
State convergence in the initialisation of the Sfinks stream cipher

Ali Alhamdan1 Harry Bartlett1,2 Leonie Simpson1,2 Ed Dawson1

Kenneth Koon-Ho Wong1

1 Information Security Institute
Queensland University of Technology,

126 Margaret Street, Brisbane Qld 4001, Australia,
Email: a.alhamdan@student.qut.edu.au, {e.dawson, kk.wong}@qut.edu.au

2 Faculty of Science and Technology,
Queensland University of Technology,

GPO Box 2434, Brisbane Qld 4001, Australia
Email: {h.bartlett, lr.simpson}@qut.edu.au

Abstract

Sfinks is a shift register based stream cipher designed
for hardware implementation. The initialisation state
update function is different from the state update
function used for keystream generation. We demon-
strate state convergence during the initialisation pro-
cess, even though the individual components used in
the initialisation are one-to-one. However, the com-
bination of these components is not one-to-one.

keywords: stream cipher, initialisation process,
state convergence, Sfinks

1 Introduction

The Sfinks stream cipher was submitted to eS-
TREAM, the ECRYPT call for stream cipher propos-
als in April 2005, by Braeken, Lano, Mentens, Preneel
and Verbauwhede (Braeken et al. 2005). It is a bit-
based stream cipher that takes an 80-bit secret key
and 80-bit IV as inputs and has a 256-bit internal
state. Sfinks is categorized as PROFILE 2A, suitable
for hardware applications and with an associated au-
thentication method.

The Sfinks stream cipher was attacked by Courtois
(2005) using basic and fast algebraic attacks. These
algebraic attacks exploit the state update function
used during keystream generation, but do not make
use of the initialisation process. Courtois found that
Sfinks can be broken with complexity of 271 compu-
tations using 243 keystream bits, which is faster than
the claimed security level of 280.

As noted above, the Sfinks stream cipher is broken
as a keystream generator. The purpose of this paper
is to investigate the strategy used for initialisation.
We note that the state update functions are different
during initialisation and keystream generation. Us-
ing a modified version of the keystream generation
state update function during initialisation may pro-
duce some security benefits. However, for Sfinks, we
find that although the state update function during
keystream generation is one-to-one, this is not the
case during initialisation. We investigate the resulting

Copyright c© 2012, Australian Computer Society, Inc. This
paper appeared at the 10th Australasian Information Secu-
rity Conference (AISC 2012), Melbourne, Australia, January-
February 2012. Conferences in Research and Practice in In-
formation Technology (CRPIT), Vol. 125, Josef Pieprzyk and
Clark Thomborson, Eds. Reproduction for academic, not-for-
profit purposes permitted provided this text is included.

state convergence in this paper. This paper considers
specifically the properties of the initialisation process
rather than the keystream generation of Sfinks stream
cipher.

State convergence occurs when two or more states
at time t are mapped to the same state after t + α
iterations, for some α > 0 and the states do not di-
verge after this point. That is state convergence oc-
curs when the state update function is not one-to-one.
State convergence may occur during the initialisation
process or keystream generation. This may reduce
the effective key-IV size and leave the stream cipher
vulnerable to attacks such as distinguishing attacks
(Rose & Hawkes 2002) or time-memory-data tradeoff
attacks (Biryukov & Shamir 2000).

This paper is organized as follows. Section 2
presents a brief description of the Sfinks keystream
generator, including details of the initialisation pro-
cess. In Section 3, an analysis of the Sfinks initial-
isation process is presented. Section 4 discusses the
results and concludes the work.

2 Description of Sfinks

The Sfinks stream cipher (Braeken et al. 2005) has
two main components: a shift register, S, and a non-
linear one-to-one inversion function INV as shown in
Figure 1. Let sit denote the contents of register stage i
at time t, where i = 0, 1, . . . 255 and t ≥ −128. Sfinks
uses an 80-bit secret key K = k79, . . . , k0 and 80-bit
initial value IV= v79, . . . , v0.

