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Abstract

Recent research indicates that modern computer
workloads (e.g. processing time of web requests) fol-
low heavy-tailed distributions. In a heavy-tailed dis-
tribution there are a large number of small tasks and
a small number of large tasks. The rationale for using
a multi-level time sharing policy is that it can min-
imise both waiting time and slowdown of tasks that
require relatively small service requirements. This in
turn will improve the overall performance of the sys-
tem. Using a 2-level system (policy), we investigate
the effect of quanta on the overall performance of a
multi-level time sharing policy under a range of work-
loads and task size variabilities. We measure the per-
formance using slowdown and flow time. First, we
show that for most workloads and task size variabili-
ties there exists a unique set of quanta (’optimal’ set
of quanta) that would result in the best performance.
Second, we investigate the performance degradation
in one metric under the optimal parameters of other
metric. Through an extensive numerical analysis, we
find that under high system loads and task size vari-
abilities using the optimal set of quanta corresponding
to overall expected slowdown can result in the overall
expected flow time to deteriorate significantly. Fi-
nally we show that a 3-level system with the optimal
set of quanta outperforms a 2-level system with the
optimal set of quanta for all the scenarios considered.

Keywords: Heavy-tailed property, Overall expected
flow time, Overall expected slowdown

1 Introduction

Given that modern computer workloads have service
requirements that are best characterised by heavy-
tailed distributions (Arlitt & Jin 1999, Arlitt &
Williamson 1996, Barford et al. 1999), there is an ur-
gent need to investigate the performance of many tra-
ditional scheduling policies under heavy-tailed work-
loads. Recent research shows that many traditional
policies that perform well under distributions such as
exponential distributions do not perform well when
the service time distribution has the heavy-tailed
property (Crovella, Harchol-Balter & Murta 1998).
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The rationale for using a multi-level time sharing
policy is that it can minimise both the waiting time
and slowdown of jobs that require relatively small pro-
cessing requirements. In a heavy-tailed distribution,
as there are a large number of such small jobs, by im-
proving the performance of these small jobs improve
the overall performance also. Moreover, research indi-
cates (Righter & Shanthi Kumar 1990, Yashkov 1987)
that when the service time distribution of tasks have
a decreasing failure rate (the longer a task has run,
the longer it is expected to run) multi-level level time
sharing policies can result in significant performance
improvements over other policies. One key property
of a heavy-tailed distribution is that it has a decreas-
ing failure rate.

There is a significant body of work that investi-
gates the performance of various scheduling policies
under heavy-tailed workloads (Harchol-Balter 2000,
Broberg et al. 2006, Psounis et al. 2005). Most of
these assume that the jobs are served in a First Come
First Serve (FCFS) manner at the server (Harchol-
Balter 2000, Broberg et al. 2006, Psounis et al. 2005).
Many modern computer systems, however, do not use
FCFS but use pre-emptive policies such as round-
robin, multi-level time sharing and variants of these
two policies.

The analysis of time sharing policies (pre-emptive
policies) are relatively complex compared to that of
FCFS because the analysis needs to take into account
the partially completed jobs that are scattered on
various levels throughout the system. Many exist-
ing papers focusing on time sharing policies assume
a Poisson arrival pattern and an exponential service
time distribution. Given that many modern computer
workloads have the heavy-tailed property (Arlitt &
Jin 1999, Arlitt & Williamson 1996, Barford et al.
1999), the models (policies) that assume exponential
service time distributions and Poisson arrival patterns
are of limited capability.

Although there exist many variants of time shar-
ing policies, these can be divided into four broad cate-
gories namely: processor sharing, round-robin, multi-
level processor sharing and multi-level time sharing.
Processor sharing can be considered as the limiting
case of round-robin and its analysis typically assumes
infinitely small quantum whereas multi-level proces-
sor sharing can be considered as the limiting case
of multi-level time sharing and it assumes infinitely
small quanta and infinite number of levels.

