
Tools and Processes to Support the Development of a National
Platform for Urban Research: Lessons (Being) Learnt from the

AURIN Project

Richard O. Sinnott, Christopher Bayliss, Luca Morandini, Martin Tomko
The Australian Urban Research Infrastructure Network (AURIN)

University of Melbourne, VIC, 3052 Australia
rsinnott@unimelb.edu.au

Abstract
The development of large-scale software systems remains
a non-trivial endeavour. This is especially so when the
software systems comprise services and resources coming
from multiple distributed software groups, and where they
are required to interoperate with heterogeneous,
independent (and autonomous) distributed data providers.
The use of software development and management tools
to support this process is highly desirable. In this paper
we focus on the software development and management
systems that have been adopted within the national
Australian Urban Research Infrastructure Network
(AURIN - www.aurin.org.au) project. AURIN is tasked
with developing a software platform to support research
into the urban and built environment - a domain with
many diverse software system and data needs. In
particular, given that AURIN is tasked with integrating a
large portfolio of sub-projects offering both software and
data that needs to be integrated, deployed and managed by
a core team at the University of Melbourne, we illustrate
how tooling and support processes are used to manage the
software development lifecycle and code/data integration
from the distributed teams and data providers that are
involved. Results from the project demonstrating the
ongoing status are presented. .
Keywords: Code Management, Collaborative
Development Environment, Software Testing, Urban
Research.

1 Introduction
Despite many years of experience, the development of
complex software infrastructure and systems remains a
challenge (Stojanovic 2005). This is especially so when
the software systems are developed by distributed teams
of software engineers from a multitude of organisations
and where stakeholders beyond the software development
teams are protagonists in the infrastructure efforts. For
many major organisations such efforts are commonplace
and systems and processes are well embedded into the
way in which software is developed, managed and

Copyright (c) 2013, Australian Computer Society, Inc. This
paper appeared at the 11th Australasian Symposium on Parallel
and Distributed Computing (AusPDC 2013), Adelaide, South
Australia, January-February 2013. Conferences in Research and
Practice in Information Technology (CRPIT), Vol. 140. B.
Javadi and S. K. Garg, Eds. Reproduction for academic, not-for
profit purposes permitted provided this text is included.

ultimately released as products with each iteration
(software release) building upon the previous version.
However in many circumstances, this building upon a
common platform with extensive experiences and
feedback from the end users/customers is simply not
possible. This is often the case in the area of research-
focused projects dependent upon IT. For many research
projects, e.g. those sponsored by governments, the
software development activities required to support the
particular research endeavour are, what can best be
described as a greenfield, i.e. with no pre-existing
systems already running that require enhancing/tuning,
but largely building from scratch. In such circumstances,
the architecture of complex research-oriented systems
benefits greatly from re-use of existing software
components, typically these will come from a variety of
sources and/or require implementation without any
existing prototype in place. Even with this recycling of
software systems however, the adaptation, integration and
management of various subsystems to meet the needs of
the research community is a far from trivial process –
especially when the research needs evolve with the
development of the infrastructure itself. That is, often
researchers are unaware of the capabilities required of the
underlying research platform until the platform exists and
facilitates their research.

There have been ranges of software engineering
approaches and methodologies that have been explored
historically to manage such efforts (Boehm 1988, Filman
2004, Booch 1996). More recently the area of agile
software development has gained widespread
endorsement as the best way of developing complex
systems and ensuring that they meet the end user research
community needs through a rapid prototyping and release
driven approach (Martin 2003). However for many agile
software approaches, the assumption is often that the
software developers themselves are physically co-located
and directly interacting with each other for iterations of
the code and infrastructure release. Often this is not the
case especially in large-scale distributed software
engineering activities. In such circumstances, tool support
for managing the software engineering process of
multiple software teams is essential. This is the focus of
this paper. In particular the paper focuses on the tools and
processes that have been adopted within the Australian
Urban Research Infrastructure Network (AURIN) project
(www.aurin.org.au).

The rest of the paper is structured as follows. Section
2 provides an introductory overview of the AURIN

Proceedings of the Eleventh Australasian Symposium on Parallel and Distributed Computing (AusPDC 2013), Adelaide, Australia

39

project. Section 3 describes the software development
framework that represents the AURIN systems
architecture. Section 4 describes the tools and process
that have been adopted to manage the process of
developing the AURIN infrastructure and the lessons
learnt in their usage. Section 5 describes the history of
development of the AURIN platform and example use
cases that have been supported of increasing complexity.
Finally section 6 offers some conclusions and identifies
future work plans for the AURIN project as a whole.

2 AURIN Overview
The Australian Urban Research Infrastructure Network
(AURIN) project (www.aurin.org.au) has been funded
through the Australian Government’s Department of
Industry, Innovation Science, Research and Tertiary
Education (DIISRTE). The project is lead out of the
University of Melbourne. The project formally
commenced in July 2010 with the overarching remit for
the ‘establishment of facilities to enhance the
understanding of urban resource use and management’.
AURIN is a large and complex project with government
investment of $20m to run over the project lifetime.
AURIN was initially expected to run to mid-2014, but has
since been agreed with DIISRTE to run to mid-2015.

