
Towards a 3D Sketch-Based Modelling API

Yi Zeng Zijiang Song Burkhard C. Wünsche

Department of Computer Science
University of Auckland, Auckland, New Zealand,

Email: yzen015@aucklanduni.ac.nz, zson013@aucklanduni.ac.nz, burkhard@cs.auckland.ac.nz

Abstract

Sketch-based applications are rapidly gaining popu-
larity in 3D modelling because of the intuitive pen-
and-paper metaphor. Even inexperienced users with
little computer graphics and digital design back-
ground can use them to create 3D models rapidly.
However, the development of sketch-based applica-
tions is usually difficult and time consuming. In this
paper, we present a framework for simplifying the de-
velopment of sketch-based 3D modelling applications.
The framework integrates existing techniques for 3D
sketch processing with a processing pipeline for sketch
input, a state-machine for defining processing param-
eters and modes, and a customised event handler.
The modular design means that the functionality of
the framework can be easily extended in the future.
Experimental results suggest that the framework is
easy to use and the implemented functionalities work
correctly.

Keywords: sketch-based modelling, sketch API,
sketch recognition, surface reconstruction

1 Introduction

Computer generated 3D models are common and im-
portant components of many virtual environments.
They are used in a wide range of application fields
including computer games, movies, medical simula-
tions, robotics, architecture, urban design, and edu-
cation. Professional modelling tools such as Maya and
AutoCAD are powerful and able to construct realistic
3D model with high precision, but they have complex
interfaces with a steep learning curve and are most
suitable for expert users. In many applications low
precision is acceptable and the emphasis is on having
an intuitive modelling tool allowing untrained users
to create 3D content quickly and easily.

Sketch-based modelling tools are a promising so-
lution, since sketching is intuitive (pen-and-paper
metaphor), gives complete freedom over the input,
encourages creativity (Gross & Do 1996), facilitates
problem solving (Wong 1992), and allows users to
concentrate on the overall design of a 3D model rather
than the modelling tool itself. With sketch interfaces
even inexperienced users without graphics knowledge
can create 3D content quickly (Yang & Wünsche
2010, Olsen et al. 2011).

Due to the rapid uptake of consumer-level touch
screen devices, the number of sketch-based modelling

Copyright c©2014, Australian Computer Society, Inc. This
paper appeared at the 15th Australasian User Interface Con-
ference (AUIC 2014), Auckland, New Zealand, January 2014.
Conferences in Research and Practice in Information Tech-
nology (CRPIT), Vol. 150, Burkhard C. Wünsche and Stefan
Marks, Ed. Reproduction for academic, not-for profit purposes
permitted provided this text is included.

applications has increased significantly over the past
decade. However, developing a sketch-based 3D mod-
elling application is still difficult and time consuming.

One reason for this is, that currently there is no
general framework for 3D sketch processing. For each
new application, developers have to spend a large
amount of effort implementing their own version of
the fundamental tasks in sketch processing, i.e. sketch
smoothing, strokes combination, shape recognition,
3D projection etc.

In order to improve the efficiency and produc-
tivity of developing new sketch-based applications,
we propose a 3D sketch-based modelling framework,
which integrates common functionalities of existing
3D sketch-based modelling tools. The framework is
fully extendible so that more features can be easily
included.

Section 2 reviews previous work on sketch APIs
and frameworks. In section 3 we review some exam-
ples of sketch-based 3D modelling applications. From
these examples we identify common concepts and con-
straints, which are used in the requirement analysis
presented in section 4. Section 5 presents the design
of our framework and section 6 discusses implemen-
tation details. We evaluate the presented sketch API
in section 7 and conclude the project and discuss po-
tential future work in section 8.

2 Related Work

Despite of the popularity of 3D sketch-based mod-
elling most existing APIs and frameworks only sup-
port 2D sketching. The arguably most widely known
tools are the Microsoft Ink tools, which comprise the
Pen API for capturing pen motion, the Ink API for
rendering, grouping, storing and loading ink (pen mo-
tions), and the Ink Analysis API for handwriting
recognition (Windows Dev Center 2013a,b).

Several tools have been presented, which facilitate
the development of components of sketch-based mod-
elling tools. For example, RATA simplifies the devel-
opment of sketch recognisers (Plimmer et al. 2012).

A review of the literature resulted in the identifica-
tion of only one API for 3D sketch-based modelling:
The SketchUp Ruby API enables developers to ex-
tend the functionality of SketchUp as well as create
macros to encapsulate complex tasks (Trimble Nav-
igation Ltd. 2013). However, the API only allows
interaction with traditional geometric entities, such
as points, faces and meshes. The “raw” sketch input
does not seems to be accessible to developers.

