

“We had no idea, none of us knew anything
about ships, we spent the first few weeks
becoming experts on shipping” (student
review)

In the guidelines for the selection of the projects we
argued for real, exciting and interesting, and stated that
the project should “facilitate teaching the structure of
the chosen methodology. Can this facilitation be
achieved by the selection of a project management tool
as the class project? In focusing student effort on
project development, can we generate a deeper
understanding of the methodologies and tools
involved?

2 Method
Students were given the project of developing a
Capstone Project Management System. In a break
from our usual practice of using “real” external clients,
one of us was the client.

 Using a qualitative approach, quotes from student
work, reflective journals, etc are given here to identify
emergent themes. Two groups (here coded H and C)
are used to illustrate contrasting levels of
understanding and approaches.

The Capstone projects (and hence Software
Engineering) follow an integrated methodology that
combines elements of both agile and structured
software development. This Agile Development
Framework (ADF) approach is described more fully in
Mann and Smith (2006).

The focus of the methodology is on the production of
robust working systems (software, hardware and
maintenance documentation). Planning, comprehensive
development documentation and processes are
important but are 'means to an end' with a focus on
content rather than format/representation.
Noble, Marshall, Marshall, & Biddle (2004) note that
the shift to an agile approach in industry “has created a
need for a similar shift in software engineering
education”, explaining that “document centric project
methodologies do not align well with students’
reasonable expectations of more agile working
methods”.
Each iteration of the development cycle is divided into
“sectors” defined by a deliverable output and
communication with the client. The sectors here can
be seen to form a structured development process
(Figure 1).

Figure 1 Sectors

The Agile Development Framework comprises three
iterations. The first iteration is aimed at
building understanding within the development group
and stakeholders. The second iteration is aimed at
designing and releasing a functional system that meets
many of the functional requirements. The third
iteration, “robust delivery” is intended to review the
success of the second iteration in meeting business
requirements, to review functional requirements, and to
deliver a robust and stylish “bullet proof”
implementation. Each sector is defined by what it
produces (Figure 2); the focus is on achieving that
outcome. Processes within each sector are determined
by agile principles using integrated templates.

The 16 week teaching schedule of software
engineering follows the three iterations. In the first
four weeks students are introduced to the agile
approach and use agile tools to produce a project
proposal. The second iteration takes weeks 5-10 and
can be considered analogous to a single iteration of a
structured approach (with constant reminders of the
agile context). Students produce a functional delivery.
With little directed structure students take control in
the third iteration in working independently as groups
to produce a “robust delivery”. This third iteration
takes weeks 11-16.

Figure 2: Example sector Design Concepts from 2nd iteration

3 Results

3.1 First iteration
In the project the first iteration is scheduled for two
weeks. The intention is that after group forming
processes, a few days are spent investigating potential
technology and building a very rapid prototype. This
serves three purposes, first it is a chance for the newly
formed group to work together, second, it helps to
identify the business problem (is it something that could
be solved with something like this), and third, it gives
some insight into the complexity of the technology that is
likely to be involved.

The project is introduced to students through a client
interview. The student notes (Figure 3) illustrate a tight
integration of the project and software engineering – it is
not really possible to tell to which these notes refer.

The integration had clear benefits for this group:
 “material that was collected during our
research met two goals. One was to inform
ourselves on the components of the Agile
methodology and iterative processes; and two

was to find examples of project management
software that already existed.” (Final review,
Group H)

However, the limited understanding of the approach was
exposed in the client letter from another group:

“we have decided to develop this system with a
combination of the Spiral and Scrum
Methodologies” (Client letter, Group C)

A significant part of the first iteration is an attitudinal
change by students. Unlike most courses, where
assignment requirements are clearly specified, in software
engineering, the groups themselves manage the
development of the requirements of the projects.
Students often have an assumption that we know the
functional requirements and are keeping them hidden. A
big part of the learning in the first iteration is of
responsibility for development. The agile practices of
system metaphor and the planning game are useful in this
process.

! Achieve a system that can facilitate
people doing their projects

! Shouldn’t be a disconnection between
project and documentation/
management

! Make backups regularly, high chance
of losing everything

! Understand, construct, evaluate, steer
and communicate – must remember
all five

! Group collaboration: need way of
allocating work to group members,
don’t give specific tasks to people,
hard to compile at end

! System should be supporting agile
manifesto

! Like to have templates for some
things. Ownership of ideas could be a
problem

! Need a public front end to system, be
able to cope with differing amounts of
client involvement.