During keystream generation, the 256-bit shift reg-
ister is regularly clocked. The linear feedback func-
tion is described as following.

s255t+1 = s212t ⊕ s194t ⊕ s192t ⊕ s187t ⊕ s163t

⊕ s151t ⊕ s125t ⊕ s115t ⊕ s107t ⊕ s85t (1)

⊕ s66t ⊕ s64t ⊕ s52t ⊕ s48t ⊕ s14t ⊕ st

The nonlinear function INV can be considered as
a 16 × 16 bit S-box. The inversion function is used
during both initialisation and keystream generation,
but in different ways in each case. Let x and y de-
note the 16-bit input and output of INV respectively,
where x = (x16, . . . , x1) and y = (y15, . . . , y0). INV
is an invertible function, F16

2 → F16
2 that calculates

the inverse of the 16-bit input, modulo the primitive
polynomial X16 + X5 + X3 + X2 + 1. The 16 input
bits are taken from 16 register stages as follows.

Proceedings of the Tenth Australasian Information Security Conference (AISC 2012), Melbourne, Australia

27

(x16, . . . , x1) = (s255, s244, s227, s193, s161,

s134, s105, s98, s74, s58, (2)

s44, s21, s19, s9, s6, s1)

The 16-bit output of the S-box, y, is treated as
16 bit values (y15, . . . , y0). During the initialisation,
all of the 16-bit output of INV is fed back to spec-
ified stages of the shift register. During keystream
generation, only one bit of the output of the INV
contributes to the formation of the keystream bit.

2.1 Initialisation process

The initialisation process takes as input the 80-bit key
and 80-bit IV and performs 128 iterations (starting
at t = −128) to produce the 256-bit initial register
state. Once this initial state is obtained, keystream
generation can begin. The initialisation process is
performed in two phases, which we refer to as loading
and diffusion.

2.1.1 Loading phase

In the loading phase, firstly, all of the register stages
are set to zero. Then the 80-bit secret key and 80-
bit IV are transferred to specified positions in the
shift register. The secret key is loaded into the state
such that s96+i

−128 = ki, for 0 ≤ i ≤ 79, and the IV

is loaded into the state such that s176+i
−128 = vi, for

0 ≤ i ≤ 79. The register stage s95−128 = 1 and the

remaining si−128 = 0, for 0 ≤ i ≤ 94.
The output of the S-box is set to all-zero for the

first seven 16-bit outputs, y−134+t = (0, . . . , 0) for
0 ≤ t ≤ 6. In (Braeken et al. 2005) the process is
described as necessary to clear the pipeline stages in
the hardware and to provide the initial values of the
output of S-box to allow for the delay of 7 steps.

When both the secret key and IV have been trans-
ferred and the rest of state bits are fixed to the desig-
nated values, the Sfinks stream cipher is in its loaded
state. Following this, the diffusion phase begins.

2.1.2 Diffusion phase

The diffusion phase consists of 128 iterations of the
initialisation state-update function. Each iteration
can be considered as a function which maps the state
space to itself. After the diffusion phase is completed,
the keystream generator is said to be in its initial
state. Figure 2 gives a general overview of state up-
date function during the diffusion phase of the Sfinks
stream cipher.

For the first seven iterations, the initialisation pro-
cesses are performed in a purely linear manner (with
the effect of linear feedback of shift register only), as
the output bits of the nonlinear function are zeros,
(y−134, . . . , y−128) = (0, . . . , 0).

For the remaining iterations, the initialisation pro-
cess is performed using the linear feedback of the shift
register and the output of the nonlinear S-box func-
tion. The S-box output feeds back into 16 specified
stages of the shift register with a time delay of 7 steps
as detailed below.

sit = si+1
t−1 ⊕ yi mod 16

t−7 (3)

for i = {11, 17, 41, 52, 66, 80, 111, 118, 142, 154, 173,
179, 204, 213, 232, 247}. All other bits are clocked

normally, i.e. sit = si+1
t−1 for all other i and the shift

register feedback function (Equation 1) still applies.
At each iteration, the shift register is clocked and then
the INV function is called to calculate the inverse
of the 16-bit input to the S-box. This is stored as
the S-box output. The 16-bit output of the S-box is
XORed with the contents of 16 specified stages of the
shift register to form the contents of another 16 stages
of the shift register. The S-box function is the only
nonlinear component in the initialisation process. A
complete description of the state update function is:

sit =

si+1
t−1 for i = {0, 1, . . . , 254} except {11, 17, 41, 52, 66, 80,

111, 118, 142, 154, 173, 179, 204, 213, 232, 247}

si+1
t−1 ⊕ yi mod 16

t−7 for i = {11, 17, 41, 52, 66, 80, 111, 118, 142, 154,
173, 179, 204, 213, 232, 247}⊕

j s
j
t−1 for i = 255

for j = {212, 194, 192, 187, 163, 151, 125, 115, 107,
85, 66, 64, 52, 48, 14, 0}

At t = 0, the Sfinks stream cipher has completed
the initialisation processes and is ready for keystream
generation. During keystream generation, the register
feedback is linear. The least significant bit of the
16-bit output value of the S-box is XORed with the
value of stage s0 to produce each keystream bit, with
a delay of 7 steps applied to both values. That is,
zt = s0t−7 ⊕ y0t−7.

