
The Next-to-Shortest Path in Undirected Graphs with

Nonnegative Weights

Cong Zhang1 Hiroshi Nagamochi1

1 Department of Applied Mathematics and Physics,
Graduate School of Informatics, Kyoto University,
Yoshida Honmachi, Sakyo, Kyoto 606-8501, Japan,

Email: {tyou,naga}@amp.i.kyoto-u.ac.jp

Abstract

Given an edge-weighted undirected graph and two
vertices s and t, the next-to-shortest path problem
is to find an st-path whose length is minimum among
all st-paths of lengths strictly larger than the short-
est path length. The problem is shown to be polyno-
mially solvable if all edge weights are positive, while
the complexity status for the nonnegative weight case
was open. In this paper we show that the problem
in undirected graphs admits a polynomial-time algo-
rithm even if all edge weights are nonnegative, solv-
ing the open problem. To solve the problem, we in-
troduce a common generalization of the undirected
graph version and the acyclic digraph version of the
k vertex-disjoint paths problem.

Keywords: algorithm, shortest path, disjoint paths,
time complexity, next-to-shortest

1 Introduction

Let G = (V,E,w) be an undirected/directed graph,
in which w is an edge weight. Let n and m denote
the number of vertices and edges in a graph G given
as an input, respectively. For two vertices u, v ∈ V , a
uv-path is a path from u to v (a path has no repeated
vertices, otherwise it is called a walk). The length
w(P) of a path P is defined to be the total weight of
the edges in P . For a given pair (s, t) of vertices, an
st-path is a shortest st-path if its length is minimum
among all st-paths in G. The shortest path problem
asks to find a shortest st-path. The problem is one of
the most fundamental and important network opti-
mization problems, and has been well-studied, bring-
ing numerous variations of it. For example, the k
shortest path problem asks to generate the k short-
est st-paths, which is a well-studied graph optimiza-
tion problem that is encountered in numerous applica-
tions in operations research, telecommunications and
VLSI design (Eppstein, 1998). For the k shortest
path problem, Yen (1971) and Katoh et al. (1982)
gave O(kn(m+ n log n)) time and O(k(m+ n log n))
time algorithms in digraphs and undirected graphs,
respectively. Faster algorithms are known for find-
ing k shortest walks (Eppstein, 1998). Finding the
kth smallest st-path in a strict sense that requires to
have k st-paths P1, P2, . . . , Pk with distinct lengths
w(P1) < w(P2) < · · · < w(Pk) seems much more

Copyright c©2012, Australian Computer Society, Inc. This
paper appeared at the 18th Computing: Australasian The-
ory Symposium (CATS 2012), Melbourne, Australia, January-
February 2012. Conferences in Research and Practice in In-
formation Technology (CRPIT), Vol. 128, Julian Mestre, Ed.
Reproduction for academic, not-for-profit purposes permitted
provided this text is included.

challenging. A next-to-shortest st-path is the second
smallest st-path in this sense, i.e., an st-path whose
length is minimum among st-paths whose lengths are
strictly larger than that of a shortest st-path. The
next-to-shortest path problem is to find a next-to-
shortest st-path for given G, s and t, which has appli-
cations in VLSI design and in optimizing compilers for
embedded systems (Lalgudi et al., 2000). The prob-
lem was first studied by Lalgudi and Papaefthymiou
(1997) in digraphs. They proved that the problem
with nonnegative edge weights is NP-complete, and
showed that when repeated vertices are allowed there
is an efficient algorithm. Polynomial-time algorithms
for the problem on special undirected graphs were ob-
tained (Barman et al., 2007; Mondal and Pal, 2006).
The first polynomial algorithm for undirected graphs
with positive edge weights was found by Krasikov and
Noble (2004). Their algorithm runs in O(n3m) time.
Afterwards, algorithms with improved time bounds
were obtained (Kao et al., 2010; Li et al., 2006; Wu,
2010)

However, the complexity status of the next-to-
shortest path problem in undirected graphs with non-
negative edge weights remains open. In this paper,
we prove that the next-to-shortest path problem is
polynomially solvable even for this case. Our ap-
proach is to derive a kind of decomposition of a given
graph. However, to solve the resulting subproblem,
we need to rely on an algorithm for finding 3 vertex-
disjoint paths in a mixed graph (a graph with di-
rected and undirected edges). In general digraphs,
finding k vertex-disjoint paths problem is NP-hard
even for k = 2 (Fortune et al., 1980). Since the
mixed graphs in our reduction induces a DAG (di-
rected acyclic graph) by its directed edges, we only
need to find a common generalization of the result by
Fortune et al. (1980) on the k vertex-disjoint paths
problem in DAGs and that by Robertson and Sey-
mour (1995) on the k vertex-disjoint paths problem
in undirected graphs. We then prove that a next-to-
shortest path in undirected graph with nonnegative
edge weights can be found by solving a polynomial
number of the 3 vertex-disjoint paths problem in a
mixed graph.

The paper is organized as follows. Section 2 dis-
cusses our disjoint path problem in mixed graphs.
Section 3 first reviews the known result on the posi-
tive weight case (Krasikov and Noble, 2004), and then
derives the structural properties on non-shortest st-
paths to design a polynomial-time algorithm for the
nonnegative weight case. Section 4 makes some con-
cluding remarks.