As far as multi-level time sharing and multi-level
processor disciplines are concerned much of early re-
search on these were done by Schrage (1967) and
Coffman & Kleinrock (1968). In Coffman & Klein-
rock (1968), they obtained the expected waiting time,



based on the length of the service for both M/M/1
multi-level time sharing and M/M/1 multi-level pro-
cessor sharing disciplines. In this paper, they investi-
gated the impact of the length of quantum on the con-
ditional expected waiting time and showed that the
plot of conditional expected waiting time vs quan-
tum size has a shape of a saw tooth. In Schrage
(1967), Schrage derived the expected time in the sys-
tem, based on the length of the service of a multi-level
time sharing policy under an arbitrary service time
distribution when the arrival process is Poisson.

Recent work on multi-level processor sharing disci-
pline includes Aalto et al. (2007, 2005, 2004). In Aalto
et al. (2005), the mean delay of a multi-level processor
sharing policy was investigated under a more general
class of service distributions called increasing resid-
ual lifetime (IMRL). In Aalto et al. (2007), the service
differentiation capabilities of time sharing policies are
studied.

Systems that use a multi-level time sharing policy
include web servers, operating systems and routers.
A multi-level time sharing policy with higher number
of levels is more suitable for systems that have rela-
tively large memory capacities and low context switch
overhead time. Systems with small memory can also
benefit from it if certain constraints are met. Such
constraints will include the number of levels and av-
erage arrival rate into the system. As the number
of levels increase, the amount of memory required to
store the information about partially completed jobs
will increase. Therefore, prior to increasing the num-
ber of levels, system designers need to ensure that
there is sufficient memory to store all the partially
completed states. Such consideration is especially im-
portant for embedded systems that have tight mem-
ory constraints.

Although there is evidence showing that a multi-
level time sharing policy can result in improved
performance under heavy-tailed workloads (Yashkov
1987, Nuyens & Wierman 2008), prior work does not
investigate the effect of quanta (amount of service al-
located to a task on various levels) on the overall per-
formance because much prior work assumes infinitely
small quanta.

In this paper, we investigate the impact of quanta
on the overall performance of a multi-level time shar-
ing policy for a range of system loads and task size
variabilities. We investigate the performance using
two metrics: the overall expected slowdown and over-
all expected flow time. Slowdown is defined as the
ratio between waiting time and processing time of a
task and it is measures the fairness of a given schedul-
ing policy. Flow time, on the other hand, measures
the total time that a task spends in the system and it
includes both the waiting time and processing time.

Using a 2-level system, we show that for a given
system load and task size variability, there exists a
unique set of quanta that would produce the mini-
mal overall expected slowdown. The set of quanta
that would produce the minimal overall expected flow
time, however, may not be unique for a few work-
loads and task size variabilities. Moreover, we find
that there is a sudden drop in 1st optimal quantum
(and an increase in 2nd ’optimal’ quantum) that oc-
curs between the system loads of 0.5 and 0.7 when the
performance is measured using the overall expected
flow time. Such a drop is not observed when the
performance is evaluated using the overall expected
slowdown.

Second, we investigate the fraction of tasks com-
pleted at levels under a range of task size variabil-
ities and system loads. Using a 2-level system, we
show that the fractions of tasks completed at levels
do not vary much with the variability of tasks under a

constant system load. This behaviour is particularly
evident when the policy’s quanta are computed to
optimise the overall expected slowdown. This means
that under a given system load, once the optimal set
of quanta are computed for one task size variability,
the optimal set of quanta of other variabilities can be
computed using the cumulative distribution function
of the service time distribution.

Third, we investigate performance degradation in
one performance measure under the optimal param-
eters (i.e. optimal set of quanta) of the other per-
formance measure. We find that under high system
loads and task size variabilities the use of the optimal
set of quanta corresponding to overall expected slow-
down can result in a significant deterioration (250%)
of the overall expected flow time. However, perfor-
mance degradation in the overall expected slowdown
is less when the optimal set of quanta correspond-
ing to overall expected flow time are used. Finally,
we briefly investigate the behaviour of quanta for the
policy consisting of 3-levels. We show that a 3-level
system with the optimal set of quanta outperforms a
2-level system with the optimal set of quanta for all
the system loads and task size variablities.