3 Analysis of initialisation processes

Analysis of the Sfinks stream cipher initialisation pro-
cess is complicated by the delay of 7 steps in feeding
the S-box output back into the register. However we
observe that the correspondence between this delay of
seven steps and the difference between certain input
and output taps leads to state convergence as shown
below. In the remainder of this paper, we refer to
stages of S which provide inputs to the S-box as in-
put stages and stages of S which receive outputs from
the S-box as output stages respectively.

From Figure 2, note that the distance between
some input and output stages is equal to the delay
time. Specifically, there is one case where sit is an
output stage and si+7

t−7 is an input stage. In this case,

recall from Equation 3 that sit = si+1
t−1⊕yi mod 16

t−7 , and

note that if we complement both si+1
t−1 and yi mod 16

t−7

then the same value of sit will be obtained. However,
si+1
t−1 = si+7

t−7 under regular clocking, and the S-box

output yi mod 16
t−7 depends on the contents of the in-

put stage si+7
t−7. That is,

sit = si+7
t−7 ⊕ yi mod 16

t−7 = s̄i+7
t−7 ⊕ ȳi mod 16

t−7 (4)

where s̄ and ȳ represent the complements of s and y
respectively.

It is possible that complementing the contents of
the input stage si+7

t−7 may cause the required change

in the S-box output bit yi mod 16
t−7 . This situation pro-

vides the basis of a search for states which converge.

3.1 States which converge

An examination of the Sfinks register shows there is
only one input stage with a distance to the next out-
put stage equal to 7 steps. That input stage is s161

CRPIT Volume 125 - Information Security 2012

28

S-Box (inversion)
16-bit x 16-bit

16-bits

Feedback
Clock

Delay-7

Delay-7

255

244

227
212

194
193
192

187

163
161

151

134
125

115

107
105
98 85 74 64 5866 52 48 44 21 19 14 9 6 1 0

Figure 1: Keystream generator of Sfinks stream cipher

161 154 161 154

S-Box

Clock

Figure 3: Input and Output stages have 7 steps delay

and the output stage is s154. The contents of s161 cor-
respond to the S-box input x12, and the S-box output
y10 is fed back to s154. Specifically, s161t−7 = x12t−7 and
s154t = s155t−1 ⊕ y10t−7. According to Equation 4, the
value of s154t will not be changed if complementing
the input bit s161t−7 = x12t−7 results in the output bit
y10t−7 being complemented as well. Therefore, we look
for pairs of S-box inputs (x16, . . ., x1) which differ
only in bit x12 and for which the corresponding pair
of outputs (y15, . . ., y0) differ in bit y10.

Consider firstly the input pair for which the output
pair differ only in y10, as illustrated in Figure 3. Such
a pair of S-box inputs (and corresponding output)
exists, and is presented in Table 1. For emphasis, x12

is underlined and bold font, as is y10. Table 2 gives an
example of two 256-bit register states SA

t−7 and SB
t−7

which converge to the same state after 7 iterations.
For efficient presentation the hex representation of the
256-bit binary state is given. Note that all register
stages except s161 are the same. SA

t−7 and SB
t−7 both

converge to St.
Since the register S is 256 bits long, and there

are 16 stages used as input to the S-box, if we fix
the contents of these 16 stages to the pattern given
in Table 1, we are free to choose any values for the
remaining 240 stages. Therefore, there are 2240 pairs
of states which converge after 7 iterations. One such
pair is presented in Table 2.

