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Abstract

This paper investigates the addition of Clocked Vari-
ables to the X10 Programming Language. Clocked
Variables work well for primitives and objects with
only primitive fields, but incur substantial perfor-
mance penalties for more complex objects. We discuss
ways to deal with these issues.
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1 Introduction

Distribution and parallelization are an important part
of computing today; with the focus of processor man-
ufacturers turning away from higher speeds, and to-
wards larger numbers of cores, proper utilization of
such resources is becoming more and more impor-
tant (Saraswat et al. 2007, Murthy 2008). Unfortu-
nately, many current programming languages don’t
provide the necessary support for easily writing thread-
safe programs. To address this issue, IBM have been
developing a new programming language called X10
(Saraswat et al. 2007, 2011, Charles et al. 2005). X10
is a strongly typed, concurrent, imperative, and object-
oriented programming language, making it quite sim-
ilar to popular existing languages such as Java and
C++. X10 was designed with multi-core and clustered
systems in mind. The goal of X10 is to allow program-
mers to easily produce code that can be distributed
over multiple cores and/or machines, with good scal-
ability (Murthy 2008). This means that concurrent
programs become much easier to write, as the language
has many built-in constructs to aid programmers in
achieving their goals (Ebcioglu et al. 2005).

Many concurrent algorithms maintain two states;
a current state and a next state. Operations are
performed on the current state, and the results cause
the next state to be updated. When the current state
has been fully processed, the next state becomes the
current state, and the algorithm continues. This can
lead to code bloat, as maintaining these two states
requires some extra book-keeping, and there is a risk
of introducing bugs into a program by accidentally
using the wrong state when performing an operation.

Clocked Variables allow variables to have different
states depending on how they are used. This allows
the prevention of race-conditions as each thread is
guaranteed a consistent view of the clocked variables.
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This is achieved by requiring that updates to a clocked
variable do not become visible until every thread has
indicated that they are ready to progress to the next
state. In the case of clocked Primitives, this reduces
the requirement of having two explicit states to simply
maintaining a single object in memory that automat-
ically performs updates and state transitions at the
appropriate times. More interesting is the case of
Clocked References, which require a more complex
clocking mechanism—it is these that we investigate in
this paper. We implement Clocked Variables in X10,
guided by the X10 Design Document (Saraswat 2011).
While this paper is written with X10 in mind, the
concepts it presents are applicable to any program-
ming model that uses phased execution controlled by
barriers.

The rest of this paper is structured as follows: Sec-
tion 2 introduces the X10 Language, and details some
of the language-specific constructs that are required
to understand this paper. Section 3 discusses Clocked
Variables, with a focus on how Clocked References
are handled. Section 4 describes the experimental
setup used to benchmark the performance of clocked
variables, and Section 5 evaluates the performance of
Clocked Variables. Section 6 gives further discussion
of the results, and the paper is then is concluded by
Section 7.

The main contributions of this paper are:

• Extension of the X10 programming language to
include Clocked Variables,

• Case studies that use the new Clocked Variables,

• Performance evaluation of Clocked Variables in
X10.

2 The X10 Programming Language

X10 contains several language constructs that allow
programmers to readily, and easily, write concurrent
code (Ebcioglu et al. n.d.). Places, which can be
thought of as analogous to processes, provide a shared
memory environment in which concurrent code can be
executed. This memory is not shared between Places,
which allows Places to be parallelised, and distributed
across multiple machines. Within Places, concurrent
execution is achieved by the use of Activities, which
are analogous to Threads.

A Clock is an object that provides a programmer
with a means of synchronizing concurrently execut-
ing threads—an important idea in a distributed sys-
tem (Lamport 1978). In X10, this synchronization is
achieved through the use of a barrier-style structure
based on Lamport’s Logical Clock (Lamport 1978);
the clock object maintains a total count of the number
of Activities (threads) that have registered with the
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clock, and a separate count of the number of activities
that are currently active—i.e, not currently waiting
for the clock to advance to the next phase. When
an activity wishes to advance to the next phase, the
clock first decrements the count of alive activities, and
if this is zero, atomically advances the phase of the
clock. The calling activity is blocked by placing it in
a loop until the clock advances (busy-waiting).