The rest of this paper is organised as follows.
In Section 2 we briefly discuss heavy-tailed distri-
butions and the Poisson process and obtain the key
performance metrics. In Section 3 we transform the
quantum-based policy into a cutoff point based policy.
Section 4 investigates the effect of quanta on the over-
all expected flow time and in Section 5 we investigate
the effect of quanta on the overall expected slowdown.
In Section 6 we study the fraction of tasks completed
at levels. Section 7 investigates performance degrada-
tion in one performance measure under the optimal
parameters of other performance measure. In Section
8 we briefly investigate the behaviour of quanta under
3-levels. Section 9 concludes the paper.

2 Background

In this section we will present the background that
is needed to understand the rest of this paper. In
Section 2.1 we discuss key properties of heavy-tailed
distributions. In Section 2.2 we present the quantum-
based multi-level time sharing model and present the
two performance metrics that we use to evaluate its
performance.

2.1 Heavy-tailed workloads and Poisson pro-
cess

A random variable X is said to be heavy-tailed

P (X > x) ∼ x−α 0 < α < 2 (1)

In Equation 1, α represents the variability of tasks in
the service time distribution. The lower the value of
α the higher the variability of tasks. As α increases,
the tail of the distribution becomes thinner (in area)
indicating that the variability of the distribution is
decreasing (see fig 1). In the case of file sizes stored
on servers, α lies in the range 1.1 to 1.3 (Crovella &
Bestavros 1997, Crovella, Taqqu & Bestavros 1998).
One key property of a heavy-tailed distribution is that
its variance is infinite, because of this, for modelling
purposes, heavy-tailed distributions are typically rep-
resented by a Bounded Pareto Distribution (Harchol-
Balter 2000) that has an upper bound (p) and lower
bound (k). Another important property of a heavy-
tailed distribution is that it has a decreasing failure
rate. This means that the longer a task has run the
longer it is expected to run.
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Figure 1: The effect of α on the tail

The probability distribution function of Bounded
Pareto Distribution is given by;

f(x) =
αkα

1 − (k/p)
α x−α−1, k < x < p (2)

The moments of Bounded Pareto Distribution are
finite for all α values and it is easy to show that they
are given by;

E[Xj ] =

{

αkα(kj−α
−pj−α)

(α−j)(1−(k/p)α) if α 6= j,
k

(1−( k
p
))

(ln p − ln k) if α = j
(3)

The expected value of the Bounded Pareto Distri-
bution is obtained by substituting j = 1 into Equa-
tion 3. In this paper, we fix the expected value (aver-
age) of the Bounded Pareto distribution at 3000 ms.
It has been shown that the average size of a static
web page is 3000 bytes (Crovella & Bestavros 1997).
In the case of static web requests the time it takes
to serve a web page is proportional to the size of the
page (in bytes).

The second important parameter in a queueing
system (scheduling policy) is the arrival process. In
this paper, we assume that the task arrive according
to Poisson Process. A Poisson process is a stochastic
process (random variables indexed by time) in which
the probability of more than one arrival at a given
instance is equal to 0. When the tasks arrive accord-
ing to a Poisson process, the number of tasks that ar-
rive in two consecutive periods of time is independent
of each other (independent increments). Moreover,
when tasks arrive according to a Poisson process, it
can be shown that the inter-arrival times follow an ex-
ponential distribution with the mean of 1

λ (λ is rate
of the Poisson process).

2.2 Multi-level time sharing model

Figure 2 illustrates the time sharing model that we
consider in this paper. Figure 3 is a different repre-
sentation of the same model. Newly arriving tasks
are first placed in the lowest level queue which has
the highest priority. At each level, tasks are served in
a first come first serve (FCFS) fashion. A task wait-
ing in a particular queue (level) will only be served if

there are no tasks waiting in the lower level queues.
We denote the maximum amount of service allocated
to a task on ith level by qi (ith quantum). A task on
ith level can receive up to qi service and if its service
requirement is greater than qi it will be preempted
from the server and placed in the next lower level
queue. If its service requirement is less than qi, the
task departs the system from ith level. We assume
that the process switching time (i.e. context switch
time) is negligible and could be equated to zero. In
the case where there is significant process switching
time, the model can be easily modified to cater for
process switching time.