For the S-box pair in Table 1 discussed in the illus-
tration above the inputs differed only in position x12

and the outputs differed only in position y10. In gen-

Table 1: A special S-box pair which differ in x12 and
y10 only

Input Output
S-box sequence x16 . x1 y15 . y0

Stage No. 2
5
5

2
4
4

2
2
7

1
9
3

1
6
1

1
3
4

1
0
5

9
8

7
4

5
8

4
4

2
1

1
9

9 6 1 1
1
1

1
4
2

1
7
3

2
0
4

1
1

1
5
4

4
1

2
3
2

2
4
7

1
1
8

2
1
3

5
2

1
7
9

6
6

1
7

8
0

1st value 1 1 0 1 0 0 0 0 1 1 1 0 0 0 1 0 0 1 1 0 1 1 0 0 0 1 1 1 0 0 0 1
2nd value 1 1 0 1 1 0 0 0 1 1 1 0 0 0 1 0 0 1 1 0 1 0 0 0 0 1 1 1 0 0 0 1

Table 2: Two states (hex) differing only in stage s161

which converge

SA
t−7 F19B7E15AF4FF1338DDF0800AD8C56A42913E4B90CBEEFD3A4075AFD3351E5C1

SB
t−7 F19B7E15AF4FF1338DDF0802AD8C56A42913E4B90CBEEFD3A4075AFD3351E5C1

St BBE336FC2B7E9FE2671B9E10055B58AD481227C972187DDFA7580EB5FA66ABCB

eral, however, it is not necessary to apply such a strict
condition on the output bits. Referring to Equation 3,
and considering 6 consecutive steps of regular clock-
ing, we have sit = si+1

t−1 ⊕ yi mod 16
t−7 = si+7

t−7 ⊕ yi mod 16
t−7

for any output bit. If complementing the input bit
s161t−7 (which is x12t−7) causes yi mod 16

t−7 to be changed,

it may be possible to complement si+7
t−7 to obtain a

second state that gives the same value for sit. Recall
that 16 stages of the shift register S receive the out-
put of the S-box at each iteration of the state update
function. Of these 16 output stages, there are only
six (s11t−7, s17t−7, s41t−7, s52t−7, s80t−7, s111t−7) which directly
or indirectly affect an input stage during the six con-
secutive clocks. For example, the output y9 of the
S-box is fed back to s41 and there is an input to the
S-box within the delay time at stage s44. Allowing
this bit to change, may result in divergence in later
steps. Note also that if an input bit of the shift reg-
ister feedback is complemented at time t− 7, we also
need the stage s0t−7 to be complemented to assure
that the new bit s255t−6 will not be changed. Therefore,

Proceedings of the Tenth Australasian Information Security Conference (AISC 2012), Melbourne, Australia

29

01448526485

105

115

125

151

163

187

193

194

212

255

1112171841425366678081

111
112

118
119

142
143

154
155

173
174

179
180

204
205

213
214

232
233

247
248 169192144587498

107

134

161

192

227

244

S-Box (inversion)
16-bit x 16-bit

16-bits

Feedback

16-bits output to shift register
Delay-7

Clock

Figure 2: Initialisation processes of Sfinks stream cipher

when considering pairs of inputs and outputs of the
S-box for which convergence occurs the values of the
six S-box outputs (y0, y1, y4, y9, y11 and y15) must
be fixed. Therefore, we look for pairs of the S-box in-
puts which differ only in x12 and for which the output
bits differ in y10 and possibly in any bit of y2, y3, y5,
y6, y7, y8, y10, y12, y13 and y14.

We used an exhaustive computer search to look
for pairs of S-box inputs that satisfy the conditions
described above, and found 273 pairs of the S-box in-
puts (and corresponding outputs) with such patterns.
Table 3 gives three different examples of these S-box
input and output pairs. Note that the only difference
in each input pair is the underlined bold bit x12. In
the output pair, the underlined bold bits are the bits
which differ in each pair (which must include y10) and
the bits y0, y1, y4, y9, y11 and y15 (shown in italics)
should be the same in each pair. For each pair in Ta-
ble 3, Table 4 provides an example of two states based
on that pattern that converge to the same state after
7 iterations.

Table 3: Examples of complying pairs of S-box inputs
and outputs

Input Output
S-box sequence x16 . x1 y15 . y0

Stage No. 2
5
5

2
4
4

2
2
7

1
9
3

1
6
1

1
3
4

1
0
5

9
8

7
4

5
8

4
4

2
1

1
9

9 6 1 1
1
1

1
4
2

1
7
3

2
0
4

1
1

1
5
4

4
1

2
3
2

2
4
7

1
1
8

2
1
3

5
2

1
7
9

6
6

1
7

8
0

1
s
t
p
a
ir 1st value 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 1 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0

2nd value 0 0 0 0 1 0 0 0 1 0 1 0 0 1 1 1 0 0 0 0 0 0 0 1 0 1 1 1 0 0 1 0

2
n
d
p
a
ir 1st value 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 1 0 0 1 1 1 1 1 0 0 1 1 1 1