Clocks in X10 maintain an invariant GlobalRef
field that refers explicitly to the original instance of
the Clock, so that no matter where any copies may
end up, they can always refer to the same Clock object.
By forcing all updates to the internal fields of the clock
to always execute at the root Clock object, the same
state is seen by all copies of the clock at all times—an
important part of ensuring proper synchronization!

X10 is built primarily as an extension to Java,
using Polyglot (Nystrom et al. 2003) to handle the
translation from X10 source code to Java source code.
X10 can also be compiled to C++ source code. The
X10 Runtime is written primarily in X10 itself, giv-
ing it the ability to be compiled into one of several
back-ends. Currently, there is a Java-based runtime
environment (using the X10 Runtime as libraries for
the JVM), a C++ based runtime environment, and
a CUDA (Compute Unified Device Architecture—a
parallel computing architecture developed by Nvidia,
that can be executed on GPUs) runtime environment.

3 Clocked Variables

The clocked variables described in this paper are based
on the design outlined in the X10 Design Document
(Saraswat 2011). There, the intent is for only val (final
variables that can be altered once per clock phase)
and stack local variables to be able to be clocked,
as dealing with object references was considered too
hard. The intent of this paper is to explore that claim
and to investigate if it is possible to have any form of
variable able to be clocked. Extensions are proposed
in the Design Document to allow methods, objects,
fields and types to be clocked as well; but we do not
consider these in this paper. We deal only with the
idea of clocked primitives and references, and how
interactions with them might proceed.

A clocked variable is functionally similar to a nor-
mal, unclocked variable—a location in memory in
which a primitive value, or a reference to an object, is
stored and can be accessed. However, in a clocked en-
vironment, a clocked variable becomes quite different
to an unclocked variable, in terms of how and when it
can be updated and accessed.

3.1 Design of Clocked Variables

During a single clock phase, the value of a clocked
variable remains fixed. If the variable is written to,
or updated in some way, the change does not become
visible until the end of the clock phase. Figure 1 gives
an example of code that demonstrates this.

We require that clocked variables only be written
to once during any given clock phase—writing to a
clocked variable more than once in a given clock phase
is a runtime exception. Clocked variables may be read
any number of times during a given clock phase, but
we require that this value remains constant for the
duration of the phase. If a clocked variable is written
to, or updated in any way, the new value must take
effect between the clock phases. The idea, then, is
that clocked variables provide the same functional-
ity as manually maintaining two separate states in

c locked var i : Int = 5 ;
i = 6 ;
Console .OUT. p r i n t l n ( i ) ; //Prints 5
Clock . advanceAll ( ) ;
Console .OUT. p r i n t l n ( i ) ; //Prints 6
i = 0 ;
Console .OUT. p r i n t l n ( i ) ; //Prints 6
Clock . advanceAll ( ) ;
Console .OUT. p r i n t l n ( i ) ; //Prints 0

Figure 1: Example of Clocked Code

a concurrent algorithm, but without all of the extra
book-keeping.

Only allowing one write per phase may appear to
be an odd design decision; primarily this was done
to meet the proposal for Clocked Variables given in
the X10 Design Document (Saraswat 2011). However,
that document specifies this behaviour for variables
marked with the keyword val—that is, variables that
are final, but when clocked, can be updated once per
phase. In this case, it is an error to write to the
variable more than once per phase, as the variables
are final. Under clocking, the original design allows
such variables to be re-initialised once per phase. We
did not adhere strictly to this design, as we allow the
clocking of non-val variables, and allowing more than
one write per phase was considered. However, this
limit was deemed necessary to deal with some of the
issues raised by clocking reference types, as discussed
later.