The AURIN project is tasked with providing urban
and built environment researchers with a research
environment offering seamless access to data and tools
for interrogating a wide array of distributed data sets
crossing government, industry/commercial and academic
domains. The intention is to support multiple research
activities that will enhance the understanding of key
issues of Australia’s past, current and future major urban
settlements. This will allow better understanding of a
range of phenomenon including (but not restricted to): the
impact of population growth and changing demographic
profiles of cities; the nature and context of urban
environments in which diverse people live, e.g. the future
challenges on transport networks, housing, employment,
through to the health and well-being of individuals and
societal groups, e.g. the elderly.

Prior to AURIN no such national urban research
facility existed. Rather a wide range of largely
independent silos of data and information existed with no
possibility to support the interconnected and multifaceted
research challenges associated with urban settlements.
Similarly a range of bespoke tools and processes has
often been used for the analysis of these data sets.
Pockets of expertise in how to use these tools and data
sets have been the norm. AURIN is tasked with
development of a common data platform with associated
analytical tools to provide a “lab in a browser” offering
seamless access to distributed and heterogeneous data
sets and associated tools.

It is essential to note that in developing an
infrastructure to tackle such multi- and inter-disciplinary
demands, it is paramount that the infrastructure is
developed to be flexible, scalable and extensible. Thus
there is no fixed (closed) set of data providers, data sets
and tools that represent urban and built environment
research. Rather, the AURIN infrastructure has to be
developed to accommodate the flexible access to and use

of data from a range of diverse organisations including
new data providers and data sets almost on the fly.

To structure and scope the work on AURIN, the first
year of the project (June 2010-June 2011) focused on
community engagement and outreach on what the urban
and built environment research community would like
AURIN to do, be and ultimately deliver.

It was widely accepted that the heart of the AURIN
project would be providing programmatic access to urban
and built environment data sets in a manner that
supported the researchers and their associated research
processes. To overcome the data deluge and associated
research processes adopted by many which can be
classified as “Google-like”, i.e. searching for relevant
research data using search engines, which typically return
masses of relevant and irrelevant data to the researchers,
it was identified that targeted access to specific data for
specific urban phenomenon was required. To this end the
first year of detailed requirements and community
engagement resulted in the identification of a key set of
strategic urban and built environment research areas to be
realized through targeted implementation stream (lenses).
Each of these lenses has their own data sets, services and
tools that need to be brought together. Ten aspirational
lenses were identified including:

1. Population and demographic futures and
benchmarked social indicators;

2. Economic activity and urban labour markets;
3. Urban health, well-being and quality of life;
4. Urban housing;
5. Urban transport;
6. Energy and water supply and consumption;
7. City logistics;
8. Urban vulnerability and risks;
9. Urban governance, policy and management;
10. Innovative urban design.

Each of these lenses has an associated expert panel that
have (are) directly shaping the focus of the lens activities.
Typically these panels identify core data sets and tools
that are required to support the particular urban research
of interest. Once identified, a typical scenario is that a
range of lens-specific sponsored projects is funded
through AURIN. These projects have their own software
development activities. However a foundational principle
of AURIN was that support for multi- and inter-
disciplinary research would be possible. Thus rather than
having ten separate lens subprojects, it was identified that
the inter-connection and interoperability across these
lenses was essential. To this end, a common unifying e-
Infrastructure was needed. A core technical team at the
University of Melbourne is tasked with implementing and
coordinating this overarching e-Infrastructure.

At the time of writing, the current core e-
Infrastructure has been undergoing development since
September 2011 (with the full complement of staff in
place since April 2012); the first three of these lens areas
have started implementation and each of these has a
multitude of lens-specific subprojects occurring. Lenses
4-6 are now at the formal contracting stage (with

CRPIT Volume 140 - Parallel and Distributed Computing 2013

40

subprojects to begin in early 2013) and the other lenses
are currently in the early scoping stage or have yet to
commence. It should be emphasized that each lens
represents a significant urban research area in its own
right. However a key challenge (and research
opportunity) is that all of these areas are themselves inter-
related. As one example, understanding the changing
profile of population demographics in cities and the
current and future urban landscape is essential for
planning urban transport, housing, energy and water, and
provisioning of healthcare.

A major challenge facing the core technical team and
outsourced subprojects funded through AURIN is the
number of concurrent software development activities.
Thus it is expected that there will be 42 subprojects
running contemporaneously in 2013. Dealing with this
volume of projects is both a logistical challenge, e.g.
dealing with legal aspects of negotiation with data
providers for example, as well as a technical challenge.
This latter point is the focus of this paper: how can a wide
variety of (often domain-specific!) distributed software
engineers and data providers work together to deliver a
common urban and built environment research platform.
The foundation for this effort is the AURIN technical
architecture.

3 AURIN Technical Architecture
The AURIN e-Infrastructure has been designed around a
client-server based service-oriented architecture model
built upon a variety of flavours service implementations
including Representational State Transfer (REST)-based
services and Open Geospatial Consortium (OGC) web
service flavours with other flavours of web-services in
progress, e.g. statistical data-oriented web services
(SDMX). The focus of the core architecture has been to
establish a loosely coupled, flexible and extensible
service-based architecture. In this model, individual
functional components can be reused in different
situations. The implementation details of each component
are hidden as much as possible from the external
applications and end users. The overall AURIN technical
architecture is shown in Figure 1.