3 Background

We reviewed different sketch-based modelling appli-
cations and identified the following important com-
ponents:

Proceedings of the Fifteenth Australasian User Interface Conference (AUIC2014), Auckland, New Zealand

21

3.1 2D Sketch Processing

Rendered sketches look more attractive and analysis
of 2D sketches and creation of 3D surfaces is made
easier when using a simple mathematical representa-
tion for them.

Igarashi et al. evaluate each stroke input for po-
tential geometric relations such as horizontal and ver-
tical strokes, connections, alignments, and symme-
try (Igarashi et al. 1997). Interactive beautification
is performed after identifying the most suitable ge-
ometry relation.

Sezgin et al. eliminate noise from free-hand draw-
ings by combining average based filtering and scale
space filtering (Sezgin et al. 2001) . The method uses
curvature information and pen speed data in order
to differentiate between shape features of a curve and
unintended wriggles.

A smooth curve can be obtained from sketch input
by reducing the number of samples with the Douglas-
Peucker algorithm and interpolating the resulting
samples using a Catmull-Rom spline (Wünsche 2013).

3.2 Sketch Recognition

Creation of 3D geometry often requires knowledge of
the type of shape a 2D sketch represents. Barber
et al. use primitive shape properties such as length,
oriented bounding box (OBB), curvature, direction
changes, length-area ratio etc. in order to recognise
geometric shapes such as straight lines, triangles,
rectangles, and closed curves (Barber et al. 2010).
Plimmer et al. use machine learning algorithms to
develop sketch-recognisers (Plimmer et al. 2012).

3.3 3D Geometry Creation

3.3.1 Silhouette-Based Methods

The arguably most popular class of sketch-based 3D
modelling techniques uses sketch input to represent
the silhouette (outline) of a 3D object. The outline,
usually referred to as contour, is expanded to a 3D
object by making the assumption that the object is
“blobby”, i.e., the cross section of each component of
the sketched contour is circular.

The 3D surface can be obtained by computing a
skeleton of the contour and then fitting circular cross-
sections around the skeleton (Igarashi et al. 1999,
Igarashi & Hughes 2003, Levet & Granier 2007).
More complex shapes can be obtained by sketching
contours of local features (Zimmermann et al. 2008).
Alternatively implicit surfaces can be used to convert
contours to 3D bodies (Karpenko et al. 2002, Schmidt
et al. 2006, de Araújo et al. 2004).

Two interesting application of silhouette-based al-
gorithms are garment and tree modelling. For tree
modelling the user sketches the outline of the crown
of the tree and the algorithm computes a fitting
branching structure based on existing templates and
a probabilistic distribution (Chen et al. 2008). Gar-
ments can be modelled by sketching their outline and
the algorithm automatically fits them to the body
shape (Turquin et al. 2007).

3.3.2 Contour-Based Methods

Contours include all visible lines and divisions of a
shape, e.g., discontinuities in the surface gradient.
Contour information can be used to edit 3D meshes
by making local modifications (Karpenko & Hughes
2006), or by using free form deformations to adapt
the underlying 3D shape (Nealen et al. 2007). If do-
main specific information is know complete shapes
can be obtained using only a few input sketches. For

example, Gain et al. model complex 3D terrains by
drawing the silhouette, spine and bounding curves of
landforms (Gain et al. 2009).

A popular application of contour-based methods
is the sketching of technical drawings and 3D CAD
models. Computer designed items are often charac-
terised by a blocky shape, flat or arced surfaces, sharp
or evenly rounded edges and corners, many parallel
and orthogonal edges and faces, and symmetrical fea-
tures. These features can be captured using silhou-
ettes which can then be interpreted using application
specific constraints, e.g., surfaces of CAD objects fre-
quently form 90 degree angles (Zeleznik et al. 1996,
Eggli et al. 1997, Mitani et al. 2002).

3.3.3 Skeleton-Based Methods

Skeleton-based techniques are most popular for mod-
elling complex fibrous and branching structures. Ijiri
et al. (2005) use sketch input to model the stem and
branches of flowers. The 3D shape of a stem is com-
puted by solving a differential equation such that the
curvature and appearance of the resulting 3D shape
is identical to the 2D sketch.