3.2 Clocked Primitive Types

The design of clocked variables started with primitives,
as they are conceptually easier to deal with than ob-
jects and references. Our design for clocked primitives
is based on the outline for clocked vals given in the
X10 Design Document, but has been extended to cover
non-local vars and fields as required. We also depart
from the Design Document in that clocked primitives
can still be used outside of a clocked environment
(ie: with a block encapsulated by clocked(Clock),
clocked finish, or clocked async)—they simply
revert to behaving like an unclocked variable of the
appropriate type.

The basic design is that of wrapper classes—instead
of dealing with the primitive variable directly, all in-
teractions are abstracted away by “Clocked Primitive”
objects that sit between the primitive variable and
the rest of the program. One of these wrapper classes
is needed for each of the thirteen primitive types avail-
able in X10.

The design of the wrapper classes is reasonably sim-
ple. Each class contains two fields of the appropriate
primitive type: one to hold the current value of the
clocked variable, and one to hold the next value. Only
two operations are supported on clocked primitives:

read returns the current value of the clocked variable.
Can be performed any number of times.

write updates the next value of the clocked variable.
Can only be performed once per clock phase.

3.3 Clocked References

Like Clocked Primitives, Clocked References are ex-
pected to maintain a constant value during a clock
phase, and then to update that value at the end of
each clock phase. Unlike Clocked Primitives, this is
not a simple matter of just executing current = next.
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Clocked References are not dealt with in the design
document, save for defining the concept of a “clocked
field” that might exist inside such an object. Thus,
the design for Clocked References is entirely our own,
and is based on the design of Clocked Primitives.

As a Clocked Reference must encapsulate a refer-
ence type (not a primitive), using generics to describe
a general “Clocked Reference” was deemed the best
approach. The bigger issue is that an object may con-
tain references to other objects. Clearly updating such
a complex structure would not be a simple task. So,
how do we successfully update a Clocked Reference?

Figure 2: A clocked LinkedList behaves oddly under
a call to add(node)

The answer is not simple. Figure 2 shows the
behaviour of a clocked LinkedList during a call to add.
Notice that we have a clocked reference to the head
of the list. A call to add a node to the list, executed
on the head node, adds a node to the list—but this
alteration is not visible yet, as any reads of the graph
are done from the current state, and the alteration is
performed on the next state. Another add call is made;
how do we resolve this? We need to ensure that we
have access to a up-to-date version of the list, but the
first change has not yet been commited. We cannot
set the next field of the Node correctly, and the list
enters an inconsistent state. Ideally, we would require
all such alterations to be performed on a version of
the graph that is kept up-to-date. It becomes clear
that we cannot simply just maintain two states for
the object being referenced by the clocked reference;
we need to do this for the entire object graph it is
connected to. But how, then, do we propagate changes
to the current state when the clock advances?

There are many ways in which a Clocked Reference
could update its value—the simplest of which is a deep-
clone of the entire object graph. In fact, X10 readily
provides a method to perform exactly that operation;
one which even takes cycles into account. This is
the method used in the design of Clocked References
within this paper, as time constraints meant other
avenues could not be fully explored. To avoid issues
caused by calling multiple updates on the graph in one
clock phase, the write operator was limited to only one
write per phase, as specified in the Design Document
(Saraswat 2011). With the näıve deep-cloning method
of updating Clocked References, however, it could be
argued that this was unnecessary, as the two states
are completely separate object graphs. In the inter-
est of exploring more interesting update mechanisms,
however, we felt it was necessary to enforce this limit.

Having chosen a solution to the problem of up-
dating a clocked reference, we turn to the operations
that can be performed on a clocked reference. Im-
mediately we can see that the operations used with
clocked primitives are not going to suffice. Read still
functions well enough, as it now just returns a ref-

erence to the current value of the clocked reference.
Write proves a little more troublesome. We don’t
want to support an operation that replaces the next
value wholesale—instead, we want to be able to give
out a reference to the next value to allow programs
to alter it in less destructive ways (such as updating
a field, or calling a method, etc). After some con-
sideration, it was decided that Clocked References
would not support any operations, as there was no
easy way to pass only the required changes to the
graph as a parameter. Instead, direct access to the
current and next values of the clock reference would
be performed via method calls (readableObject()
and writableObject() respectively).