Proceedings of the Eighteenth Computing: The Australasian Theory Symposium (CATS 2012), Melbourne, Australia

13

1

: source/sink vertices

: other vertices

: arcs in A

: arcs in the solution

t1

Q4,2

t2 t3

s1 s2 s3

a4

Z2

a12

a11

a10
a9

a6 a7

a5

Z4

3

2
2

2
2

11

666

5

4

4
4

Q4,3

Q6,2

Q6,1
: E-components in G

: undirected edges

 in the solution

P2

P1

P3

a8

Z1

Z3

Z6

Z5

Figure 1: Illustration of a mixed graph G with six
E-components Zi, i = 1, 2, . . . , 6, and a solution
{P1, P2, P3} depicted by thick lines, where the num-
ber beside each vertex v denotes ℓ(v) and ℓ(Zi) = i
for each Zi.

2 Disjoint Paths in Mixed Graphs

For two vertices u and v, an undirected edge joining
them is denoted by {u, v}, and an arc (directed edge)
that leaves u and enters v is denoted by (u, v). A
graph with arcs and edges is called a mixed graph,
denoted by G = (V,A ∪ E) with a set V of vertices,
a set A of arcs and a set E of edges. We use V (G)
and E(G) to denote the set of vertices and the set of
arcs/edges in G, respectively. A walk P in G from u
to v means a subgraph of G whose vertices are given
by v1 (= u), v2, . . . , vp (= v) such that, for each i =
1, . . . , p − 1, P has either an arc (vi, vi+1) ∈ A or an
edge {vi, vi+1} ∈ E, and P has no other arc/edge,
where v1 and vp are called the start and end vertices
of P . Such walk P is denoted by (v1, v2, . . . , vp). A
walk in G is called a path if there are no repeated
vertices, and is called a cycle if the start vertex is
equal to the end vertex. A path from u to v is called
a uv-path.

A connected component in the graph (V,E) with
undirected edges in a mixed graph G = (V,A ∪ E) is
called an E-component of G. We say that a mixed
graph G is acyclic if there is no cycle C which can
become a directed cycle by assigning orientations to
all undirected edges in C, i.e., we have a DAG if we
contract each E-component into a single vertex.

Given k pairs (s1, t1), . . . , (sk, tk) of vertices in a
mixed graph, the k vertex-disjoint paths problem is
to find k vertex-disjoint siti-paths, i = 1, . . . , k. We
show that the problem is polynomially solvable for a
fixed k in acyclic mixed graphs.

Theorem 1 For each fixed k, there exists a
polynomial-time algorithm for the k vertex-disjoint
paths problem for acyclic mixed graphs.

We prove Theorem 1 by a technical extension
of the proofs for the vertex-disjoint paths problem
in DAGs due to Fortune et al. (1980) and Schri-
jver (2003) so that it can include the result on the
undirected graph version by Robertson and Seymour
(1995). To prove Theorem 1, we may assume that
each si has one leaving arc, but no other arc/edge,
and each ti has one entering arc, but no other

ν1=(s1, s2, s3, 1), l(ν1)=1

 (i)

ν2=(a8, s2, s3, 1), l(ν2)=1

 (i)

ν3=(a8, a4, s3, 1), l(ν3)=1

 (i)

ν4=(a8, a4, a5, 1), l(ν4)=2

 (ii)

ν5=(a8, a6, a7, 2), l(ν5)=2

 (i)

ν6=(a8, a10, a7, 2), l(ν6)=2

 (i)

ν7=(a8, a10, a12, 2), l(ν7)=3

 (ii)

ν8=(a8, a10, a12, 3), l(ν8)=3

 (i)

ν9=(a9, a10, a12, 3), l(ν9)=4

 (ii)

ν10=(a9, a11, a12, 4), l(ν10)=4

 (i)

ν11=(t1, a11, a12, 4), l(ν11)=4

 (i)

ν12=(t1, t2, a12, 4), l(ν12)=5

 (ii)

ν13=(t1, t2, a12, 5), l(ν13)=5

 (i)

ν14=(t1, t2, t3, 5), l(ν14)=6

 (ii)

ν15=(t1, t2, t3, 6), l(ν15)=6

Figure 2: Illustration of a sequence of states
ν1, ν2, . . . , ν14 which represents the solution
{P1, P2, P3} in Fig. 1, where (i) (resp., (ii) be-
side each arrow indicated the movement (i) (resp.,
(ii)) is used to get the next state.

arc/edge. We will show that the decision problem in
Theorem 1 can be converted into a problem of finding
a directed path between two specified vertices in an
auxiliary digraph whose size is bounded by O(nk).

For a notational convenience, we treat
{s1, s2, . . . , sk} and {t1, t2, . . . , tk} as E-components
(see Z1 and Z6 in Fig. 1). Let Z denote the set of all
E-components of G. Since G is acyclic, the digraph
D∗ obtained from the digraph (V,A) by contracting
each E-component Z ∈ Z of G into a single vertex
has neither directed cycle nor a self-loop. Let L be
the number of vertices in D∗, and ℓ : V → {1, . . . , L}
be a topological sort in G such that ℓ(u) < ℓ(v) for
each arc (u, v) ∈ A and ℓ(u) = ℓ(v) for each edge
{u, v} ∈ E. Define ℓ(Z) of each E-component Z ∈ Z
to be ℓ(v) of a vertex v ∈ V (Z).