Figure 3: Student client interview notes (Group A)

For this project the system metaphor of a fridge door was
extensively explored in class:

For me the project is a fridge door:
always there (you don't have to open it to find
information), messages to family (from each
other, phone messages), calendar (today,
arrangements, upcoming events, shopping list,
progress charts, current work, document
repository (music tickets, bills to pay),
reconfigurable (information held together by
fridge magnets), public place, central place:
go past it as part of normal life (work)flow
(but without it jumping out and interrupting)
achievements, photos, newspaper clippings,
limited space, information has to be managed
to avoid loss in clutter (but this is done without
any rules, design or manager) (note, I did
write "it does this" here, the door itself of
course doesn't do anything except act as a
static repository, it is the family who actively
manage the information), phone numbers,
menu for pizza place, ...and does all these
things without getting in way of real job
(keeping food cold - our system mustn't get in
way of project). (Notes from classroom
session)

Other metaphors explored were: diary, library, mind
mapping, job management system (a naïve metaphor).

Some groups used the system metaphor well:
dashboard metaphor, forward movement, dials
for information, everything within reach,
doesn’t distract from main function (driving
car). (First iteration, Group H)

This group recognised early on that the measure of
successful development was “better project outcomes and
streamlined process” (First iteration, Group H) while
most other groups were seeing non-functional metrics
such as error counts as the best way of assessing their
success.

One mature student objected strenuously to the time spent
on system metaphor and the planning game “let me just
talk to users” and was quite frustrated when we pointed
out that she was one herself!

Although useful at the start, the confusion over the
project and the methodology soon began to hinder some
groups:

 “System Metaphor Description: For this
project we will be using the Spiral
methodology, incorporating elements of the
Iterative Methodologies. The spiral
methodology extends the waterfall
methodology by introducing prototyping”.
(First iteration, Group C)

Some weaker students really struggled to get beyond
these early stage tasks. They saw them as major pieces of
work rather than small exercises aimed at increasing
understanding and communication. Although this is
common, it was exacerbated by the close links between
the project and the course – while previously we could
say “forget ships for a while, let’s carry on with software
engineering” it was difficult to say “forget software
engineering for a while, let’s carry on with software
engineering”.

Figure 4 Group H: Iterations combined with
dashboard metaphor

For the first iteration in software engineering the
deliverable can take almost any form. Group H presented
a whiteboard diagram of the direction they saw the
project taking (Figure 4). In this they extended their
dashboard metaphor and incorporated the iterations of the

ADF, but the content area is sparse with “messages,
calendar, click here to go to tasks”

Group C finally came to understand the separation of the
project and the course and presented a spreadsheet-based
approach that aimed to “assist students with a better
information management system” (First iteration, Group
C). They did not quite understand what the system would
do: “reduce extra costs, user friendly, improve data
security” (First iteration, Group C) although the prototype
spreadsheets to calculate cost of work did show some
creativity.

3.2 Second iteration
The second iteration ends with the development of a
functional system. It starts with an analysis stage where
groups develop entity relationship and dataflow diagrams
(etc) on their way to describing functional requirements.

It is usual practice for student groups to first write
meaningless functional requirements. We had hoped that
being closer to the project than usual would lessen this
problem. It didn’t work; the first functional requirements
consisted of variations on: “The system shall store,
retrieve and move the project data” (Group C).

We then had the groups analyse the data form and
content. This didn’t work either, the weaker groups
slipped back into their confusion about project and
course.

The breakthrough came by getting the groups to write a
job description for a person to be employed to facilitate
the capstone projects. Suddenly the level of
understanding about both the project and course was
raised a great deal. This led to questions based around
structures of the ADF (Figure 5).

Figure 5: Development questions (Group C)

The functional requirements (admittedly still not perfect)
were very much improved:

! Provide process templates for the student’s
project throughout the three Iterations: To
guide student throughout the process and
allow them to check on the progress of the
project.

! Provide a task management function to set
up, choose task and check overall progress
of tasks and monitor tasks’ progress.
Students can set up tasks by enter task name
and description. Then enter new taskID
into Iteration Sector task table

! Enable user to select Iteration and Sector
and choose Task To guide student in the
process of task management through the
use of spiral methodology
 (Second iteration, Group C)

In the second and third iterations, students are expected to
work out their own pathway through each sector. Blank
“rainbows” are given out for groups to populate with their
own workflow, the only requirement being evidence of a
rational flow of information between the inputs and
outputs of the sector (Figure 6).

Figure 6: Group working on their own management

Figure 7: Group management of tasks

Group H saw this flow of information and managing the
flexibility of the tasks as the key to the system. They
used their own management notes (Figure 6 and Figure 7)
to develop a system focused on this support for agility
whilst keeping track of the management of tasks. This
they developed and tested through paper based prototypes
(Figure 8 and Figure 9).

Figure 8: Group H: The content area has changed to
represent the structure of the ADF.