3.4 Back-end Design

Having described the design of clocked primitives and
references, we now describe the design of the actual
clocking mechanism itself, and how it fits into the
overall X10 architecture. This is not touched on at all
in the X10 Design Document, and as such, is entirely
our own design.

There are two main alternatives for the back-end
of this system. The first puts the onus on the Clock
to keep track of Clocked Variables and perform the
updates. The second shifts this responsibility to the
spawning Activity itself.

3.4.1 The GlobalRef Method

The first implementation of Clocked Variables uses the
GlobalRef structure (an X10 type that can be used to
access objects across Place boundaries) to ensure that
all operations performed on the object are executed
in the correct place—this is especially vital, otherwise
the state of the object becomes inconsistent.

A list of GlobalRef objects is maintained by the
Clock object. When a clocked variable is registered on
that clock, its GlobalRef object is copied to the “root”
of the clock (the Place it uses for its fields) and added
to the list. Then, when the Clock advances from one
phase to the next, it calls the next() method on all of
the members of the list. Figure 3 illustrates this.

3.4.2 The Map Method

For this design, the onus of keeping track of clocked
variables falls on the activity in which they were de-
clared. Each clocked variable is assigned an integer id
upon construction, and a mapping from this id to the
clocked variable is stored in a HashMap within the ac-
tivity. The activity then registers the clocked variable
on the same clock (if any) that the activity is regis-
tered on. This is accomplished simply by passing the
integer id to the clock, which stores it in an ArrayList
in the ”root” Clock. Since the id is invariant, the fact
that this value crosses places during this action does
not raise any concerns.

At the end of the clock advancement step, the
clock passes its internal list to each activity that it
is associated with. Then, each activity scans the list
for any ids that exist in the Map—if it finds any, the
activity issues a call to next() on that clocked variable.
Figure 4 illustrates this.

This design has the advantage of storing very little
state within the Clock object itself: a list of primi-
tive integers, rather than a larger struct. Since the
burden of updating the clocked variables falls on the
activity itself, there is also no need to switch places in
order to update them—and this way, clocked variables
in different places (and thus Activities) are updated
concurrently, rather than consecutively
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val c = Clock.make();
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Executes in Place 1

at(Var1Ref.home())
Var1Ref().next();

at(Var3Ref.home())
Var3Ref().next();

at(Var4Ref.home())
Var4Ref().next();

Figure 3: An activity in Place 1 using 4 ClockedVars under the GlobalRef method
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Figure 4: An activity in Place 1 using 4 ClockedVars under the Maps method
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Model Dell Optiplex GX780
CPU Intel(R) Core(TM)2 Duo @ 3.00GHz
RAM 4GB
OS ArchLinux (3.2.4-1-ARCH)

HDD 250GB Serial ATA 7200rpm
Ethernet Intel On-Board 1 Gigabit

Table 1: Hardware specifications for the benchmark
applications

It was decided that the Map method would be
used to implement Clocked Variables, as the cost of
switching places is quite high in terms of efficiency.
The Map method does this much less often than the
Global Ref method (once per calling activity, rather
than once per clocked variable).

4 Benchmarks and Evaluation

The performance of both types of clocked variable was
measured through the use of four benchmarks, each of
which tested a different form of reference type. Each
benchmark was implemented in two different ways;
using the clocked references described in Section 3,
and not using clocked references. For the “unclocked”
case, synchronization and state updates were handled
manually—the term refers to the absence of clocked
variables, not the absence of clocks themselves. Care
was taken to ensure that all versions of the bench-
mark programs operated correctly, and that the use of
clocked/unclocked references was the only difference
between the two versions of each benchmark. Each
benchmark was executed 100 times, on a range of
different values. The results shown here give the av-
erage values of those executions. Table 1 details the
specifications for the hardware these benchmarks were
executed on.