Firstly we show how to represent a solution
P1, . . . , Pk in a given instance G as a sequence of
“movements” of k pebbles which trace the paths Pi

from si to ti. The current positions of k pebbles and
a time-stamp defines a “state.” Formally, a state is
defined to be a (k + 1)-tuple (v1, . . . , vk, x) of dis-
tinct vertices of G and an integer x ∈ {1, . . . , L}.
Let V be the set of all states. For a state ν =
(v1, . . . , vk, x) ∈ V, let ℓν denote the minimum of
ℓ(vi) over all i = 1, . . . , k, and Iν denote the set of
all indices i with ℓ(vi) = ℓν . Initially we place k peb-
bles, each on si, setting the time-stamp to be 1, which
is represented by state (s1, . . . , sk, 1) ∈ V. We then
move one or more pebbles with the minimum ℓ along
the k paths P1, . . . , Pk according the following rules
(i)-(ii) until the ith pebble placed on each si arrives
ti along Pi.

Suppose that the ith pebble along Pi currently
placed on a vertex vi and x is the current time-stamp,
which is represented by state ν = (v1, . . . , vk, x) ∈ V.

(i) Move one pebble along an arc: If x = ℓν , then
choose an index i ∈ Iν , move the ith pebble on vi
to v′i along the arc (vi, v

′
i) ∈ A in Pi (keeping the

time-stamp x unchanged).
(ii) Move several pebbles within an E-component:

If x < ℓν , then for all i ∈ Iν move the pebble on vi to
v′i along the maximal viv

′
i-path Qi of undirected edges

in Pi (thus, these pebbles move in the E-component
Z with ℓ(Z) = ℓν), and increase the time-stamp to be

CRPIT Volume 128 - Theory of Computing 2012

14

ℓν .
Note that in (ii) possibly vi = v′i, which simply im-

plies that the corresponding pebble stays on the same
vertex. Along the given solution, we can move all
the pebbles to t1, . . . , tk with the time-stamp x = L.
Hence the above rules (i)-(ii) produce a sequence of
states from (s1, . . . , sk, 1) to (t1, . . . , tk, L). For ex-
ample, Fig. 2 shows the resulting sequence of states
from (s1, s2, s3, 1) to (t1, t2, tk, L = 6) for the solution
{P1, P2, P3} in the acyclic mixed graph Fig. 1.

Next we introduce an auxiliary digraph D =
(V ,A) on the state set V so that it has a directed
path from (s1, . . . , sk, 1) to (t1, . . . , tk, L) if the given
disjoint path problem has a solution. In D there is
an arc from a state ν = (u1, . . . , uk, x) to a state
ν′ = (v1, . . . , vk, y) if and only if one of the follow-
ing conditions (a) and (b) holds:
(a) There exists an i ∈ Iν such that:

(a-i) ℓν = x = y;
(a-ii) (ui, vi) is an arc in A; and
(a-iii) uj = vj for all j 6= i.

(b) The component Z with ℓ(Z) = ℓν satisfies
(b-i) x < ℓν = y and Iν = Iν′ ;
(b-ii) graph Z has |Iν | vertex-disjoint uivi-paths

Qi, i ∈ Iν ; and
(b-iii) uj = vj for all j 6∈ Iν .
Note that Qi in (b-ii) may be a null path. Let Aa

and Ab denote the sets of arcs (ν, ν′) in A defined by
(a) and (b), respectively.

Lemma 2 A mixed graph G contains a solution
P1, . . . , Pk, if and only if D contains a directed path
P from (s1, . . . , sk, 1) to (t1, . . . , tk, L).

Proof: By construction, we easily see that the “only-
if” holds. We show the “if” part. Let P be a directed
path from (s1, . . . , sk, 1) to (t1, . . . , tk, L) in D. As-
sume that P follows the states

νj = (v1,j , . . . , vk,j , xj) for j = 0, . . . , p,

where x0 = 1, xp = L, vi,0 = si and vi,p = ti for
i = 1, . . . , k. For each i = 1, . . . , k, following vi,j ,
j = 0, . . . , p, we construct a walk Pi in G made up of
the arcs/edges such that

(i) arcs (vi,j , vi,j+1) ∈ A used in (a-ii) to define
arcs (νj , νj+1) ∈ Aa in P ;

(ii) edges in Qi used in (b-ii) to define arcs
(νj , νj+1) ∈ Ab in P .
Then Pi is a walk from si to ti in G. We first show
that Pi is a path, i.e., it has no repeated vertices).
Since each arc (ν, ν′) ∈ Ab increases the time-stamp
of ν to ℓν due to (b-i), each Pi can contain a path
Qi in the E-component Z with ℓ(Z) = ℓν at most
once. Note that any vertex v in Pi belongs to such
a path Qi, since conditions (a-i) and (b-i) imply that
the time-stamp of a state needs to be ℓ(v) by pass-
ing through a path Qi in the E-component Z with
ℓ(Z) = ℓ(v) before an arc (v, v′) ∈ A appears in Pi.
Hence no vertex can appear repeatedly in Pi. We
next claim that P1, . . . , Pk are vertex-disjoint. To see
this, suppose that two of them, say, P1 and P2 share
a vertex u ∈ V −{s1, . . . , sk, t1, . . . , tk}, which is con-
tained the subpath Qi of Pi such that Qi is the path
in the E-component Z with ℓ(Z) = ℓ(u). Again by
(b-i), these Q1 and Q2 are generated in defining the
same arc (ν, ν′) ∈ Ab along P . This, however, contra-
dicts that Q1 and Q2 are chosen to be vertex-disjoint
by (b-ii).