Figure 9 Group H: Second iteration deliverable

 “Once a stable database structure was
constructed with well-established
relationships, we decided to produce a front-
end to test the robustness of the back end. Our
main goal was to develop the core
functionality of the capstone system (the
reasoning being that if we could develop the
core functions then the other peripheral
functions would be relatively easy to
incorporate into the system at a later date.
What happened…It worked! We were satisfied
with the product and felt confident that it did
what the system was designed to do eg assign
and prioritise tasks, provide access to
templates, allowed the addition of notes, and
that it proved the stability of our backend.
We decided the best way to test this release
was to use it to complete the project. We
found that it required a minimal amount of

effort to use and allowed us to track what was
happening with each task” (Second iteration,
Group H)

Figure 10: Group C (supposed to be) dialogue
diagram

Figure 11: Group C, based at task level and %
complete indicator.

Figure 12: List based functional delivery

While Group H developed what could be considered a
holistic or integrated approach (perhaps based on their
deeper understanding of the ADF), Group C, on the other

hand, continued to focus on detail. This can be attributed
to a weaker understanding of the ADF, and in particular,
little understanding of interactivity.

“We did a certain amount of prototyping of
design in Iteration Two. With the use of Excel
to create interface and the cut-out papers and
symbols, we were able to test many users for
opinions. It gave us a clearer view as how to
navigate around the software environment and
understand more of the details that needed to
be implemented in assigned tasks in the
subtask stages”. (Second iteration, Group C)

Figure 10 shows what should have been a dialogue
diagram representing interactivity, but instead looks more
like a menu structure. This flows through to interface
design (Figure 11) and components of the Functional
Delivery (Figure 12).

3.3 Third iteration
In the third iteration, groups go around the cycle again,
working towards a Robust Delivery. In terms of
teaching, we return the focus to agility, instead of
structured classes, we spend the time facilitating scrum
meetings, steering paired programming and so on.

In the third iteration Group H moved their system to the
web (Cold Fusion, Figure 13). The system is essentially
the same as the previous iterations. There is a system of
templates with edit and later upload. Multiple tasks can
be opened.

The group sensibly saw that some features could not be
completed in the confines of Software Engineering and
would have to wait: this became known as “Iteration 4”.
This is an appropriate interpretation of our intention in
the ADF – timeboxing – delivering what you can within a
set amount of time and resources is critical to
development (Tate 2006). On reflection, the group
recognised that some decisions were inappropriate. The
choice of what to develop and what to leave until later
was somewhat flawed – they had spent time developing
the “cracked dials” rather than fixing the actual function
of annotation.

After completion the group also recognised that while
promoting flexibility, the system had little to explicitly
support agility. Here, the integration of course and
project has aided learning.

Figure 13: Group H final system

The final product from Group C looks similar to that from
Group H. Figure 14 shows a similar spiral and rainbow
as the index but then the lists of tasks are poorly
integrated (no advance on Figure 12). The group did
demonstrate substantial progress in this iteration but,
unlike Group H, the change appears to be forced, rather
than based on a deeper understanding.

Changes were made somewhat grudgingly in response to
“client” instruction but this wasn’t mirrored in general
understanding. On reflection the group stated:

“We did have lots of changes requested from
the client; we followed the agile process of
using feedback to further improve our design
decisions.” (Third iteration, Group C)

But, while accepting the agile approach of embracing
change, discussion about the fundamental purpose of the
system (and by association the ADF) was displaced by
lots of mechanical details. Client interaction took the
form of lots of detailed questions:

There are fundamental errors in design, for example, the
percent complete bars for each iteration (cf the required
timebox approach). This reflects how far behind this
group was (although this tardy development would have
happened even if a different project had been used).

1. Can Joe display all tasks on one screen?
2. Is the system automatically saved on a regular

basis?
3. Does the system remind Joe that he needs to

backup his project?
4. Can Mary view a list of previous reports printed

to avoid reprint?
5. Can Mary also access the system to find out who

has printed what reports?
6. Can the system handle all iteration on one screen

for a print out?

Again, there was little support for agile concepts, the
system supporting less flexibility than Group H and, with
tasks needing to be assigned to only one person, the
system actively discourages teamwork and paired
programming. In the final presentation, this group
described their system as “providing support for the
spiral methodology” rather than Agile Framework.

Figure 14 Group C final system

All students in Group C and H passed the project
component of software engineering, the exam and the
course.

4 Reflection
In this paper we have described an attempt to leverage the
incidental learning associated with the project to assist
with learning of software engineering material. We did
this by using the development of a support system for
Capstone projects as the project for software engineering.
The questions now are: did it work and would we do it
again?