4.1 Conway’s Game of Life

Conway’s Game of Life is a fairly simple cellular au-
tomaton, originally described by the mathematician
John Conway (Gardner 1970). The automaton con-
sists of a two-dimensional grid-based world, with each
cell of the grid having two states (dead or alive). Cells
live or die according to fixed rules that are only reliant
on the current state of the board. At each step, the
rules are applied simultaneously to each cell in the
grid. This is done in X10 by using the async structure
to parallelise the application of the rules to each cell.
Each cell is given its own thread, the state of each cell
is calculated concurrently with the state of each other
cell.

This was implemented in X10 using an array of
integers to represent the grid. The clocked version used
a single array of clocked integers, and the unclocked
version used two arrays of normal integers (one to
represent the current state, and one to represent the
next state). The update mechanism for the unclocked
version is essentially the same as for the clocked version
(but coded manually): a loop copies the value from
the next board state to the current board state.

Figure 5 gives the results for Conway’s Game of
Life for boards of various sizes. There is no signifi-
cant difference between the clocked version and the
unclocked version. This outcome was expected, as
clocked and unclocked primitives are both updated
via the same mechanism—directly copying the new
value over the old value.
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Figure 5: Conway’s Game of Life: Clocked vs Un-
clocked execution times
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Figure 6: N-Body Simulation: Clocked vs Unclocked
execution times

4.2 N-Body Simulation

An N-Body simulation is a physical simulation of a sys-
tem of many interacting particles. N-Body problems
are computationally intensive, as calculating the next
state of a particle involves determining its interactions
with every other particle in the system. Generally,
these interactions take the form of forces exerted be-
tween the particles—usually gravitational (in the case
of uncharged particles or large bodies, like planets) or
electrostatic (in the case of charged particles) or both.

This benchmark was implemented as a N-Body
system of uncharged particles (i.e. the only interac-
tion between the particles was gravitational). The
particles were represented as a simple object with
several primitive fields and an update method. In
the clocked version of this benchmark, these particles
were clocked. The update method executed on the
next state of the object, and wrote directly to the
fields. In the unclocked version, two additional fields
had to be added to hold the information required to
update the particle, and a new method, next() was
added to the Particle class so this update could be
performed. Similar to Conway’s Game of Life, this
was done after ensuring that all of the next states had
been calculated.

Figure 6 shows the results for the N-Body Bench-
mark, for various numbers of particles. As one would
expect, execution time scales with the number of par-
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Figure 7: Sparse Matrix: Clocked vs Unclocked exe-
cution times

ticles present in the system (as this is an O(n2) al-
gorithm). Interestingly, however, the clocked and
unclocked versions clearly have a very different gradi-
ent. The update mechanism for the clocked version
is a simple deep clone of the object (which only has
primitive fields—essentially a struct), whereas the up-
date mechanism for the unclocked version was method
call on the object that performed two minor calcula-
tions and updated the fields. For smaller numbers of
objects, the cloning method is much faster, but the
time cost increases at a faster rate than the method-
call update. The two methods are equal at around
800-850 objects, and the method-call update is faster
for object numbers above that. From the graph, it ap-
pears that the method-call update has a constant cost
associated with it (hence it starting at a much higher
y value). This may be due to the update threads
having to synchronize between the calculation phase
and the update phase—something that doesn’t need
to happen in the clocked version.

4.3 Sparse Matrix Convolution

A Sparse Matrix allows more compact storage by stor-
ing only the non-zero values within the matrix. We
used a linked-list style structure, in which each row of
the matrix is represented by a single list. Rows are
then linked by their first node. This allows access to
any cell within the matrix by following the links from
the root node.