                    Queue 1 

                    Queue 2

                    Queue N

Figure 2: Multi-level time sharing model

Queue 1

Queue 2

Queue 3

Queue N

          Server

Figure 3: Multi-level time sharing model

As discussed, we represent the maximum amount
of service allocated to a task on ith level (i.e. ith

quantum) by qi and the sum these service times up
to and including ith service time by Qi.

Qi = q1 + q2 + + + qi (4)

We defined the overall performance based on the con-
ditional expected waiting time derived in Schrage
(1967). We use the following to notation represent
a multi-level time sharing policy. (This notation is
same as the notation used in Schrage (1967))

1. λ = arrival rate into 1st queue



2. Ti = ith simple processing; the length of process-
ing time which a task on ith queue receives

3. F (t) = Cumulative distribution function (CDF)
of service time distribution

4. Fi(t) = P [Ti ≤ t] CDF of ith simple processing
time

5. Si = T1 + T2 + ... + Ti given that the job returns
to the system at least i times

6. Ui = Si if the job returns to the system at least
i − 1 times
Ui = T1 + T2 + ... + Tk if the job returns the
system only k − 1 times, k < i

7. N = number of queues (levels)

8. Λk = λ(1 −
∫ Si

0
dF (t))

9. FTi = time in the system up to and including ith

simple processing time

10. Wi = waiting time in the system up to ith level.
This time does not include i simple processing
times (i.e. T1, T 2, , , Ti)

The expected flow time given that the service time
of a task is higher than Qi−1 and less than Qi is given
by;

E[FTi] =
λE[U2

i ] +
∑N

k=i+1 ΛkE[T 2
k ]

2(1 − λE[Ui−1])(1 − λE[Ui])

+
Qi−1

(1 − λE[Ui−1])
+ E[Ti]

(5)

The above equation is obtained by representing the
total delay experienced by a random arrival to the
system as the sum of independent delay components.
The reader may refer to Schrage (1967) or Jayasinghe
et al. (2008) for further details.

The expected waiting time given that the service
time of a task is higher than Qi−1 and less than Qi is
given by;

E[Wi] = E[FTi] − Qi−1 − E[Ti] (6)

The expected slowdown given that the service time
of a task is higher than Qi−1 and less than Qi is given
by;

E[SDi] = E[Wi] E

[

1

Qi−1 + Ti

]

(7)

E[Ui], E[Ui−1], E[U2
i ], E[T 2

k ], E[Tk], E[T 2
k ],

E[T−1
k ] and Λk are obtained for a Bounded Pareto

service time distribution. For those readers who are
interested in the derivation of these formulae, they
may refer to the technical report Jayasinghe et al.
(2008).

We multiply each E[FTi] by the probability
that service requirement is within the interval
[Qi−1, Qi], i = 1, 2, , , , , N(Q0 = 0) and then summing
over all i gives the overall expected flow time;

E[FT ]overall = E[FT1]

∫ Q1

0

f(x)dx

+ E[FT2]

∫ Q2

Q1

f(x)dx + ...

+ E[FTN ]

∫ QN

QN−1

f(x)dx

(8)

Similarly, we obtain the overall expected slow-
down;

E[SD]overall = E[SD1]

∫ Q1

0

f(x)dx

+ E[SD2]

∫ Q2

Q1

f(x)dx + ...