A more general system is “Thor” (Arcila et al.
2008). The user draws a skeleton using a series of
sketches. The initial sketch defines the main shape
and subsequent sketches modify it. The user can draw
a radius for each skeleton segment and a 3D surface
is generated by fitting a generalised cylinder to it.

3.3.4 Cross Section-Based Methods

A less common approach for creating 3D models is to
sketch 2D cross-sections. McCord et al. (2008) model
orchids by allowing users to sketch the cross section of
the labellum of an orchid, which is then expanded into
a 3D surface by fitting ellipsoidal contours around.

Cross sections are used in most professional mod-
elling tools, but are usually not sketched but repre-
sented by parametric curves. 3D surfaces are obtained
by extrusion or by computing the tensor product with
a second parametric shape. SketchUp employs some
of these principles using an interface mixing sketch
and CAD elements (Trimble Navigation Ltd. 2013).

Olsen et al. model 3D buildings from two-
dimensional sketched cross-sections. The algorithm
analyses the sketch input, extracts shape and detail
information, predicts the building type, and creates
3D models by applying an extrusion, rotation of a
projection algorithm (Olsen et al. 2011)

3.3.5 General Sketch-Based Modelling Tools

ILoveSketch is a 3D curve sketching system where
users are able to draw curves freely in 3D space (Bae
et al. 2008). Several tools are provided to select a
drawing plane/surface, e.g., coordinate planes from
user-defined coordinate systems and planes obtained
by extruding a sketched curve. 3D curves can also be
obtained from two 2D curves using epipolar geometry.

3.4 Sketched-Based Animation Systems

Sketch-based animation of objects can be achieved
by sketching motion paths, which define the motion
of the entire object (Steger 2004) or the motions of
components of an object such as limbs (Schauwecker
et al. 2011). Motion paths can also be subdivided
into primitives and matched to pre-animated mo-
tions (Thorne et al. 2004).

An alternative solution is to sketch key frame
poses, and use bone information (Davis et al. 2003) or
body contour information (Mao et al. 2007) to infer
3D motions.

CRPIT Volume 150 - User Interfaces 2014

22

4 Requirements Analysis

Our analysis of successful sketch-based modelling sys-
tems for 3D objects shows that virtually all applica-
tions use the following steps:

• Sketch simplification and beautification: in
order to analyse and interpret sketch input it has
to be converted into a simplified mathematical
form, e.g., a polyline or smooth curve.

• Sketch recognition: in order to create 3D ge-
ometry from 2D geometry, the geometric prop-
erties of input sketches must be identified, e.g.,
“sketch is a straight line”, “sketch is a closed
curve” or “sketch is a rectangle”.

• Context: The interpretation of a 2D sketch of-
ten depends on the context. For example, a
sketch drawn over a surface can indicate defor-
mation of the surface, whereas a sketch drawn
touching a surface can indicate an extrusion pro-
cess.

• Constraints: Limiting the range of possible 3D
shapes makes it easier to recognise and interpret
2D sketch input.

Our goal is to develop a 3D sketch API which
simplifies the development of a large range of sketch-
based modelling applications. We hence need the fol-
lowing functionalities:

• Functions for sketch simplification and beautifi-
cation.

• Functions for sketch recognition.

• Functions to set context, e.g., mod-
elling/edit/interaction mode, definition of
sketch planes.

• Functions to select objects, e.g., closest existing
sketch to a new sketch, closest 3D object to a
sketch.

• Functions to modify objects, e.g., deformation of
a surface using sketch input.

• Functions to derive 3D sketches from 2D sketch
input, e.g., use depth values from a 3D object or
sketch plane.

5 Design

In order to fulfill the identified requirements develop-
ers must be able to specify each stage of the sketch
input processing and model generation. Developers
must be able to store intermediate objects, such as
surfaces defined from sketch input, and use them in
subsequent interactions (e.g., deform a surface using
sketch input).

Application developers must be able to define dif-
ferent functionalities depending on user input. We
hence need to provide event handling. The event han-
dler evaluates each sketch and generates correspond-
ing events, e.g., if the drawing of a sketch was com-
pleted, a closed sketch was detected, or a sketch was
drawn over an existing object.

In order to minimise the developer’s workload and
reduce code redundancies we provide functions to set
states, similar to the OpenGL graphics API. For ex-
ample, the developer can select a function for sketch
simplification and all subsequent sketches are pro-
cessed accordingly, until that function is changed.

Our Sketch API consists hence of a sketch pro-
cessing pipeline, a state machine, event handler, and
object database as illustrated in figure 1.