In this benchmark, a sparse matrix was used to
represent an image which then had three filters applied
to it via convolution. Much like Conway’s Game of
Life, the “next” (in this case “filtered”) state of a given
pixel in the image is calculated from the value of the
pixel and its immediate neighbours, and this must be
done “simultaneously” for each pixel. The difference
here is one of representation; whereas Conway’s Game
of Life was an array of primitive integers, the images
used in this benchmark are represented by a complex
linked object structure. In the clocked version, the
entire object graph is clocked via the reference to the
root node of the matrix. In the unclocked version,
it is necessary to update the current image state by
replacing the reference with a reference to the next
image state, and then re-initialising the next state to
be an empty matrix.

Figure 7 gives the results for Sparse Matrix Convo-
lution. Only a small number of points were sampled
due to the very long execution time of this benchmark—
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Figure 8: Linked List: Clocked vs Unclocked execution
times

but enough data were gathered to show that the
clocked version of the Sparse Matrix is vastly slower
than the unclocked version. Due to the single-write-
per-phase nature of clocked variables, the Sparse Ma-
trix was very slow to update. Each thread had to
calculate the next value of its cells before any other
thread could actually write to the matrix (as each cell
insert necessitated a phase advancement, which—if
peformed while threads were reading—breaks the con-
volution algorithm). After the values were calculated,
each thread then inserts the new cell, advancing the
phase after each insertion. Obviously this reduces the
behaviour of the matrix to exactly that of the un-
clocked version—but with the high overhead of having
to deep-copy the matrix at every clock advancement!
Under a single-write-per-phase scheme, complex ob-
jects seem to perform quite slowly.

4.4 Linked List Microbenchmarks

For this benchmark, for linked lists of various sizes,
the add and remove methods were executed a number
of times. This benchmark mostly tests the overhead
introduced by forcing the clocked list to be updated
after every method call, as both were implemented in
the exact same fashion, and both required the clock
to advance after every method called on the list.

Figure 8 gives the results for clocked and unclocked
Linked Lists. We can see that the clocked version of
this data structure is much slower than the unclocked
version. Every add, every remove—every operation
that changes anything about the list—requires that
the clock phase be advanced. This overhead simply
does not exist in the unclocked version!

While clocked variables seem to offer some sort of
benefit when used with primitives and objects with
only primitive fields, they incur performance penalties
with more complex data structures—at least, if we’re
restricted to one write per phase. Allowing multiple
writes per clock phase might offer some performance
improvements.

5 Alternate Approaches

It is obvious from the results presented in Section
5 that the performance of certain applications (i.e.
Linked Lists) is heavily impacted by the inability to
write to a clocked reference multiple times per phase.
Why is this a restriction? If it can be shown that a
given write is “safe”, then what good reason is there
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Figure 9: Approach 1: Clocking objects individually

for not allowing it? But before we can discuss that,
we should look at what it means to be “safe”. A
“safe” write is any write to any part of a clocked object
graph that (1) does not change the structure of the
graph, and (2) does not involve a value that has been
written to already during this phase. For example,
it would be unsafe to add or remove a node from a
linked list of integers, but it would be safe to alter
the integer value store within a node—provided that
value has not already been changed this phase. From
this, we can immediately see that the Sparse Matrix
benchmark is not safe, as some operations change the
structure of the object graph (setting the value of a
previously zero entry to a non-zero value). This was
taken into account in the benchmark, and all updates
to the object graph are performed atomically and are
immediately visible to all threads—but this will not
always be the case.

Once this difference in safety has been established,
we can amend the requirement of a clocked reference
to only allowing one unsafe write per clock phase.
The issue then becomes determining what is a safe
update, and what is not. Ideally, this would be done
automatically by the compiler with no extra work
required on the part of the programmer—but this
would be require a means of determining every possible
interaction that could occur with an object. Certainly
possible for very simple objects, but the difficulty
escalates quite rapidly.