Figure 1: AURIN Implementation Architecture

The detailed description of the components and how they
are used to support discovery, access and use of data
including mapping, visualisation and a variety of data
analytics are described in (Sinnott 2011). Of particular
relevance here are the ways in which the core technical
team and the external, i.e. the distributed non-core
technical teams, coordinate and integrate their codes and
data into the core AURIN e-Infrastructure. These
possibilities are represented through the three red ovals
depicted in Figure 1 and include the AURIN portal/user
interface components; AURIN data provider components
and the AURIN analytical process library.

3.1 AURIN Portal Interface
The AURIN portal provides a single interface to all of the
data sets, services and tools offered through AURIN. The
portal is (currently!) the only way in which users can
discover data, access data, analyse data, visualise data.
The user interface components exposed within the portal
environment are deployed as JavaScript (JS) objects from
a small set of JS libraries such as ExtJS, ProcessingJS and
for interfacing with map data, OpenLayers. JavaScript
Object Notation (JSON) objects and the geospatial flavor
of JSON (GeoJSON – www.geojson.org) are used for
data transmission between the business logic layer and
the user interface, and a pattern of linked JS objects
created from these data assures linked visualizations, e.g.
brushing based on mouse-over events.

The portal interface represents a key coordination
point for all of the software development activities of
AURIN both for the internal core technical team and for
the associated external dependencies, e.g. for user
interfaces required for lens-specific software tools and/or
data sets.

3.2 AURIN Data Provider Service
The Data Provider Service exposes a REST-based API
that is queried by the internal AURIN components in
order to access and query the distributed data services.
The Data Provider Service uses real-time information on
the data services (and their associated data models), their
availability and potentially the load of the services
themselves.

The Data Provider Service provides both externally
facing REST-based and OGC-based service interfaces
that are typically used to discover, query and where
appropriate return data sets from a range of data providers
typically using provider-mandated/preferred solutions.
That is, it is often not possible for AURIN to mandate
that a given data provider uses a particular technical
solution. Rather the AURIN e-Infrastructure must work
with whatever data provider technologies are
proposed/used by the associated organizations (like the
Australian Bureau of Statistics).

At present the Data Provider Service supports access
to and use of a range of remote service solutions
including: OGC WFS services, REST-based and SOAP-
based Web Services, and data sources directly accessible
through JDBC. These are currently implemented, using a
combination of Hibernate, Spring and Geotools Java-
based libraries. The support for non-SQL databases
(MongoDB in particular) is also supported and used for
processing of real-time Twitter-based information.

Proceedings of the Eleventh Australasian Symposium on Parallel and Distributed Computing (AusPDC 2013), Adelaide, Australia

41

3.3 AURIN Analytical Process Library
Many of the needs of AURIN researchers are driven by
access to and usage of analytical tools and routines. The
AURIN core e-Infrastructure offers a range of basic
analytical routines such as linear regression, however for
many researchers access to richer analytical routines is
essential. These can cover algorithms that allow
performing geospatially-oriented weighted measures or a
variety of cluster analysis. Often domain experts using
statistical packages such as R, SAS or STATA to realize
such routines and algorithms combining advanced
statistical knowledge with urban and build environment
experiences. Incorporation of such expertise (routines and
how best to utilize them) into the AURIN e-Infrastructure
is essential to the overall success of the AURIN platform
for collaboration.

4 Distributed Code Development Tools and
Processes

To support the AURIN project and its evolving set of
needs and requirements both regarding the core technical
e-Infrastructure and the multitude of external subprojects
that are occurring, software development tool support is
essential. To this end the AURIN project has adopted
processes and a range of tools that are shaping the overall
software engineering efforts including: distributed code
versioning tools; coordination, bug tracking and feedback
tools; software documentation tools; integrated testing
tools, and deployment and management tools.

4.1 AURIN Agile Process
The AURIN project has adopted an agile methodology
for its software development plan. Agile software
development is an iterative method of determining
requirements based on rapid prototyping efforts as the
key way to elaborate software requirements and as a
model to move towards systems that meet customer’s
needs (in this case the AURIN research community). An
agile methodology is particularly suitable for AURIN
since the requirements are extremely complex with a
multitude of end users with varying expectations. Put
another way, there is no single documented specification
of what the AURIN e-Infrastructure should do or be,
rather these requirement specifications are growing with
the prototype versions of the platform. As such other
development models such as sequential design ala Spiral
or Waterfall models (Boehm 1988) are not suitable, since
they are typically not able to cope with constant changes
in requirements from end users and the associated
AURIN service/data providers. Indeed, despite the year
spent by AURIN on enumerating the needs of the
community on the AURIN platform, the level of
abstraction identified was not at an implementation level.
Instead, the AURIN agile process is one based largely
upon real-time reactive design, build, test and deploy.

The core AURIN team themselves are physically co-
located at the University of Melbourne in a single office
space. This co-location has been specifically and
deliberately established to support this project and the
team-based coordination efforts. That is, there is no single
team member that has the complete infrastructure
responsibility (at an implementation level) nor the skill
sets to deliver all of the AURIN needs. Rather, it is the

pooling of efforts and resources across the team that is
needed.

The actual core AURIN technical team comprises a
range of targeted roles including: Portal / User Interface
e-Enabler; Security e-Enabler; Data/Metadata e-Enabler;
Data architect; Platform infrastructure support; Statistical
Geospatial e-Enabler; Geospatial e-Enabler; Workflow e-
Enabler and a Middleware/business logic e-Enabler.