The lemma says that the k vertex-disjoint path
problem in a mixed graph can be solved by testing

whether the digraph D has a directed path P from
(s1, . . . , sk, 1) to (t1, . . . , tk, L). For a fixed k, the size
of D is polynomial since |V| ≤ (n+1)k. For construct-
ing each arc in Ab, we need to find |Iν | vertex-disjoint
paths in the undirected graph Z, which can be solved
in polynomial time for a fixed k (Robertson and Sey-
mour, 1995). This proves Theorem 1.

3 Next-To-Shortest Paths

Let G = (V,E,w) be an undirected graph with a
vertex set V , an edge set E and a nonnegative edge
weight function w. An edge of weight 0 is called a
zero-edge, and an edge of a positive weight is called a
positive-edge.

For a path P inG, let w(P) denote the total weight
of edges in P . Let d(u, v;G) denote the length of a
shortest uv-path in a graph G, where d(u, v;G) = ∞
if G has no uv-path. Let s and t be designated
vertices in G. Since the edge weights are nonnega-
tive, we have d(s, u;G) + w({u, v}) ≥ d(s, v;G) and
d(u, t;G) + w({u, v}) ≥ d(v, t;G) for all u, v ∈ V .
In particular, d(s, u;G) = d(s, v;G) and d(u, t;G) =
d(v, t;G) for each zero-edge {u, v} ∈ E. For no-
tational convenience in describing st-paths, we as-
sume without loss of generality that s and t have
only one incident edge (we add extra edges to s
and t if necessary). A positive-edge is called in-
ner if it is in a shortest st-path in G, and is called
outer otherwise. Let E0 be the set of zero-edges,
E1 be the set of inner edges e ∈ E − E0, i.e.,
E1 = {{u, v} ∈ E − E0 | d(s, u;G) + w({u, v}) =
d(s, v;G), d(u, t;G) = w({u, v})+d(v, t;G)}, and E2
denote the set E − E0 − E1 of outer edges. A path
P with E(P) ⊆ E0 ∪E1 is called pure. Clearly every
impure st-path is not a shortest st-path.

3.1 Finding Shortest Impure st-Paths

This subsection reviews the result by Krasikov and
Noble (2004) to find a shortest impure st-path con-
taining a specified outer edge. They use the next
result.

Lemma 3 Given an undirected graph G = (V,E,w)
with nonnegative edge weights, and specified vertices
s, t and a, there is a polynomial time algorithm to find
a shortest st-path passing through a.

The problem in the lemma can be regarded as a
minimum cost flow problem with flow value 2 in G
with a vertex capacity 1, where a source a has demand
2 and sinks s and t have demand −1, respectively.
The graph is then converted into a digraph D, where
the vertex capacity is realized as an edge capacity 1.
The problem can be solved by the standard method
for the minimum cost flow algorithm, since any cycle
in D has a nonnegative length and the cost of an
optimal flow is equal to the shortest length of an st-
path passing through a.

By Lemma 3, we can find a shortest st-path pass-
ing through a specified outer edge {u, v} ∈ E2 by
subdividing the edge with a new vertex a. Hence by
solving |E2| such problems, we can find a shortest
impure st-path (if any).

In what follows, we only consider how to find a
shortest pure st-path of length larger than the short-
est one. Hence we ignore all the outer edges unless
stated otherwise.

Proceedings of the Eighteenth Computing: The Australasian Theory Symposium (CATS 2012), Melbourne, Australia

15

3.2 Finding Shortest Pure st-Paths with Re-
versing Components

For an ordered pair (u, v) of the end vertices of an
inner edge {u, v} ∈ E1 is called an forward edge
if d(s, u;G) < d(s, v;G), and is called a backward
edge otherwise. Note that a zero-edge is neither
forward nor backward. Let A be the set of for-
ward edges (u, v), {u, v} ∈ E1. For a pure v1vk-
path P = (v1, . . . , vk), an ordered pair (vi, vi+1) with
{vi, vi+1} ∈ E1 is called a forward edge of P if
(vi, vi+1) ∈ A, and is called a backward edge of P oth-
erwise. A connected component in the graph (V,E0)
with only zero-edges is called a zero-component of G
if it contains at least one zero-edge. Let Z denote the
set of all zero-components of G.

Lemma 4 Let P = (u1, u2, . . . , uk) be a pure path in
which there is no backward edge. Then P is a shortest
u1uk-path in G. In particular, if P contains a positive
edge, then u1 and uk do not belong to the same zero-
component Z.

Proof: The second statement follows from the first
one, since Z contains a u1uk-path Q with w(Q) = 0,
implying that a u1uk-path P with w(P) > 0 cannot
be a shortest one.

To show the first statement, we can assume that
G has no zero-edges, since the distance of two ver-
tices remains unchanged after contracting each zero-
component into a single vertex and any path in the
resulting graph corresponds a path with the same
length in G.

We first observe that, for a shortest st-path P ∗ =
(v1, v2, . . . , vp), any subpath from vi to vj is a shortest
vivj-path in G, because if G has a shorter vivj-path
Q then we see that the union of Q and P ∗ contains
an st-path with length shorter than P ∗ due to non-
negativeness of edge weights.