Figure 1: The Sketch API consists of a sketch pro-
cessing pipeline, and a state machine, event handler,
and object database.

5.1 Sketch Processing Pipeline

The core of our framework is the sketch processing
pipeline shown on the right-hand side of figure 1.
Whenever a sketch is detected, it is processed through
the pipeline. Each stage is configurable via setting an
appropriate mode and can be enabled or disabled.
For example, if a developer wants to simplify sketch
input using the Douglas-Peucker algorithm and then
project the 2D sketch onto the predefined 3D drawing
plane, then this can be achieved using only three lines
of code:

setSimplificationMode(DOUGLAS_PEUCKER);
setProjectionMode(PLANE);
setPipelineMode(PROJECTION |

SIMPLIFICATION);

5.1.1 Sketch Input

In order to make the API as flexible as possible it
should work for different input devices such as mouse,
touch screen, and drawing tablets. We hence use an
extra layer of abstraction, which converts device spe-
cific input into a format suitable for our API. For ex-
ample, when using the mouse as input device mouse

Proceedings of the Fifteenth Australasian User Interface Conference (AUIC2014), Auckland, New Zealand

23

events such as “mouse up” and “mouse down” are
converted into “sketchStart” and “sketchEnd” events
and the mouse coordinates between any such event
sequence are converted into a sequence of 2D points
with duplicates removed. When using a different in-
put device only this abstraction layer needs to be
modified.

At this point we do not yet record additional pa-
rameters such as “drawing speed” and “pen pressure”
(which could be simulated with the mouse wheel).

5.1.2 Sketch Simplification

Sketches often contain unintended jags and other er-
rors. In order to simplify the sketch input we allow de-
velopers to use the Douglas-Peucker algorithm (Dou-
glas & Peucker 1973). Sketches are smoothed using
Catmull-Rom spline interpolation (Catmull & Rom
1974).

5.1.3 3D Projection

Finding the correct 3D positions for a 2D input sketch
is arguably the most important step in 3D sketch-
based modelling. In our framework, we find suitable
z-coordinates for a 2D sketch by projecting the sketch
onto user-defined planes and surfaces. Currently we
support the following 3D mapping modes:

• 3D Plane: The sketch is projected on a specified
3D drawing plane. The drawing plane can be
defined by the developer or can be selected by
the user through the built in “Plane Selector”
widget.

• Extruded Surface: The sketch is projected on
a 3D extruded surface, which is obtained by ex-
truding a sketch along a vector. The surface
can be specified by the developer, e.g., a curved
sketch followed by a straight line connected to it.
Alternatively an extruded surface can be speci-
fied at run time by the user by using the built-in
“Surface Selector”.

• Arbitrary Surface: The sketch is projected
onto an arbitrary 3D surface by using the sur-
face’s z-coordinates.

More details are given in section 6.

5.1.4 Sketch Assembly

The sketch assembly step provides functions to group
sketches, e.g., combine multiple strokes into a single
sketch, close a sketch, or form meaningful shapes such
as arrows.

5.1.5 3D Sketch Recognition

In this stage the assembled sketch is classified into
a set of predefined shapes, such as rectangle, trian-
gle, circle, straight line, scribble etc. The developer
can enable automatic beautification of shapes, e.g.,
replacing a sketched circle with a perfect parametric
circle. Our current implementation contains a sim-
ple approximation for this, but better algorithms for
finding the optimal fitting geometric shape have been
described in the literature (Arvo & Novins 2000).

5.1.6 3D Object Generation

The last step in the processing pipeline is the gen-
eration of 3D surfaces and objects from the input
sketch. Currently, the framework supports the fol-
lowing modes:

• Extrusion: Extrude a 3D stroke in a specified
direction.

• Filling: Create a parametric surface from a
closed sketch.

5.2 Event Handling

Developers can specify complex functionalities by us-
ing sketch events. The current prototype supports
the following events:

• Sketch Begin: Triggered when a sketch begins.

• Sketching: Triggered repeatedly as long as a
sketch is still drawn.

• Sketch End: Triggered when a sketch ends.

• Sketch Closed: Triggered when a closed sketch
is detected.

• Drawing Plane Changed: Triggered when the
drawing plane is changed.

In order to prevent conflicts with the event handler
of the underlying graphics library (GLUT) we create
our own mouse callback functions which the developer
can call using sketchMouseFunc(handler).

6 Implementation

In this section we explain some of the key functional-
ities in more detail.

Figure 2: Projection of a 2D sketch onto a plane in
3D.