+ E[SDN ]

∫ QN

QN−1

f(x)dx

(9)

3 Transformation of quanta into cut-offs

We now transform the quantum based multi-level
time sharing system discussed in Section 2.2 into a
cut-offs (cut-off points) based multi-level time shar-
ing system by partitioning the domain [0, p] of a
Pareto’s distribution into a series of cutoff points
p1, p2, ......., pN .

qN = p − pN−1

q1 = p1

qi = pi − pi−1; 1 < i < N
(10)

We assume that the upper bound, p, of the
Bounded Pareto Distribution is 107 (Broberg et al.
2006). The high value of p will ensure that the
Bounded Pareto distribution will represent a realis-
tic heavy-tailed workload (Broberg et al. 2006). The
relationship between the quanta and cut-offs are given
by;

qN = 107 − pN−1

q1 = p1

qi = pi − pi−1; 1 < i < N

(11)

We can now represent N quanta in an N-level
multi-level time sharing model using N-1 cut-offs. For
example, a 3-level policy will now have 2 cut-offs as
opposed to 3 quanta. For a 3-level policy, the rela-
tionship between cut-offs and quanta are given by;

q1 = p1

q2 = p2 − p1

q3 = 107 − p2

(12)

4 The impact of p1 on overall expected flow
time for the case of 2 levels

In this section, we consider the effect of p1 on the
overall expected flow time. Both p1 and overall ex-
pected flow time have the same units. For example, if
the unit of p1 is milliseconds so is the unit of overall
expected flow time. We represent the cut-off (cut-
off point), pi, corresponding to the minimal overall
expected slowdown and flow time using pi sd opt and
pi ft opt respectively. We see from Figure 4, the value
of p1 ft opt is higher for low (0.3) and moderate (0.5)
system loads. For high system loads, (i.e. 0.7 and 0.9)
the value of p1 ft opt is relatively small. For the range
of workloads (i.e. 0.3, 0.5, 0.7 and 0.9) and task size
variabilities (0.4 - 1.95) considered, p1 ft opt is unique
for a given system load and task size variability.

Between the system loads of 0.5 and 0.7, the plot
of overall expected flow time vs p1 consists of two min-
ima whose performance are not significantly different



from each other. In such cases, the policy designer
may use p1 corresponding to either minima as they
both would result in the similar performance. Fur-
thermore, within this range it is possible for p1 ft opt
to be not unique.
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Figure 4: Impact of p1 on overall expected flow time
(N=2)
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In the case where there are two such minima, p1
corresponding to the minimum on the left is highly
sensitive to the overall expected flow time. Therefore,
if the system designer cannot estimate p1 accurately
it is recommended that the higher value of p1 be used
(corresponds the minimum on the right). This will
minimise the performance degradation due to slightly
overestimating or underestimating of p1 opt ft.

The plot of p1 vs system load (Figure 5) indicates
that there is a sudden drop in p1 ft opt. Notice from
Figure 5 that this sudden drop occurs between the
system loads of 0.6 and 0.7. This further justifies our
earlier observation of high p1 for low and moderate
system loads and low p1 for high workloads.

Figure 6 illustrates the effect of α on p1 opt ft. We
see from Figure 6, that under low and moderate work-
loads as α increases p1 ft opt decreases. In the case of
high system workloads, there are no such clear pat-
terns in the variation in p1 ft opt with α.
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Figure 6: Behaviour of p1 ft opt with α (N=2)

5 The impact of p1 on the overall expected
slowdown

Figure 7 illustrates behaviour of the overall expected
slowdown with α. We can clearly see that for a given
system load and task size variability the plots of over-
all expected slowdown vs p1 always have a unique
global minimum. Therefore, p1 sd opt is unique for a
given system load and task size variability.

Moreover, we see (see Figure 8) that p1 sd opt is
very small compared to the largest task, p (=107),
in the service time distribution. Under a constant
system load an increase in α will result in p1 sd opt

increasing (see Figure 8).

6 Fraction of tasks completed at levels

In this section, we investigate the fraction of tasks
completed at levels using a 2-level policy. We com-
pute the fraction of tasks completed at levels using
the cumulative distribution function of the Bounded
Pareto Distribution. The cumulative distribution
function of Bounded Pareto Distribution is given by;

F (x) =

∫ x

k

αkα

1 − (k/p)
α x−α−1, k < x < p

= −
kα

1 − (k/p)
α (x−α − k−α)

(13)

6.1 Overall expected flow time

We compute the fraction of tasks completed at 1st

and 2nd levels as follows.