Hence, it suffices to prove by induction that, for
each ui, i = 2, . . . , k in the path P , some shortest
sui-path Pi contains (u1, u2, . . . , ui) as its subpath
(for i = k, P is a subpath of Pk, which will be shown
to be shortest). For i = 2, there exists such a shortest
su2-path P2 since (u1, u2) is a forward edge in P . For
i = j (2 ≤ j < k), assume that there is a shortest suj-
path Pj which contains (u1, u2, . . . , uj) as its subpath.
Let P ′

j+1 = [Pj , (uj , uj+1)] be the walk from s to uj+1

obtained from Pj by adding edge {uj , uj+1}. There is
a shortest st-path Q containing the edge {uj , uj+1},
and let Qj (resp., Qj+1) denote its subpath from s to
uj (resp., uj+1). Since Pj is a shortest suj-path by
the induction hypothesis and it holds w(Pj) ≤ w(Qj),
we have w(P ′

j+1) = w(Pj)+w({uj , uj+1}) ≤ w(Qj)+
w({uj , uj+1}) = w(Qj+1). Since there is no suj+1-
path shorter than Qj+1, uj+1 cannot be a repeated
vertex in P ′

j+1 (otherwise P ′
j+1 would contain such a

shorter path). Hence P ′
j+1 is a desired shortest suj+1-

path. This completes the induction.

By the lemma, a pure st-path is not a shortest st-
path if and only if it has a backward edge. Hence we
only need to investigate pure st-paths containing at
least one backward edge.

Let P = (v1, . . . , vk) be a pure st-path in G. A ver-
tex vi with 2 ≤ i ≤ k−1 is called a reversing vertex of
P if (vi−1, vi), (vi+1, vi) ∈ A or (vi, vi−1), (vi, vi+1) ∈
A (i.e., (vi−1, vi) and (vi, vi+1) have different direc-
tions in the sense of forward/backward edges).

Krasikov and Noble (2004) also showed how to find
a shortest pure st-path which contains a reversing ver-
tex by using Lemma 3. We choose a pair of forward

edges (u, a) and (v, a) for a vertex a, and then re-
move all other edges incident to a except for (u, a)
and (v, a) to obtain a new graph in which vertex a
has only two edges. By Lemma 3, we can find a
shortest st-path P passing through a in which ex-
actly of (u, a) and (v, a) appears as a backward edge,
and vertex a is a reversing vertex. Similarly for a
pair of forward edges (a, u) and (a, v), we can find a
shortest st-path P passing through exactly of (a, u)
and (a, v) as a backward edge. By applying the pro-
cedure for all the above pairs of forward edges, we can
find a shortest pure st-path which contains a revers-
ing vertex (if any). In fact, if a given graph G has no
zero-edge, then no other case happens and this com-
pletes a proof for the fact that the next-to-shortest
path problem in undirected graphs with only positive
edge weights is polynomially solvable (Krasikov and
Noble, 2004). On the other hand, if G has zero-edges,
then the above method may find only a shortest st-
path, since a zero-edge {u, a} may appear as (u, a)
and (a, u) in two shortest st-paths in G, respectively.

Let P = (v1, . . . , vk) be a pure st-path. A sub-
path Q of P is called a zero-subpath if Q consists of
vertices and zero-edges in a zero-component Z and
is maximal subject to this property (Q may contain
only one vertex in Z). For each Z ∈ Z, let ρ(Z)
denote the number of zero-subpaths Q of P such
that Q is contained in Z. A zero-component Z with
ρ(Z) = 1 is called reversing if its zero-subpath Q =
(vi, vi+1, . . . , vj−1, vj) satisfies (vi−1, vi), (vj+1, vj) ∈
A or (vi, vi−1), (vj , vj+1) ∈ A, and is called trivial oth-
erwise. The zero-subpath of a trivial zero-component
is also called trivial.

Finding a shortest pure st-path P which has a re-
versing zero-component Z ∈ Z can be computed in
a similar manner with the case of reversing vertices
after we contract Z into a single vertex a, which can
be treated as a reversing vertex.

By definiton so far, we can classify non-shortest
st-paths as follows.

Lemma 5 Any st-path P which is not a shortest st-
path in G satisfies one of the following conditions (i)-
(iv).

(i) P is an impure path;

(ii) P is a pure path in which there is a reversing
vertex;

(iii) P is a pure path in which there is a reversing
zero-component; and

(iv) P is a pure path in which there is a backward
edge, but no reversing vertex/zero-component.

Therefore, the remaining task is to find an st-path
with minimum length which satisfies condition (iv) in
the lemma. We call such a path which satisfies condi-
tion (iv) folding. In the next subsection, we consider
only folding st-paths.

3.3 Finding Shortest Folding st-Paths

In this subsection, we first examine structure of fold-
ing st-paths before we finally design an algorithm for
computing a shortest folding st-path.

By definition, any folding st-path P has a zero-
component Z with ρ(Z) ≥ 2, which is called arch-
ing. We denote the zero-subpaths of an arching zero-
component Z by Q1(Z), Q2(Z), . . . , Qr(Z), r = ρ(Z)
in the order from s to t along P . We say that an arch-
ing zero-component Z surrounds a subpath P ′ of P
if Qi(Z)P ′Qi+1(Z) is a subpath of P (where P ′ may

CRPIT Volume 128 - Theory of Computing 2012

16

contain a zero-edge which belongs to another zero-
component Z ′).