6.1 3D Projection

Sketch raw data consists of 2D screen coordinates.
The 3D coordinates of a 2D sketch are determined as
follows:

If the current OpenGL state associates the sketch
with a sketch plane in 3D, we cast rays from the view
point through the sketche’s screen coordinates and
compute the intersection points with the sketch plane.
Figure 2 shows an example.

An extruded surface is constructed by extruding a
3D sketch along a 3D vector. If the current OpenGL
state associates the sketch with such an extruded sur-
face we can compute its 3D coordinates similar as
above. This is possible since a 3D sketch is approxi-
mated by a sequence of line segments and the result-
ing extruded surface is hence a quadstrip (sequence
of rectangles). Figure 3 shows an example.

In many instances we want to sketch on an arbi-
trary 3D object. In order to make the algorithm as
general as possible our only requirement is that the
3D object can be rendered with depth-buffer values.
Examples are polygon meshes, dense point clouds, or

CRPIT Volume 150 - User Interfaces 2014

24

Figure 3: Projection of a 2D sketch onto an extruded
surface.

ray traced implicit surfaces. If the current OpenGL
state associates the 2D sketch with such an object,
we can compute its 3D representation by rendering
the 3D object and retrieving for each 2D coordinate
of the sketch the corresponding depth buffer value.
Figure 4 shows an example.

Figure 4: Projection of a 2D sketch onto a renderable
3D object.

6.2 Shape Recognition

Our simple shape recogniser can currently detect rect-
angles, circles and scribbles (for deleting a sketch).

Rectangles are identified by first detecting whether
the sketch is a closed shape (i.e., end points are close
together relative to the bounding box size), simpli-
fying the sketch with the Douglas-Peucker algorithm
using a high error value obtained from the bounding
box size, and then computing the number of turning
points.

Circles are identified by first detecting whether the
sketch is a closed shape, computing the centre of the
bounding box, and checking whether all sketch points
have a roughly equal distance to the centre point.

A scribble is characterised by an approximately
equal number of significant turning points (angle ≥
120◦). Whenever a scribble is detected, the sketches
covered by the bounding box of the scribble are im-
mediately deleted.

Figure 5 shows an example.

6.3 NURBS Surface from Closed Sketch

NURBS surfaces are common in 3D modelling ap-
plications since they can be easily controlled using
a control point mesh and knot vector, they have a
high-level of continuity (smoothness), discontinuities
can be inserted if desired, they have local control,
and they are supported by most graphics APIs such
as OpenGL.

Figure 5: Recognition and beautification of a rectan-
gle (top) and circle (bottom) and a scribble for delet-
ing sketched objects (bottom).

We create a NURBS surface from a closed sketch
by computing its oriented bounding box, using it to
define the control point mesh, and then trimming
the resulting surface using the sketch such that only
the surface section inside the sketch remains (see fig-
ure 6). The resulting surface can then be modified
using sketch input by adjusting control points accord-
ingly.

Figure 6: A NURBS surface defined by a closed
sketch.

7 Results

In this section we evaluate the effectiveness and ro-
bustness of the presented sketch API.

7.1 Effectiveness

The primary goal of our Sketch API is to enable de-
velopers to easily create 3D sketch-based modelling
tools. In order to evaluate our tool we implemented

Proceedings of the Fifteenth Australasian User Interface Conference (AUIC2014), Auckland, New Zealand

25

a simple tool for sketching 3D leaves. The modelled
functionality has been previously been presented in
different flower modelling tools (Ijiri et al. 2005, Mc-
Cord et al. 2008). A leaf is sketched in three steps as
illustrated in figure 7.

Figure 7: A leaf is sketched in three steps: (1) Sketch
the outline of the leaf using one or two strokes and fit a
NURBS surface to the closed sketch (left); (2) sketch
a modifier stroke and project it onto the NURBS sur-
face (middle); (3) compute the distance between the
modifier stroke and the leave’s centre line and warp
the NURBS surface in the direction of the surface
normal accordingly.

Using our framework the implementation of this
functionality is straight forward.