Frac L1 ft = F (p1 ft opt)

Frac L2 ft = 1 − F (p1 ft opt)
(14)

We can see from Figure 9 that more than 95% of
tasks are completed at the first level for the range
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Figure 7: Impact of p1 on overall expected slowdown
(N=2)
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of workloads considered. Under low and moderate
system loads, the fraction of tasks completed at level
1 is very high (0.999). Previously, we noticed high
p1 ft opt under low and moderate workloads indicating
a large fraction of jobs being completed at 1st level.
As the system load increases, the fraction of tasks
completed at 1st level decreases by a small amount
(0.05). As the system load increases, the policy im-
proves the overall expected flow time by increasing
the degree of preferential treatment given to small
tasks. Earlier, we saw (see Figure 4) low p1 ft opt un-
der high system workloads (0.7, 0.9).
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6.2 Overall expected slow down

In the case of overall expected slowdown, the fraction
of tasks completed at 1st and 2nd levels are given by

Frac L1 sd = F (p1 opt sd)

Frac L2 sd = 1 − F (p1 opt sd)
(15)

Here we see that Frac L1 sd are not as high as
Frac L1 ft for the range of workloads considered.
The highest fraction of tasks completed is about 80%.
Under low and moderate system loads the fraction of
tasks completed at level one is less than 70%. We
see that as the system load increases, the fraction of
tasks completed at 1st level increases (different from
what we saw before in Fig 9). Moreover, we notice
that under a constant system load when α lies in the
range 0.8 and 1.6 the fraction of task completed at
levels stagnates.

This means that under a fixed system load once
p1 opt sd is computed for one α value using an optimi-
sation program (routine), p1 opt sd for other α values
can be computed simply by substituting F (p1 opt sd),
α, p and k values into the inverse cumulative distri-
bution function of the Bounded Pareto distribution.
When designing systems that utilise adaptive (opti-
mal cut-offs are computed on the fly) multi-level time
sharing policies, such a method can be very useful as
it will allow optimal cut-off to be computed in less
time. Moreover, systems that do not have adequate
computational resources to solve complex optimisa-
tion problems can also benefit.
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7 Performance degradation in one metric un-
der the optimal parameters of other metric

Several scheduling policies have been developed over
the years that can distribute heavy-tailed workloads
efficiently. Most of these policies have been pro-
posed for distributed web server farms (Harchol-
Balter 2000, Harchol-Balter et al. 1999, Tari et al.
2005, Broberg et al. 2006). The performance of these
policies are typically evaluated using expected slow-
down, flow time or waiting time. In such evaluations,
parameters of the scheduling policy (e.g. quanta, cut-
offs and system load) are computed so that a given
metric is optimised.

One common issue with existing work is that the
authors do not investigate the performance degrada-
tion in one metric under the optimal parameters of
other metric. The purpose of this section is to inves-
tigate this problem using a multi-level time sharing
system. We investigate the performance degradation
in overall expected slowdown under the optimal cut-
offs of overall expected flow time and vice versa. We
present our results for a range of task variabilities (α
values) and system loads. For each system load and
α, we compute the value of the metric by substituting
the optimal cut-offs of other metric.

We define the percentage performance degradation
in the overall expected flow time as follows.

E[FT ]Deg% =
E[FT ]sd cutoff − E[FT ]optimal

E[FT ]optimal
%

(16)
E[FT ]optimal denotes the minimal overall flow

time under a given system load and task size variabil-
ity. Under the same system load and task size vari-
ability, E[FT ]sd cutoff denotes the overall expected
flow time when the optimal cut-offs of overall ex-
pected slowdown are used.

Similarly, we define the percentage performance
degradation in overall expected slowdown as follows.

E[SD]Deg% =
E[SD]ft cutoff − E[SD]optimal

E[SD]optimal
%

(17)
Figures 11 and 12 illustrate the performance

degradation in E[FT ] and E[SD] respectively. Un-
der high system loads and task size variabilities,
E[FT ]Deg% is very high. For example, under the
system load of 0.9 when α equals 0.4, E[FT ]Deg%
is equal to 250%. E[FT ]Deg% decreases consistently
with increasing α. This is because as α increases
p1 sd opt approaches p1 ft opt (see Figures 5 and 7).