The full complement of staff on the core technical
team has been in place since April 2012. A senior project
manager responsible for the information infrastructure
design supervises the day-to-day activities of the core
AURIN technical team. The agile methodology that has
been adopted utilizes SCRUM-based (Schwaber 2009)
systems development, where the senior project manager
represents the ScrumMaster tasked with the day-to-day
efforts of the team. A key goal of a SCRUM-based
methodology is organized around the SCRUM-based
concept of sprints, which involve rapid prototyping to
complete the next iteration of the AURIN e-Infrastructure
and/or its components. The SCRUM product owner is the
AURIN Technical Architect and weekly meetings are
organized where results of the latest sprint are discussed
and/or demonstrated.

The physical co-location of the core AURIN e-
Infrastructure staff allows for immediate feedback and
discussions on software development issues that arise.
Even with this however and the associated tools that are
adopted (see below), there is a need to ensure that the
efforts of the team are properly coordinated and
synchronized. To support this process, the AURIN e-
Infrastructure team runs a daily stand-up session where
their daily plans and development issues are identified
and discussed. This daily process is augmented with a
white-board tracking of efforts and issues as shown in
Figure 2 where the horizontal rows represent the
individual team members and the vertical columns the
specific activities that have been identified for completion
as part of the current sprint. The left hand column
represents the starting point of a given activity through to
the right hand column, which indicates when a particular
activity has been successfully completed. As well as
providing an overview of the activities of the individual
team members, this approach allows to see where
bottlenecks and delays are arising for individuals and
across the team, with the added (and inadvertent!)
advantage of visibly incentivizing team members.

Figure 2: White-board based Work and Activity

Scheduling

CRPIT Volume 140 - Parallel and Distributed Computing 2013

42

This model of software development has major
advantages for rapid prototyping but does obviously not
cater for remote software engineers. To this end, the
project has organized a series of CodeSprints where the
distributed software teams working on lens specific
projects come together with the core technical team and,
through close coordination of the AURIN senior project
manager, work on joint development and integration
activities. Thus far three CodeSprints have taken place
with a fourth planned in November 2012.

The AURIN e-Infrastructure requires far more
interaction between the technical teams than physical
face-to-face meetings every quarter however. To this end,
the AURIN project has adopted a portfolio of distributed
software development and management systems.

4.2 AURIN Code Versioning Tools
For many distributed software development projects,
network-accessible code versioning systems have been
widely recognized as an essential component for the
implementation of distributed systems. A range of code
management systems currently exist including for
example: Code Versioning System (CVS)
(http://sourceforge.net/apps/trac/sourceforge/wiki/CVS),
Mercurial (http://mercurial.selenic.com), Subversion
(http://en.wikipedia.org/wiki/Apache_Subversion) and
Git (https://github.org). The AURIN project has adopted
Git for its code management and versioning system.

Git is the fastest growing source and revision
management system, originally developed for the
management of code commits by the open source
development community contributing to the development
of the Linux kernel. Git provides the ability to develop
code in a collaborative manner without the need for a
single centralized repository (but allowing the use of
one). As such, it is particularly appealing for use in
AURIN, where elements of the code may have to be
forked and shared with large numbers of external
providers for extensive periods of time, before being
tested, evaluated and subsequently committed (rolled in)
to the core platform.

GitHub (www.github.com) is a commercial code
repository based on Git. AURIN opted to host its code in
a private GitHub repository to reduce the load on the
internal system administrators and leverage access to the
wealth of functions provided. It also allows the checking
in of code from external parties without having to expose
the internal infrastructure at AURIN. At present AURIN
has paid for ten Github instances that are used extensively
across the project for the core e-Infrastructure
development and the associated subprojects.

One of the most important features of Git for AURIN
is its code branching and merging model. Instead of
cloning software into a separate directory, as is the case
with many code versioning systems, Git allows switching
between branches in a single working directory. Thus
instead of only having branches for major development
Git allows routine creation, merging and destroying of
multiple, ad hoc branches. Indeed each feature or bug can
have its own branch, merged in only when it is resolved.
This model allows the AURIN software developers to
experiment quickly and encourages a rapid development

cycle, where they can work in parallel without always
having immediate dependencies on each other.

4.3 AURIN Coordination, Bug Tracking and
Feedback Tools

AURIN uses a project management Web application
called Redmine (http://www.redmine.org/) for the
assignment and tracking of development tasks. This
environment provides an important capability for tracking
bugs, support and feature requests. These so-called
“issues” can be assigned to particular developers,
versions of the system, and internal deadlines, the
progress followed by other collaborators and managers,
and statistics about the progress can be collected. It also
provides an environment where collaborative
documentation is built and maintained in a wiki. It is
important to make this environment available as much as
possible for externally contracted teams who are
interacting with AURIN during the outsourced phases of
development – to this end, the first steps following the
inception of a new subproject are the activation of the
GitHub and Redmine accounts.

4.4 AURIN Software Documentation Tools
To improve collaboration and support the automated
documentation of AURIN software subsystems based
upon ReST-ful APIs, the AURIN project has adopted
Swagger (http://swagger.wordnik.com). Swagger is a
both source code-level a tool for documenting ReST-ful
APIs, and a web-based user interface to browse and test
thee APIs by sending API requests; indeed, Swagger
allows software engineers to test an API without having
to write a single line of code. As such Swagger provides a
key communications tool that supports collaborative
development of APIs. To achieve this, a first prototype
API is developed with Swagger - typically including
representative data. This allows the API's users to play
with the API, and the API's developers to gather users'
feedback and modify the API prototype accordingly.
Once the API prototype matures (is accepted), the full
API can be implemented. This is especially useful when
dealing with distributed software teams.