2nd value 0 0 0 0 1 0 0 0 1 1 1 0 1 1 1 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1 1 1

3
r
d
p
a
ir 1st value 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 1 1 1 1 0 1 1 0 0 1 1 1 1 0 0 0 1

2nd value 0 0 0 0 1 0 0 1 1 0 0 1 1 0 1 1 1 0 0 1 1 0 0 1 0 1 1 1 0 0 0 1

From above, there are 273 pairs of S-box inputs
satisfying the convergence conditions out of the 215

possible input pairs. If we assume the possible values
for the S-box input bits are distributed randomly and
independently, this state convergence has a probabil-
ity of 273

215 = 2−6.9.

Table 4: Three examples; each two states which con-
verge to the same state

1
s
t
p
a
ir SA1

t−7 318B7E15AF4FF1318DDF0800ADAC56A42913E4B90CBEEFD3A0075AFD3351E7C3

SA2
t−7 718BFE15BF4FF1318DDF0802AD8C56A40913E4B90CBEEFD3A0075AFD3351E7C2

St BAE316FC2B5E9FE2631BBE10055B18AD485227C972197DDFA7500EB5FA64A3CF

2
n
d
p
a
ir SB1

t−7 718B7E15AF4FF1318DCF0800AD8C56A42913E4B90CBEEFD3A4075AFD3359E7C1

SB2
t−7 718B7E15AF4FF1318DDF0802AD8C56A42913E4B90CBEEFD3A4075AFD3359E7C1

St 7E6317FC2B5E9FE26313BE10055B18AD481227C972187DDBA7480CB5FA64B3CF

3
r
d
p
a
ir SC1

t−7 318B7E15AF4FF1318DCF0800ADAC56A42913E4BD0CBEEFD3A0074AFD3379E5C3

SC2
t−7 718BFE15AF47F1318DDF0802AD8C56A42913E4BD0CBEEFD3A0074AFD3379E5C3

St FAE316FC2B7E9FE2631BBE10055B18AD4812A7C97A187DDFA7500E95FA66FBCB

3.2 State convergence across the initialisa-
tion process

Recall from Section 2.1.1, that the loaded state of
Sfinks has a defined format, with s95−128 = 1 and

si−128 = 0 for i = 0, . . . , 94. This slightly reduces the
occurrence of state convergence for the first few iter-
ations of the diffusion process but does not prevent it
altogether.

According to the reference implementation of
Sfinks (Lano 2005), the S-box first receives live in-
puts from the input stages at t = −127 (after the
first clock of the shift register). Convergence can not
occur until 7 steps after this, at t = −120.

Based on the general case discussed above, how-
ever, state convergence can occur immediately after
these 7 iterations. All that is required to impose the
additional condition that y2 also remain unchanged
when x12 is complemented. Table 5 shows a pair
of input and output bits of the S-box that can oc-
cur after the first iteration and converge after 7 it-
erations. This pair satisfies the condition discussed
above, and therefore will lead to convergence after 7
steps at t = −120. A pair of converging states based
on this pattern is presented as an example in Table
6.

Thus, we see that state convergence can occur
throughout the diffusion process of Sfinks cipher.
There are 120 iterations that may carry a state con-
vergence during the initialisation. Based on the prob-
ability of convergence detemined above, an approxi-
mate estimate for the proportion of distinct states re-

CRPIT Volume 125 - Information Security 2012

30

Table 5: A pair of S-box inputs and outputs that can
occur at t = −120

Input Output
S-box sequence x16 . x1 y15 . y0

Stage No. 2
5
5

2
4
4

2
2
7

1
9
3

1
6
1

1
3
4

1
0
5

9
8

7
4

5
8

4
4

2
1

1
9

9 6 1 1
1
1

1
4
2

1
7
3

2
0
4

1
1

1
5
4

4
1

2
3
2

2
4
7

1
1
8

2
1
3

5
2

1
7
9

6
6

1
7

8
0

1st value 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 1 1 1 1 1 1
2nd value 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 1 1 0 1 1 1

Table 6: Two states (hex) which converge to the same
state at t = −120

SA
−127 319B7E15AF4FF13189DF0800ADAC56A40913E4B90CBEEBD3A0074AFD3351E580

SB
−127 719B7E15AF4FF1318DCF0802AD8C56A42913E4B90CBEEBD3A0074AFD3351E581

S−120 3EE336FC2B7E9FE2631BBE10015B18AD485227C972187DD3A7500C95FA64A3CB

maining after 128 iterations is (1−2−6.9)120 = 0.9963.
Thus, the number of reachable distinct states is ap-
proximately (1− 2−6.9)120 × 2160 = 2158.55. This can
be regarded as an approximate upper bound as there
may be other mechanisms of convergence in addition
to these we have identified.