5.1 Two Possible Approaches

Consider Figure 9. Under this approach, each object
is individually clocked, allowing multiple updates to
occur to the list—provided the updates don’t affect
the same object twice. Consider the example shown
in the Figure: adding an item into a linked list cannot
be safely done more than once per clock phase, as the
second add operation simply cannot know about the
previous addition, as it uses the readable versions of
the objects to determine the current state of the list—
these versions of the objects do not have any links to
the new node! Thus the add operation replaces the
next pointer of the old last node with a pointer to the
second new node, erasing the first new node from the
list. Multiple writes are unsafe under this approach.

(a) Linked List with root node clocked

(b) Insert called

(c) Clock Advanced

Figure 10: Approach 2: Single point-of-entry, clocking
entire object graph

A second approach (Figure 10) attempts to solve
this problem by splitting the object graph into two dis-
parate graphs: a writable graph and a readable graph.
This is the approach to Clocked References used earlier
in this paper. We can see that doing this solves the
issue of data loss, as each write operation is performed
on the writable object graph, which is always the most
up-to-date version of the object. The add operation
is safe here, as the entire operation uses the writable
object graph. But what about other operations? If
we were maintaining a sorted list, adding a new node
may not be safe, especially if the location that a node
must be inserted is determined prior to calling any
methods on the writable graph—instead, the location
would be determined by the readable object graph,
and so multiple additions—while no data would be
lost—may result in the list no longer being sorted. We
also see that this approach is not thread-safe, as multi-
ple threads attempting to add nodes to the list would
be prone to the usual issues of concurrent lists. To
eliminate this, we must then state that every thread
that wishes to use the writable object graph must
obtain a lock on the root node in order to proceed.
Thus every write is atomic and uninterruptable—but
we have sacrificed parallelisation. This becomes a
large issue with problems like the Game of Life, or
image convolution: if each thread is only updating
one node, and no node is being updated by more than
one thread, then why shouldn’t the threads be able to
do this concurrently?

5.2 Two Better approaches

We can build on the first approach outlined above in
order to make it slightly safer: we require that each
thread lock the objects it needs to update. While
these objects are locked, the thread uses the writable
version of the object for all operations. This ensures
that no data is lost, but brings new difficulties in ascer-
taining which objects a thread needs to lock in order
to perform the operation successfully. It also raises
concurrency issues: deadlock needs to be avoided, as
it could be caused by two threads needing the same
two objects, and locking them in different orders.

Our final approach attempts to solve this dead-
locking problem by providing a single point of entry,
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Figure 11: A Sparse Matrix Convolution

similar to the second approach outlined above. When
a thread needs to lock objects, it first locks the root
object; thus any thread that needs to lock objects
within the graph can do so without interfering with
any other threads. This doesn’t solve the issue of
multiple threads needing to write to the same object.
In this case, such a thread must wait until the next
clock phase. So, what do these approaches look like
in practice? A working implementation has not yet
been developed, but Approach 3 lends itself well to
simulation.

Figure 11 shows, we still cannot perform sparse
matrix convolution—at least, not with this representa-
tion of sparse matricies. To understand this, we need
to take a closer look at what is happening when a cell
is updated. In the example shown, thread 2 is tasked
with updating cell (0,1). To do this, it must first read
cells (0,0), (0,1), (0,2), (1,0), (1,1), and (1,2). The
result (1.00) is then written into cell (0,1)—but cell
(0,1) does not currently exist in memory. So, the root
of the matrix must be written to so that the cell can
be inserted. The root holds a reference to the first
non-zero cell in the first non-zero row, so currently it
is pointing to cell (1,1). This reference needs to be
updated, so we acquire a write-lock on the root node
and insert the new cell.

Then, thread 1 attempts to update cell (0,0) via
the same process. As this cell is before (0,1) in the row,
the root needs to be updated again. Note that we have
not yet advanced the clock. This requires obtaining
a write-lock on the root, which throws an exception
as the root has already been written to during this
phase. We cannot solve this problem by advancing
the clock before inserting (0,0), as this breaks the
convolution algorithm. Cell (0,1) would be inserted
into the matrix, and would thus affect any threads
that have not yet read the old value of that location.