Swagger is available for multiple languages and
frameworks. Within AURIN it is used with the Node,js
and Spring frameworks. Whilst it works in language-
specific ways, the same annotation-driven mechanism is
used throughout. Swagger works by defining request
parameters, routing and descriptions as JSON objects
defined within the code itself, alongside the function
definition. In the case of Node.js this is highlighted below
(italics representing the Swagger annotations).

exports.putGraph = {

"spec": {
 "description" : "Adds a graph to database",
 "path" :

"/graph/datasets/{datasetid}/graphs/{graphid}",
 "notes" : "",
 "summary" : "Inserts a graph in BPnet or
JSONGraph format",
 "method": "PUT",
 "params":

 [param.path("datasetid", "ID of dataset", "string"),
 param.path("graphid",

Proceedings of the Eleventh Australasian Symposium on Parallel and Distributed Computing (AusPDC 2013), Adelaide, Australia

43

"ID of graph", "string"),
param.query("format",

"Format of graph to be inserted (bpnet|
 jsongraph)", "string")],
 "responseClass" : "Response",
 "errorResponses" : [],
 "nickname" : "putGraph"
 },
 "action": function (request, response) {
 var dsid= request.params.datasetid;
 var graphid= request.params.graphid;
 var format= request.query.format;

Figure 3: Swagger Annotations for Bi-Partite /
JSON Graphs

The Swagger web-based user interface that allows

automated testing of such APIs is shown in Figure 4 with
the request URL, the body and response for testing a
Graph-oriented API.

Figure 4: AURIN Swagger-based ReST Testing

It is noted that Swagger is still evolving and does not

yet represent a completely mature ReST-based testing
and documentation framework. Thus not every feature is
used consistent across languages, e.g. full functional
support of JSON Schema is not yet supported.

4.5 AURIN Integrated Testing Tools
To support the development and build environment and
associated activities in software testing and integration,
the AURIN project has adopted the Jenkins software
environment (http://jenkins-ci.org/). Through Jenkins it is
possible to automatically highlight the status of overall
builds comprised of many independent software systems
including those from AURIN lens projects and open
source systems upon which these are often built as shown
in Figure 5.

Figure 5: AURIN Jenkins-based Continuous

Integration

Specifically, the AURIN project has adopted Jenkins
to automate many of the typically manual processes
associated with continuous software testing and
integration. Advanced capabilities to support code
coverage and usage are supported in Jenkins. This allows
for streamlining of codes that are developed or
contributed to the AURIN environment. With Jenkins,
every time a new revision of the code is committed it
automatically downloads, builds and tests the code in a
clean environment. This ensures that any problems
introduced, e.g. due to eccentricities in an individual
developer’s personal working environment are identified
before the new code is circulated.

4.6 AURIN Common Build Environment Tools
To provide a common software build development, the
AURIN core technical team has adopted the Maven
(http://maven.apache.org) software build and
management system. Maven is an open source tool that
supports the building and management of Java-based
projects.

Maven and its project object model (POM) utilizes a
set of plugins that are shared by all AURIN projects. This
provides a uniform AURIN build environment for all
AURIN software developers that addresses many
common challenges facing distributed software systems
including support for tackling software dependencies,
configuration challenges and unit tests. The project also
includes core components in Maven. This provides an
easy way for Maven clients to update their installations so
that they can take advantage of any changes that been
made to Maven itself. This latter feature allows support
for installation of new or updated plugins from third
parties or Maven itself.

4.7 AURIN Deployment and Management
Tools

A key part of the AURIN development and management
environment is to provide integrated deployment and
configuration of phased implementations of systems. At
present two versions of the e-Infrastructure are supported:
production (accessible at https://porta.aurin.org.au) and
an on-going development version of the e-infrastructure
which is used for prototyping purposes and maturing the
software systems to production level. This development
version is available at http://portal-dev.aurin.org.au. It is
planned that a further staging environment will also be
rolled out in due course to help n the transition from
development to production versions. The production
version is deployed within the Australia Access
Federation whilst the development version is available
through the Australian test federation.

To support this process the AURIN project has
adopted the Chef configuration and management software
(http://www.opscode.com/chef). Chef provides a coherent
management approach for the specification and delivery
of deployment of e-Infrastructure components through
recipes and cookbooks. These allow specification and
bundling of the underlying software systems e.g. the OS
versions required, the prototyped versions of software
components and their dependencies and indeed the
database resources and how they should be deployed onto
particular virtual machines. A key advantage of Chef is

CRPIT Volume 140 - Parallel and Distributed Computing 2013

44

that it allows association of software bundles onto
resources (VMs) with roles assigned for future access,
usage and monitoring of these resources. Firewalls are
also used to sandbox systems to ensure that systems
developed in development and separated from
production. In AURIN a single dedicated software
engineer is responsible for the deployment and
configuration of systems.

5 AURIN Phased Implementations
The proof of the AURIN development methodology, as
with any other software engineering project can best be
assessed by the successful software systems that are
developed and ultimately used by the end users. The
project has had two major releases of the e-Infrastructure
with a third planned for mid-October 2012.