4 Discussion and conclusion

This paper demonstrates that state convergence oc-
curs during the initialisation phase of the Sfinks ci-
pher. This is due to a combination of the delay in
feeding the S-box output back to the shift register
and the shift register tap spacing. Specifically, this
is caused by the correspondence between the 7-clock
feedback delay and the distance of 7 steps between
certain input and output stages. The combination of
this with the specific S-box used here results in an
initialisation state update function that is not one-
to-one, thereby resulting in the state convergence.

The relationship between the input/output stages
and the delay time as shown by Equation 3 is 7 steps
for the Sfinks stream cipher. However, if the delay
in Equation 3 is changed to another number and the
spacing between any input and output stages is equal
to this delay number, then the state convergence can
still occur. The approach described in this paper
would be applied to detect such convergence with the
focus on a different input to the S-box.

The delayed S-box feedback in Sfinks adds com-
plexity to the analysis of the initialisation process
for this cipher, at the expense of additional memory
and a slight delay in producing keystream. However,
it is questionable whether the increased complexity,
(which reduces efficiency) has resulted in a corre-
sponding increase in security. In fact, it may have
contributed to a reduction of security, as the combi-
nation of this feedback delay and the shift register tap
spacing result in the occurrence of state convergence
in this cipher. It is actually possible to avoid the
state convergence in this design by introducing mi-
nor changes to tap locations, even so, it is not clear
that the delay itself is necessary for the security of
the cipher.

When considering the design of the state update
function used during initialisation, it is worth noting
that the INV function (represented as the S-box) and
the shift register feedback function used for keystream
generation (Equation 1) are individually one-to-one.
However, the combination of these functions which
occurs during initialisation is not one-to-one. This

demonstrates that designers should be careful when
combining components to ensure that the combina-
tion does not have undesirable properties.

Sfinks is designed for use with an 80-bit key and
80-bit IV. As the state size (256 bits) is greater than
the sum of the key and IV size, it seems reason-
able to assume that 2160 different keystream could
be produced. However, the state converges problem
demonstrated in this paper reduces the number of dis-
tinct keystream. We estimate the number of distinct
keystream is less than 2158.55. Although the impact
of this convergence on the security of Sfinks is minor,
it can be avoided entirely by more careful design.

The weakness in the initialisation process of Sfinks
may occur in other ciphers which use a modified ver-
sion of the keystream generation state update func-
tion as the initialisation method. Even slight modi-
fications may change the properties of the state up-
date function. To avoid state convergence, the state
update function must be one-to-one. Even where in-
dividual components of the state update function are
one-to-one as for Sfinks, it is important to check that
the combination is one-to-one as well, to avoid state
convergence.

References

Biryukov, A. & Shamir, A. (2000), Cryptanalytic
time/memory/data tradeoffs for stream ciphers, in
T. Okamoto, ed., ‘ASIACRYPT’, Vol. 1976 of Lec-
ture Notes in Computer Science, Springer, pp. 1–
13.

Braeken, A., Lano, J., Mentens, N., Preneel, B.
& Verbauwhede, I. (2005), ‘SFINKS: A syn-
chronous stream cipher for restricted hardware en-
vironments’, eSTREAM, ECRYPT Stream Cipher
Project, Report 2005/026. http://www.ecrypt.
eu.org/stream.

Courtois, N. (2005), Cryptanalysis of Sfinks, in
D. Won & S. Kim, eds, ‘ICISC’, Vol. 3935 of Lecture
Notes in Computer Science, Springer, pp. 261–269.

Lano, J. (2005), ‘Sfinks stream cipher source
code’, eSTREAM, ECRYPT Stream Cipher
Project. http://www.ecrypt.eu.org/stream/
sfinks.html.

Rose, G. & Hawkes, P. (2002), On the applicability
of distinguishing attacks against stream ciphers, in
‘Proceedings of the 3rd NESSIE Workshop’, Cite-
seer, p. 6.

Proceedings of the Tenth Australasian Information Security Conference (AISC 2012), Melbourne, Australia

31

CRPIT Volume 125 - Information Security 2012

32