A solution could be to require all threads to per-
form their reads before any thread can write to the
matrix. This would break each clock phase into two
sub-phases—a read phase and a write phase. Dur-
ing this write phase, the clock can be advanced any
number of times, as the old values are no longer re-
quired by the updating threads. However, this would
result in the same level of performance as shown in
Figure 7, as clock advancement is costly for a sparse
matrix (Figure 12). It also renders the object unsafe
to read from during the write phase, so any threads
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Figure 12: Clock Advancement Performance for a
Sparse Matrix
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Figure 13: Using Approach 3 to solve the Sparse
Matrix Performance Issue

external to this process would be forced to wait until
the update process had finished in its entirety.

As we can see from Figure 13, the performance of
Sparse Matrix Convolution is much improved—but
this relies on a safe way to update the matrix.

Another solution, perhaps, is to implement things
in a safer way. If a Sparse Matrix were implemented
such that the first cell in each row was always present,
even if zero-valued, a lock could be acquired on an en-
tire row of the matrix, making structural changes safer.
This would require that each row be updated strictly
by one thread, so we have lost some concurrency here—
but the performance would surely be better.

5.3 Related Work

The basic concept underlying clocked variables is not
a new one. Software Transactional Memory (STM)
(Shavit & Touitou 1995) provides database-like trans-
actions for operations on shared memory. A transac-
tion consists of one or more write operations performed
on an object, which is then committed once the trans-
action is complete, causing an atomic update on the
object to be performed. Transactions can be aborted
at any time, and the pending changes are lost. This
is similar, in many respects, to how Clocked Variables
work—with some key differences. Both operate in a
”phased” fashion; for STM, these phases are trans-
actions, and for Clocked References, the phases are
literal clock phases. Both maintain the old version
of the memory location for reading purposes during
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these phases, and both ”commit” changes to memory
at the end of each phase.

For X10 specifically, there has been work to develop
Phasor Accumulators (Shirako et al. 2009). These ac-
cumulators provide support for the accumulation of
multiple values during a single clock phase (thus allow-
ing multiple updates to a value) while maintaining the
value from the previous state for reading purposes—
similar to the Clocked Variables described in this
paper. However, Phasor Accumulators were only de-
signed with Number types in mind, and do not address
Reference Types.

The use of revisions and isolation types (Burck-
hardt et al. 2010) offers a similar functionality to the
scheme presented in this paper. Programmers can
declare data they wish to be shared between tasks by
using isolation types. Tasks are then executed and
merged using revisions: isolated instances that can
only read and modify the shared data locally. When
the tasks are finished, the runtime merges the results,
automatically resolving any conflicts that occur. The
result is a concurrent programming model that can
distribute and share data without concern over concur-
rent modifications, and successfully merge this shared
data back into a coherent whole. Under such a scheme,
it would be possible to split an array (such as in the
Game Of Life case study) across multiple tasks, have
each task read and update their assigned cells, and
have the array merged successfully back into a con-
sistent board state. Such a process may be used to
provide high-performance concurrent programs (Bur-
ckhardt et al. 2011) that greatly improve upon the
expected performance gained by parallelization alone.
However, it is unclear how Revisions handle complex
object graphs, as this has not been specifically ad-
dressed; nor does it seem to address the case where
objects have reference types as fields.

6 Conclusion

Clocked Primitives are the most viable form of clocked
variable presented in this paper, and offer no significant
change in performance. The benefit gained from using
them is a cleaner way of updating dual-state variables
often found inside concurrent code.

Clocked References, however, were the main focus
of this paper. While our initial attempts at solving
this problem were not entirely successful, we have
presented our results and offered insights into what
could be done to solve this issue. There are many
options for future work with Clocked References, and
many new avenues to explore.

The implementation presented in this paper is
available from
http://ecs.vuw.ac.nz/~atkinsdani1/
x10-clocked.tar.gz.
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