Lemma 6 Let P be a folding st-path that has the
minimum length among all folding st-paths, and
Z be an arching zero-component for P . Denote
P by an alternating sequence of subpaths, P =
[P1Q1P2 . . . QrPr+1], where Qi = Qi(Z), i =
1, 2, . . . , r = ρ(Z) (each Pj may contain a zero-edge
in another zero-component Z ′). See Fig. 3. Then

(i) If Z contains a path Q connecting two zero-
subpaths Qa and Qb (1 ≤ a < b ≤ r) such that Q
is vertex-disjoint with any Qi with i < a or b < i,
then all the backward edges of P appear between
Qa and Qb along P .

(ii) ρ(Z) = 2.

Proof: (i) By short-cutting with Q, we can obtain
another folding st-path P ′. Note that w(P ′) < w(P)
since the short-cutting skips at least one positive-edge
in the subpath between Qa and Qb. Therefore, if P
has a backward edge which does not appear between
Qa and Qb, then P ′ still contains a backward edge,
and hence it is a folding st-path which has shorter
length than P , a contradiction. Therefore all the
backward edges of P must appear between Qa and
Qb along P .

(ii) To derive a contradiction, assume that r ≥ 3.
By applying (i) with a = 1 and b = r, we see that
there is a subpath Pj with 2 ≤ j ≤ r which con-
tains a backward edge. Assume without loss of gen-
erality that j ≤ r − 1 (the case of j ≥ 3 can be
treated symmetrically). To see that Qr−1 remains
connected to some Qh within Z − V (Qr), we con-
sider the graph Z ′ obtained from Z by removing the
vertices in zero-subpaths Qi with 1 ≤ i ≤ r − 2, i.e.,
Z ′ = Z−∪1≤i≤r−2V (Qi). In Z ′, let Ci, i = r−1, r be
the component containing Qi (see Fig. 3). Note that
Cr−1 6= Cr since otherwise applying (i) to a = r − 1
and b = r would not allow Pj to contain a backward
edge.

Now the graph Z−V (Cr) contains a path Q′ con-
necting Qr−1 and Qh for some h = 1, 2, . . . , r − 2.
Hence by applying (i) with a = h and b = r − 1, we
see that Pr contains no backward edge. Since Pr con-
tain only forward edges or zero-edges and connects
two vertices in Z, this contradicts Lemma 4. There-
fore r = 2 holds.

Z
Cr

s t

P1 Q1 Qr Pr+1P2 PrQr-2 Qr-1

Cr-1

Pr-1

Figure 3: Illustration of a zero-component Z for a
pure st-path P = [P1Q1P2 · · ·QrPr+1], where each
Qi is a zero-subpath of Z.

For an st-path P , we say that two arching zero-
components Z1, Z2 ∈ Z with ρ(Z1) = ρ(Z2) = 2 cross
each other if for each i = 1, 2, the subpath between
Q1(Zi) and Q2(Zi) contains a zero-subpath of Zj , j ∈
{1, 2} − {i} (see Fig. 4(a)).

Lemma 7 Let P be a folding st-path that has the
shortest length among all folding st-paths. Then

(i) If P has an arching zero-component, then it has
another arching zero-component, and they cross
each other.

(ii) Assume that P has q ≥ 3 arching zero-
components, then they can be indexed as Zi, i =
1, 2, . . . , q so that their zero-subpaths appear in
the order Q1(Z1), Q1(Z3), Q

1(Z4), . . . , Q
1(Zq),

Q1(Z2), Q
2(Z1), Q

2(Z3), Q
2(Z4), . . . , Q

2(Zq),
Q2(Z2) along P (see Fig. 5(a)).

Proof: (i) Let Z be an arching zero-component,
which has exactly two zero-subpaths by Lemma 6(ii).
If the path P ′ surrounded by Z has no zero-subpath
of another arching zero-component, then all the
positive-edges in P ′ are backward edges (since P has
no reversing vertex/zero-component), and P ′ con-
nects two vertices in the same zero-component, con-
tradicting Lemma 4. Hence P has another arching
zero-component.

Next assume that there are two arching zero-
components which do not cross each other. Hence
P is denoted by P = [P1Q1P2Q2P3Q3P4Q4P5] such
that Q1 and Q4 are the zero-subpaths of an arching
zero-component Z1 and Q2 and Q3 are those of an-
other Z2 (see Fig. 4(b)). By Lemma 6 applied to Z2,
there is no backward edge in the subpaths P2 and P4
along P from s to t. Hence the subgraph consisting
of P2, Z2 and P4 contains a pure path P ′ from the
last vertex in Q1 to the first vertex of Q4 such that
no backward edge appears along P ′. Since P ′ con-
nects two vertices in the same zero-component Z1,
this contradicts Lemma 4. Therefore any two arching
zero-components cross each other.

s tP1 Q1 P2

P3 Q3

P4

Q2

P5
Q4

Z1

Z2

s tP1 Q1 P2

P3

Q3

P4Q2

P5

Q4

Z1

Z2

(a)

(b)

Figure 4: Illustration of two zero-components Z1 and
Z2: (a) crossing Z1 and Z2: (b) non-crossing Z1 and
Z2.