On balance, we conclude that it did work. The trade-off
is between a potential confusion of the course and the
project, and the benefits of “double dipping” on learning.

“Overall this has been a worthwhile
experience for me technically and personally,
in learning the process of software
engineering, and in developing skills to

become more adaptable to the ever-changing
work environment.” (Student review, Group
H), and

“In my final conclusion of this project I would
like to reiterate that this was an enjoyable
learning experience for me. As I gained more
understanding of software engineering I also
develop a greater excitement and passion for
the IT sector. So many times in class I was
distracted by new software ideas going
through my head and having to write them
down I sometimes missed what was being
taught in class.” (Student review, Group C)

Two major areas need addressing: formalising client
interaction and requirements of implementation.

We had hoped that having one of the lecturers act as the
client would mirror the extensive client involvement
promoted by agile approaches (indeed this has always
been a difficulty of “real clients”). This didn’t work
effectively, instead it added to student confusion:

“We feel that the client interaction was too
informal during this process; however this was
probably due to ill-defined boundaries where
the client was also the lecturer and also the
mentor.” (Student review, Group C)

In future work, we hope to formalise this interaction.

A second area of concern is the requirement to implement
systems as part of software engineering. Before we
adopted the ADF, the course was document centric and,
as the project was not implemented, students were
moving into the capstone project with little awareness of
implementation issues and often failed to produce the
required outcomes.

Getting students to do implementation can have the effect
of restricting their design thinking – design decisions are
made on the basis of limited technical ability eg: user
look up rather than linking. Crucially, however, in this
double dipping approach, limited design can be closely
related to limited learning.

Strong groups can see past this difficulty:
“We also feel that since this is our first time
directing a software engineering project with
the focus on learning rather than on getting
every step correct, that our group cannot be
too critical of our effort and overall, we
consider we have achieved a successful project
for the client and the end users” (Student
review, Group H)
“By following an iterative approach, teams
are not focused on producing code, but instead
are able to focus on project innovation. This
focus increases innovation and cuts delivery

time and also encourages parallel-
development activities.” (Student review,
Group H)

But for weaker groups this can become a barrier to
learning (although it provided many opportunities for
learning about conflict resolution and group dynamics).

“There is lots of paper work to be done;
however the detailed analysis steps helped us
to understand the process of the project
clearly. I think that the relationship between
what we originally conceived as our project,
and what was our final outcome, was very
close. Next time around I would like to prepare
myself better in programming so that I can
manage to design the software more
efficiently.” (Student review, Group C).

“As we are all new to this process, we had
neither the ideas nor the experience to
anticipate the difficulties of working together
under a high-stress load. Secondly, with open
communication, understanding of the
individual commitments and capabilities will
certainly help in establishing a functional
group able to work together.” (Student review,
Group C)

5 Conclusion
The use of a project management system as the project
for the software engineering class led to some confusion
for some students. However, the benefits of the approach
were clear for those students who were able to effectively
move between the dual roles of developer and user. The
question “what would the user need now?” was easily
addressed, and generated useful group discussions.

Apart from the difficulty of using a lecturer as client, the
experiment was worthwhile, especially in promoting
useful class discussion around the critical area of user
requirements. The students’ awareness of project
management was extended beyond what they would have
gained through a traditional project.

6 References
Mann, S., & Smith, L.G. (2004) Role of the development

methodology and prototyping within capstone
projects . Proceedings 17th Annual NACCQ, Mann,
S. & Clear, T. (eds). Christchurch. July 6-9th 2004.
p119-128.

Mann S., & Smith, L.G. (2005) Technical complexity of
projects in software engineering Proceedings 18th
Annual NACCQ, Mann, S. & Clear, T. (eds).
Tauranga. July 10-13th July 2005. p249-254

Mann, S. and Smith, L.G. (2006). Arriving at an agile
framework for teaching software engineering. 19th
Annual Conference of the National Advisory
Committee on Computing Qualifications,
Wellington, New Zealand, NACCQ in cooperation
with ACM SIGCSE. 183-190

Robinson, H. (1994) The Ethnography of Empowerment:
The Transformative Power of Classroom Interaction
The Falmer Press.; Bristol:

Smith, L.,G., & Mann, S. (2004) Projecting Projects:
Choosing Software Engineering Projects,
Proceedings 17th Annual NACCQ, Mann, S. &
Clear, T. (eds). Christchurch. July 6-9th 2004. p183-
190.

Smith, L.,G., Mann, S., & Buissink-Smith, N. (2001).
"Crashing a bus full of empowered software
engineering students." New Zealand Journal of
Applied Computing and Information Technology
5(2): 69-74.

Tate, K. (2005). Sustainable Software Development: An
Agile Perspective, Addison Wesley Professional,
NY. 264p