5.1 AURIN e-Infrastructure Mark-I
The first AURIN platform was largely a proof of concept
system to demonstrate the viability of the approach that
was to be taken. This system was described in (Sinnott
2011) and completed in a 3-month rapid prototyping
effort by a small subset of developers - since at this time
the full complement of the AURIN technical team was
not yet in place. This Mark-I prototype version of the e-
Infrastructure allowed access to a small subset of the data
providers with basic visualization and analytical tools.
One of the primary data resources in the Mark-I version
of the AURIN e-Infrastructure was from Landgate in
Western Australia. Work was also undertaken in this
release using streamed social media from Twitter. The
user interface and visualization/analytical capabilities for
this Mark-I version of the e-Infrastructure are shown in
Figure 6 where data from Landgate is being analyzed and
visualized.

Figure 6: AURIN e-Infrastructure Mark-I

(circa July 2011)

Despite its somewhat limited functionality, this initial

implementation was extremely informative and
influential to AURIN as a whole from a variety of
perspectives. Firstly it allowed establishing a grounding
and understanding of the data sets that would be dealt
with in AURIN, and the geospatial information systems
through which many of these data sets would be
delivered. Secondly and importantly this version of the e-
Infrastructure helped to bring an implementation-oriented

focus to the numerous technical and management boards
involved in overseeing the project. To that point, a huge
effort had been expended on discussions, documentation
and planning on what the system might be. This provided
a basis for customer engagement far beyond the more
abstract discussion that had hitherto been taking place.
Thirdly, this version of the system allowed assessment of
the integration of the AURIN portal (which at the time
was based upon the LifeRay portal framework) with the
Australian Access Federation (www.aaf.edu.au) - the
federated authentication system adopted by the project. In
a similar, vein this version of the e-Infrastructure enabled
exploration of a suitable workflow environments and
their prototyping – this was based upon the Object
Modeling System version 3 (OMSv3). Experiences in
developing and using OMSv3 in the AURIN context and
results of applying OMSv3 on Cloud based
infrastructures described in (Javadi 2012).
The majority of the software systems that formed the
basis for the Mark-I version of the AURIN e-
Infrastructure were largely discarded when worked
commenced on the Mark-II version. There were several
reasons for this, but the most important one was that the
initial work was primarily to understand and articulate the
problem through implementation, and to demonstrate that
the overall vision was realistic and achievable. In doing
this, the user interface had specifically developed/crafted
user interface components (portlets) targeted to individual
data sets and tools. It was rapidly recognized that this
model would not scale given the volume of data to be
made accessible. Similarly data and metadata
considerations both in terms of access, usage storage and
provenance were identified as crucial, but not supported
in Mark-I. Instead it was recognized that the whole
AURIN e-Infrastructure itself had to be data-driven
(Sinnott 2012). To this end, a major focus was focused on
the definition and realization of the architecture shown in
Figure 1.

5.2 AURIN e-Infrastructure Mark-II
Driven by user demand, the Mark-II e-Infrastructure
offered a variety of ways to geospatially drill into urban
and built environment data and hence target the data sets
of associated with particular regions (Figure 7).

Figure 7: AURIN Mark-II Geospatial Filtering

(May 2012)
This filtering of data is essential in the urban domain
given the proliferation of data and information available
from multiple organisations. This data selection can be

Proceedings of the Eleventh Australasian Symposium on Parallel and Distributed Computing (AusPDC 2013), Adelaide, Australia

45

done graphically (using zoom features of the data visual
interface given as a map of Australia) or through use of
query interfaces that allow direct specification of the
region of interest, e.g. Australia/Victoria/Melbourne as
shown in Figure 7. A Google-like search interface was
also offered to select particular regions or data of interest,
e.g. search for data sets associated with “employment”.

To improve the overall performance of the user
experience in accessing and using data, the geometrical
boundaries of spatial regions, e.g. Census Districts,
Statistical Local Areas, Local Government Authorities,
are stored in topologically correct representations at
multiple resolution levels. In particular whilst the detailed
boundaries are always used for analytical purposes,
generalized boundaries are used for client-side display.
This radically increases the overall responsiveness of the
user interface and hence user experience. Details of how
this has been achieved are described in (Tomko 2012).

The Mark-II version of the AURIN e-Infrastructure
incorporated a range of services and tools developed
through the core technical team and through the
associated externally funded subprojects. Some of the
core subproject capabilities included in AURIN e-
Infrastructure Mark-II release was the data registration
service developed by the Centre for Spatial Data
Information and Land Administration (CSDILA). This
service provides an automated mechanism to harvest
metadata from OGC-compliant web feature services. The
service also allows for manual additions and refinements
of metadata from data providers.

Several lens specific data-oriented subprojects were
incorporated into the Mark-II release including some of
the data sets from the Population Health Information
Development Unit (PHIDU – www.publichealth.gov.au)
at the University of Adelaide. PHIDU has a rich source of
health and other aggregated data sets from across
Australia. Voting and a range of associated classification
data were included in this release from the University of
Queensland eResearch Group – drawing on work
previously undertaken by the ARC funded Research
Network in Spatially Integrated Social Science
(www.siss.edu.au/). Data sets from the Centre of Full
Employment and Equity (CofFEE –
http://e1.newcastle.edu.au/coffee/) were also included in
this release. Some of the data providers and the associated
data sets along with their associated variables are shown
in Figure 8.