(ii) By definition, a folding st-path P is given
as an alternating sequence P1Q1 · · ·Q2qP2q+1 of
subpaths Pi and nontrivial zero-subpaths Qi such
that all positive edges in each Pi have the same di-
rection, either forward or backward (Pi may contain
trivial zero-subpaths). By definition there is at least
one subpath Pj which consists of only backward
edges and trivial zero-subpaths. Assume that P has
three arching zero-components. Then zero-subpaths
Qj−1 and Qj must be contained in distinct arching
zero-components, say Z1 and Z2, since otherwise the

Proceedings of the Eighteenth Computing: The Australasian Theory Symposium (CATS 2012), Melbourne, Australia

17

one containing both zero-subpaths cannot cross any
other one, contradicting (i). Again by (i), Z1 and
Z2 cross each other. The third zero-component Z3
needs to surround Pj and cross both Z1 and Z2 by
(i) of this lemma and Lemma 6(i). Hence the zero-
subpaths of Z1, Z2 and Z3 must appear in the order
of Q1(Z1), Q

1(Z3), Q
1(Z2), Q

2(Z1), Q
2(Z3), Q

2(Z2)
along P , as shown in Fig. 5(b). For other zero-
components, we can assume without loss of generality
that their first zero-subpaths appear in the order
of Q1(Z3), Q

1(Z4), . . . , Q
1(Zq) along P . Since each

Zi crosses all Z1, Z2, . . . , Zj−1, we see that all the
zero-subpaths of arching zero-components satisfy the
ordering in (i).

P4

s t

P1

Q1(Z1)

(a)

(c)

s t

Z=Z1 Z’=Z2

G’

Q2(Z1) Q2(Z2)Q1(Z2)

Q1(Z3) Q1(Z4) Q1(Zq) Q2(Z3)Q2(Z4) Q2(Zq)

P2 P3 P4 Pq Pq+2 P2qPq+3 P2q-1

Z4 ZqZ3

P1

P2
P3

P2q+1

Pq+2 P2qPq+3 P2q-1

(b)

s2 t2

s1 t1

s3 t3

Q1(Z1) Q2(Z1) Q2(Z2)Q1(Z2)

Q1(Z3) Q2(Z3)

Gs Gt

Z1
Z2

Z3

Z4

Zq

.
.
.

. . .

Pq

s t

Z1 Z2

Z3

Pq+1 P2q+1

Pq+1

Figure 5: (a) Crossing r arching zero-
components: (b) crossing three zero-
components: (c) disjoint-path problem instances
(Gs, {(s, s1), (s2, s3)}), (Gt, {(t1, t2), (t3, t)}), and
(G′, {(s1, t1), (s2, t2), (s3, t3)}).

Let us call the zero-components Z1 and Z2 in the
lemma the source and sink components of the fold-
ing st-path P . See Fig. 5(c), which illustrates the
same configuration of all arching zero-components
Z1, . . . , Zr in Fig. 5(a).

We now show how to find a shortest folding st-path
with specified source and sink components Z,Z ′ ∈ Z.
Given a shortest folding st-path P , which admits the
structure in Lemma 7(ii), we let s1, s2 and s3 be the
initial end points of P2, Pq+2 and Pq+1 and t1, t2
and t3 be the last end points of Pq, Pq+1 and P2q, as
shown in Fig. 5(b). Then these six vertices s1, . . . , t3
satisfy the following conditions:

(i) In the subgraph Gs of (V,E0 ∪ E1) induced by
the vertices v with d(s, v;G) ≤ d(s, s1;G), there
are two vertex-disjoint path, ss1-path Pss1 and
s2s3-path Ps2s3 ;

(ii) In the subgraph Gt of (V,E0 ∪ E1) induced by
the vertices v with d(s, t1;G) ≤ d(s, v;G), there

are two vertex-disjoint paths, t1t2-path Pt1t2 and
t3t-path Pt3t; and

(iii) In the subgraph G′ of (V,E0 ∪ E1) induced by
the vertex set {s1, s2, s3}∪{v ∈ V | d(s, s1;G) <
d(s, v;G) < d(s, t1;G)} ∪ {t1, t2, t3}, there are
three vertex-disjoint paths, siti-paths Psiti , i =
1, 2, 3

(we treat Gs, Gt and G′ as mixed graphs by regarding
each positive edge {u, v} with d(s, u;G) < d(s, v;G)
as an arc (u, v)). Note that the three graphs Gs,
Gt and G′ are vertex-disjoint except for the six ver-
tices. We call any set of six vertices s1, s2, s3 ∈ V (Z)
(possibly s2 = s3) and t1, t2, t3 ∈ V (Z ′) (possibly
t1 = t3) satisfying the above conditions (i)-(iii) feasi-
ble to (Z,Z ′).

Lemma 8 There is a folding st-path with source and
sink components Z,Z ′ ∈ Z if and only if there is a
feasible set of vertices s1, s2, s3 ∈ V (Z) and t1, t2, t3 ∈
V (Z ′).

Proof: We have observed the “only if” part. We
show the “if” part. Given a feasible set of six vertices
and disjoint paths in (i)-(iii), a folding st-path P can
be obtained as the concatenation

Pss1Ps1t1Pt1t2Ps2t2Ps2s3Ps3t3Pt3t,

where Ps2t2 denotes the t2s2-path obtained from Ps2t2
by reversing the direction. Note that the length of
P (if any) is always given by w(P) = d(s, t;G) +
2d(s, t1;G)−2d(s, s1;G), indicating that P is a short-
est one with the specified source and sink components
Z and Z ′. The resulting path P may pass though
arching zero-components in a different way from the
configuration in Lemma 6(ii) (for example, an arching
zero-component may have one of its zero-subpaths in
Ps2t2). However, it is always a folding st-path with
the source and sink components Z and Z ′.