We notice that E[SD]Deg% lies in the range of
10%- 60% for all system loads and task size variabili-
ties considered. In general, small p1 values (cut-offs)
improve the both the overall expected slowdown and
flow time. However, the use of very small p1 values
to optimise the overall expected slowdown can result
in the overall expected flow time (or waiting time)
deteriorate significantly (250%).

8 The impact of quanta (cut-offs) for more
than 2-levels

In this section, we briefly discuss the effect of cut-
offs on a multi-level time sharing policy consisting
of 3 levels. We define the factor of improvement in
performance in a 3-level policy over a 3-level policy as
follows. The factor improvement in overall expected
flow time is given by;

 0

 50

 100

 150

 200

 250

 0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

E
[F

T
] d

eg
%

Alpha

load = 0.7
load = 0.9
load = 0.3
load = 0.5

Figure 11: Performance degradation in E[FT]

 0

 20

 40

 60

 80

 100

 0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

E
[S

D
] d

eg
%

Alpha

load = 0.7
load = 0.9
load = 0.3
load = 0.5

Figure 12: Performance degradation in E[SD]

E[FT ]Imp =
E[FT ]optimal N=2

E[FT ]optimal N=3
(18)
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Similarly the factor of improvement in overall ex-
pected slowdown is given by;

E[SD]Imp =
E[SD]optimal N=2

E[SD]optimal N=3
(19)

Figures 13 and 14 plot the behaviour of E[FT ]Imp

and E[SD]Imp. The important point here is that
3-level policy outperforms 2-level policy for all the
cases.
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Figures 13 and 14 illustrate the effect of cut-offs
(i.e. p1 and p2) on the performance. We see from the
figures that for each metric there is minimum which
corresponds to optimal cut-offs. As we saw before,
optimal p1 is small compared to the largest task, p
(=107), in the service time distribution. In this pa-
per we do not investigate the uniqueness of quanta
under 3-level policy. However, as we saw before we
see that there is a sudden drop in optimal p1 and op-
timal p2 of overall expected flow time (see Figure 15).
As the number of levels increase, finding the optimal
cut-offs becomes more difficult. Graphical represen-
tations such as figures 15 and 16 will allow us to iden-
tify the ranges of the optimal cut-offs approximately.
However, such plots are only possible for the case of
2 and 3 levels.
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9 Conclusion

In this paper, we investigated the effect of quanta on
the overall performance of a multi-level time sharing
under Heavy-tailed workloads. Using a 2-level sys-
tem, we showed that for a given system load and task
size variability there exists a unique set of quanta that
would produce the minimal overall expected slow-
down. The set of quanta that would produce the min-
imal overall expected flow time, however, may not be
unique when the system load is inbetween 0.5 and 0.6.
We showed that there is a sudden drop in 1st optimal
quantum (and an increase in 2nd ’optimal’ quantum)
that occurs between the system loads of 0.6 and 0.7
when the performance is measured using overall ex-
pected flow time. In section 8 we showed that a 3-level
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policy with the optimal set of quanta outperforms a
2-level policy with the optimal set of quanta. In this
paper, we did not investigate the uniqueness of opti-
mal quanta for more than 2 levels.

When the number of level are equal to 2, p1 (=1st

quantum) corresponding to minimal overall expected
slowdown is very small compared to the p1 corre-
sponding to overall expected flow time. When the
policy is performing at its minimal overall expected
flow time, the fraction of tasks completed at level 1 is
more than 95% for all the scenarios considered. We
showed that under high system loads and task size
variabilities E[FT ]Deg% is very high. E[SD]Deg%,
however, lies in the range of 10%- 60% for all sys-
tem loads and task size variabilities considered. In
general, small p1 improves both the overall expected
slowdown and flow time. However, the use of very
small of p1 in order to optimise the overall expected
slowdown can result in the overall expected flow time
to deteriorate significantly (by around 250%).
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