Figure 8: Mark-II Data Providers and Variables

from a Provider
With this shopping interface, as with the Mark-I AURIN
e-Infrastructure, data could be accessed from a range of
federated (distributed) data providers and brought into the
AURIN research space. Following the data shopping, i.e.

once data had been returned to the AURIN environment a
range of charting (Figure 9), mapping (Figure 10) and
basic analytical capabilities (Figure 11) were offered.

Figure 9: AURIN Mark-II Charting (May 2012)

showing the total population of Statistical Local Areas
in the Local Government Authority Glen Eira (from

Landgate and based on the 2006 Census)

Figure 10: AURIN Mark-II Visualisation (May 2012)

showing a choropleth overlaying data from the
Australian Unity Quality of Life survey with specific
focus on population safety, i.e. how safe do you feel in

your suburb and population density for the Local
Government Authority of Glen Eira

Figure 11: AURIN Mark-II Analytics (May 2012)

showing the correlation (linear regression) between
people born overseas and the age group 45-54 for the

Local Government Authority of Glen Eira

5.3 AURIN e-Infrastructure Mark-III
The Mark-III AURIN e-Infrastructure is currently still
under development (with the next formal release
scheduled for mid-October 2012). This next release has
been increasingly extended based upon the agile
methodology that has been adopted. Included in the next
release is a major increase in the number of data
providers and data sets that are now provisioned. This
includes a vastly extended set of data from PHIDU (with
156 separate data sets now incorporated); a variety of
health survey data from VicHealth; data and services

CRPIT Volume 140 - Parallel and Distributed Computing 2013

46

from the Public Sector Mapping Agency (PSMA –
www.psma.com.au) including access to the Geocode
National Address File (GNAF) which allows to convert a
valid Australian address into geospatial coordinates
(latitude and longitude). A typical scenario illustrating
these advanced data sets is show in Figure 12.

Figure 12: AURIN Mark-III and Enhanced User
Interface (October 2012) showing data related to

avoidable cardiovascular mortalities (PHIDU), those
who sleep <7 hours and have increased work time

pressure (VicHealth 2011 survey), population statistics
(total population and those 65-74 years of age

Landgate) for Melbourne

The user interface to the Mark-III version of the AURIN
e-Infrastructure is also evolving. For example, advanced
brushing techniques now allow data from map-based
regions to be highlighted (and vice versa) as shown in
Figure 13.

Figure 13: AURIN Mark-III and use of Brushing
Techniques (October 2012) showing responses to

survey questions on sleeping < 7 Hours (VicHealth
2011 survey) for Melbourne. PortPhilip is selected on

the map and the associated data is highlighted.

Many of the AURIN subprojects for the first three lenses
are now deep into their development activities and using
the core collaboration and software management tools
identified in section III. These include a range of
advanced analytical capabilities from the CoFFEE group
at the University of Newcastle; advanced walkability
tools from the McCaughey Centre; health-based

demonstrators with VicHealth and Western Health (in
Perth) amongst many others.

A major enhancement in Mark-III of the e-
Infrastructure is the enhanced utilization of workflow
tools (based upon OMSv3). These workflow tools now
allow definition of rich workflows coupling data and
analytical services reflecting and capturing scientific
processes. These workflows have been initially focused
upon the walkability tools and use of PSMA data for
geocoding addresses, and associated simulation and
analytical services (implemented as part of the
walkability services).

Many of the lessons learnt within the AURIN core
technical team in development of the architecture
identified in Figure 1, are now transferring to the
collaborating partners. However this is still a non-trivial
problem. The systems that are being developed are by
their very nature, complex software engineering tasks for
many urban research-oriented groups. To address this, the
project has attempted to provide a core team technical
buddy to the remote software engineering efforts. Given
the number of projects expected to be running
concurrently in 2013, this model will be stress tested with
single technical staff members having to work across a
multitude of domain-specific lens projects. Furthermore,
to ensure that the expertise of any given core team
technical developer is shared, the Project
Manager/ScrumMaster has deliberately paired team
members to work on each others individual software
activities. This provides redundancy to the team and a
shared understanding of the overall development
activities.

In moving from the Mark-II to the Mark-III e-
Infrastructure release, the access to and use of the AURIN
e-Infrastructure has remained largely consistent, i.e.
access is through the Australian Access Feature and users
have to shop for data once a particular geospatial region
has been selected. This consistency is an important
feature to maintain to ensure that returning end users can
benefit from improvements in the e-Infrastructure
capabilities and not have to learn new user interfaces or
techniques to access and use the system more generally.

6 CONCLUSIONS
One of the major challenges of distributed systems
development that is often overlooked is not the
distributed systems and hardware/software resources
themselves, but the distributed teams that are often
involved in these development activities. Tools to
optimize the way in which these teams can coordinate
their activities are essential yet are surprisingly not well
recognized and adopted. This is in particular true as the
types of human distributed collaborations vary, as much
as software distributed collaborations. From teams where
the members are (spatially) distributed, but belong to the
same project and their resources, skills, and tools are
matched, through teams that are contracted to deliver a
specific type of software component based on well
defined acceptance criteria, to merely federated
contributors, i.e. software development resources that are
leveraged because of their availability without the
possibility to influence their direction or adherence to
common project management and coding standards. This

Proceedings of the Eleventh Australasian Symposium on Parallel and Distributed Computing (AusPDC 2013), Adelaide, Australia

47

last case represents many voluntary contributors from the
open source development community, to large data
providers that provide data resources to the general
public, where AURIN cannot mandate the APIs and
protocols that are used.