For each choice of such six vertices, we can de-
termine whether such disjoint paths in (i)-(iii) exist
or not in polynomial time by using Theorem 1 with
k ≤ 3. Since the total number of all possible choices of
source and sink components and six vertices in them
is O(n6), we can find a shortest folding st-path (if
any) in polynomial time. The algorithm based on the
proof of Lemma 8 is described as follows.

Algorithm Shortest-Folding-Paths

Input: The graph (V,E0 ∪ E1) for an undirected
graph G = (V,E) with a nonnegative edge weight w,
and two vertices s, t ∈ V .
Output: A shortest folding st-path in G (if exists).
for each ordered pair of zero-components
Z,Z ′ ∈ Z do

if there is a feasible set of six vertices
s1, s2, s3 ∈ V (Z) and t1, t2, t3 ∈ V (Z ′) then
µ(Z,Z ′) := d(s, t;G) + 2d(s, t1;G)

−2d(s, s1;G);
Let Pss1 and Ps2s3 be vertex-disjoint

ss1-path and s2s3-path in Gs in (i);
Let Pt1t2 and Pt3t be vertex-disjoint

t1t2-path and t3t-path in Gt in (ii);
Let Psiti , i = 1, 2, 3 be vertex-disjoint

siti-paths in G′ in (iii);
Let P(Z,Z′) := [Pss1Ps1t1Pt1t2Ps2t2Ps2s3Ps3t3Pt3t];

else
µ(Z,Z ′) := ∞
endif

CRPIT Volume 128 - Theory of Computing 2012

18

endfor;
(Z∗, Z∗∗) := argmin{µ(Z,Z ′) | Z,Z ′ ∈ Z};
Output P(Z∗,Z∗∗) if µ(Z

∗, Z∗∗) < ∞, or
report that G has no folding st-path otherwise.

From the arguments in this and previous subsec-
tions, we finally obtain the next result.

Theorem 9 The next-to-shortest path problem in
undirected graphs with nonnegative edge weights can
be solved in polynomial time.

4 Concluding Remarks

In this paper, we showed that the next-to-shortest
path problem in undirected graphs with nonnegative
edge weights can be solved by reducing the problem to
the k vertex-disjoint paths problem in acyclic mixed
graphs with a fixed k ≤ 3. A natural question in this
line would be whether finding an st-path with the
strictly third shortest length can be again reduced to
the k vertex-disjoint paths problem with a fixed k.

References

Barman, S. C., Mondal, S., and Pal, M. (2007), An
efficient algorithm to find next-to-shortest path on
trapezoid graphs, Adv. Appl. Math. Anal. 2, 97–
107.

Eppstein, D. (1998), Finding the k shortest paths,
SIAM J. Comput. 28, 652–673.

Fortune, S., Hopcroft J. E., and Wyllie, J. (1980),
The directed subgraph homeomorphism problem,
Theoret. Comput. Sci. 10, 111–121.

Katoh, N., Ibaraki, T., and Mine, H. (1982), An ef-
ficient algorithm for K shortest simple paths, Net-
works 12, 411–427.

Kao, K.-H., Chang, J.-M., Wang, Y.-L., and Juan,
J. S.-T. (2010), A quadratic algorithm for finding
next-to-shortest paths in graphs, Algorithmica 61,
402–418.

Krasikov, I., and Noble, S. D. (2004), Finding next-
to-shortest paths in a graph, Inf. Process. Lett. 92,
117–119.

Lalgudi, K. N., and Papaefthymiou, M. C. (1997),
Computing strictly-second shortest paths, Inf. Pro-
cess. Lett. 63, 177–181.

Lalgudi, K. N., Papaefthymiou, M. C., and Potkon-
jak, M. (2000), Optimizing systems for effective
block-processing, ACM Trans. on Design Automa-
tion of Electronic Systems 5, 604–630.

Li, S., Sun, G., and Chen, G. (2006), Improved algo-
rithm for finding next-to-shortest paths, Inf. Pro-
cess. Lett. 99, 192–194.

Mondal, S., and Pal, M. (2006), A sequential algo-
rithm to solve next-to-shortest path problem on
circular-arc graphs, J. Phys. Sci. 10, 201–217.

Robertson, N., and Seymour, P. D. (1995), Graph
minors. XIII. the disjoint paths problem, J. Com-
binatorial Theory, Series B 63, 65–110.

Schrijver, A. (2003), Combinatorial Optimization,
Polyhedra and Efficiency, Springer-Verlag, Berlin.

Wu, B.-Y. (2010), A simpler and more efficient al-
gorithm for the next-to-shortest path problem, W.
Wu and O. Daescu (Eds.): COCOA 2010, Part II,
LNCS 6509, 219–227.

Yen, J.-Y. (1971), Finding the K shortest loopless
paths in a network, Manag. Sci. 17, 712–716.

Proceedings of the Eighteenth Computing: The Australasian Theory Symposium (CATS 2012), Melbourne, Australia

19

CRPIT Volume 128 - Theory of Computing 2012

20