The AURIN work is far from complete – as noted the
project runs to mid-2015. However the foundations for
distributed collaborations and the processes that have
been adopted from the project outset are now bearing
fruit. Without these software development and
coordination foundations, major risks would arise that
could threaten the success of the project as a whole. The
requirement to adopt key tools by the internal and
external groups has meant that the overall software
integration, management and coordination effort has been
greatly simplified. Thus it is directly possible to check
when a delivered piece of software meets the required
integration testing for inclusion into the e-Infrastructure.
As noted, it should be emphasized that these tools do not
remove the overall challenges in developing and
delivering distributed systems involving distributed
teams, rather they are a mechanism to help to manage
these challenges.

The AURIN project is running contemporaneously
with many major e-Infrastructure investment activities
that are currently taking place across Australia. Most
notably are the $50m Research Data Storage
Infrastructure (RDSI – www.rdsi.uq.edu.au), which has a
specific focus on supporting storage of nationally
significant research data sets, and the $47m National
eResearch Collaboration Tools and Resources (NeCTAR
– www.nectar.org.au) project, which has a specific focus
on eResearch tools, collaborative research environments
and Cloud infrastructures. The AURIN project has been
engaging directly with these projects and related projects,
e.g. the Australian Access Federation, in delivery of
much of its underpinning infrastructure. For example, the
AURIN portal and many of the associated services have
been made available on virtual machines made available
through NeCTAR. However given the ramping up of
these projects, early issues with these projects has already
arisen. To mitigate these risks and avoid the total reliance
on VMs from NeCTAR or storage from RDSI, the
AURIN project has purchased its own hardware systems,
which are now used to augment the offerings of NeCTAR
and RDSI.

The AURIN e-Infrastructure is very much a
supporting activity. That is, the work in the e-
Infrastructure development is not targeted at delivering
novel IT solutions per se nor exploring research
challenges in e-Infrastructure development, but on
supporting the urban and built environment research
community in their research needs. The AURIN research
community is extremely diverse (with over 500 registered
individuals and organisations) crossing a multitude of
research disciplines. Whilst their feedback (positive
and/or negative) will ultimately shape the AURIN e-
Infrastructure, it is hoped that the underlying agile
software engineering and tools described here will persist
throughout the AURIN project lifetime and allow rapid
evolution of systems in a tool supported manner.

6.1 Acknowledgments
The authors would like to thank the AURIN groups and
committees that are directly shaping these efforts. The
AURIN project is funded through the Australian
Education Investment Fund SuperScience initiative. We
gratefully acknowledge their support. In addition to the
co-authors, the AURIN team comprises Ivo Widjaja
(Portal/User Interface); Gerson Galang (Data e-Enabler);
Jos Koetsier (Data/Metadata e-Enabler); William
Voorsluys (Workflow e-Enabler); Damien Mannix
(Infrastructure Support); Philip Greenwood (Statistical
Geospatial Developer); Marcos Nino-Ruiz (Geospatial e-
Enabler) and Sulman Sarwar (Middleware/Business
Logic).

7 References
Stojanović, Z., Dahanayake, A., Service-oriented

software system engineering: challenges and practices,
Idea Group Publishing, 2005.

Boehm, B.W., A spiral model of software development
and enhancement, Computer, vol. 21, Issue 5, May
1988.

Filman, R., Elrad, T., Clarke, S., Aspect-oriented software
development, Addison-Wesley Professional, 2004.

Booch, G., Object-oriented Development, IEEE
Transactions on Software Engineering, vol. 12, Issue:
2, Feb. 1986.

Martin, R.C., Agile Software Development: Principles,
Patterns, and Practices, Prentice Hall 2003.

Sinnott, R.O., Galang, G., Tomko, M., Stimson, R.,
Towards an e-Infrastructure for Urban Research
Across Australia, IEEE e-Science Conference,
Stockholm, Sweden, December 2011.

Schwaber, K., Agile Project Management with Scrum,
Microsoft Publishing, 2009.

Javadi, B., Tomko, M., Sinnott, R.O., Decentralized
Orchestration of Data-centric Workflows Using the
Object Modeling System, 12th IEEE/ACM
International Symposium on Cluster, Cloud and Grid
Computing (CCGrid 2012), Ottawa, Canada, May
2012.

Sinnott, R.O., Bayliss, C., Galang, G., Greenwood, P.,
Koetsier, G., Mannix, D., Morandini, L., Nino-Ruiz,
M., Pettit, C., Tomko, M., Sarwar, M., Stimson, R.,
Voorsluys, W., Widjaja, I., A Data-driven Urban
Research Environment for Australia, IEEE e-Science
Conference, Chicago USA, October 2012.

Tomko, M., Sinnott, R.O., Bayliss, C., Galang, G.,
Greenwood, P., Koetsier, G., Mannix, D., Morandini,
L., Nino-Ruiz, M., Pettit, C., Sarwar, M., Stimson, R.,
Voorsluys, W., Widjaja, I., The Design of a Flexible
Web-based Analytical Platform for Urban Research –
Systems Paper, ACM International Conference on
Advances in Geographic Information Systems (ACM
SIGSPATIAL GIS 2012), Redondo Beach, USA,
November 2012.

CRPIT Volume 140 - Parallel and Distributed Computing 2013

48