The sketch processing pipeline requires only the
stage 3D Projection and Sketch Assembly. 3D Pro-
jection is used to project the sketch onto the drawing
plane, and Sketch Assembly is needed to connect mul-
tiple strokes forming the leaf. We also need to set up
callback functions for sketch events. The resulting
code is:

// sketch pipeline
setPipelineMode(SKETCH_PROJECTION |

SKETCH_ASSEMBLY);
setProjectionMode(PROJECTION_PLANE);
setAssemblyMode(ASSEMBLY_ENDPOINS);
// callbacks
onSketchEnd(handleSketchEnd);
onClosedShapeDetected(handleClosedShape);

These handlers are called when corresponding
sketch events are triggered. In our example a NURBS
surface is created when a closed shape (leaf’s outline)
is drawn, and the surface is deformed in 3D space
when a modifier stroke is drawn. The resulting code
is:

void handleClosedShape(Stroke& stroke) {
// when a closed sketch is detected
myNURBS = new NURBSSurface(stroke);
bClosedShapeDrawn = true;
setPipelineMode(SKETCH_PROJECTION);

}

void handleSketchEnd(Stroke& stroke) {
// when a stroke is completed
if (bClosedShapeDrawn)
myNURBS->deformSurface(stroke);

}

The last step is to draw the resulting NURBS sur-
face:

if (myNURBS)
myNURBS->drawSurface();

sketchDisplay();

Our results so far indicate that the framework is
easy to use and suitable for a wide range of applica-
tions. Functionalities are currently very limited, but
new ones are added each time we use the tool for novel
application. For example, we currently work on using
sketch input to complete 3D models obtained from
point cloud data.

7.2 Robustness

In the current version of the framework, most of
the implemented functionalities are working correctly,
such as sketch simplification, projecting sketches onto
a drawing plane, creating NURBS surface etc. How-
ever, the implementations of some functionalities are
not robust, and the processing pipeline can fail as a
result. We have identified two issues below:

Projection on Arbitrary Surface

This functionality is achieved by utilising the
OpenGL depth buffer. In orthographic projection
mode, the algorithm works correctly, because the
depth value is a linear function, which means the
depth value is accurate in all depth ranges. However,
when using a perspective projection problems can oc-
cur if the near plane is set too close to the camera.
In this case the depth buffer values form a non-linear
function and pixels representing objects close to the
near plane have a z-value with high precision, and
pixels representing objects close to the far plane have
a z-value with low precision. In the latter case the 3D
coordinates of a sketch drawn over such an object are
very inaccurate.

Shape Recognition

The shape recogniser uses a variety of threshold
values, e.g., to determine whether a sketch is closed
or whether it is a rectangle. We tried to make thresh-
old values work correctly for a large variety of shapes
by taking into account the size of a shape. However,
many of these decisions are subjective and applica-
tion dependent, i.e., what is a closed curve to one
user might be an open curve to another one. Allow-
ing the developer or user to set these parameters is
not desirable, since it would significantly increase the
complexity of the tool. A possible solution is to use a
machine learning algorithm similar to (Plimmer et al.
2012).

8 Conclusion and Future Work

Sketch-based modelling is an exciting technology with
a wide range of applications. By reviewing the cur-
rent state-of-the-art and evaluating a variety of exist-
ing sketch-based modelling applications, we have de-
signed and implemented a framework for 3D sketch-
based modelling which integrates basic functionalities
of 3D sketch processing.

We have tested the framework by using it to write
a simple sketch-based modelling applications. Prelim-
inary results suggest that the framework is easy to
use, the implemented functionalities work correctly,
and that it can be easily extended.

Future work will concentrate on adding more func-
tionalities, improving the processing pipeline, and
performing more extensive usability testing with more
complex application scenarios and participants unfa-
miliar with the tool.

CRPIT Volume 150 - User Interfaces 2014

26

References

Arcila, R., Levet, F. & Schlick, C. (2008), Thor:
Sketch-based 3d modeling by skeletons, in ‘Smart
Graphics’, pp. 232–238.

Arvo, J. & Novins, K. (2000), Fluid sketches: con-
tinuous recognition and morphing of simple hand-
drawn shapes, in ‘Proceedings of the 13th annual
ACM symposium on User interface software and
technology (UIST ’00)’, ACM, pp. 73–80.

Bae, S.-H., Balakrishnan, R. & Singh, K. (2008),
Ilovesketch: as-natural-as-possible sketching sys-
tem for creating 3d curve models, in ‘Proceedings
of the 21st annual ACM symposium on User inter-
face software and technology (UIST ’08)’, ACM,
pp. 151–160.

Barber, C. M., Shucksmith, R. J., MacDonald, B. &
Wünsche, B. C. (2010), Sketch-based robot pro-
gramming, in ‘Proceedings of Image and Vision
Computing New Zealand (IVCNZ 2010)’, pp. 1–8.

Catmull, E. & Rom, R. (1974), ‘A class of local inter-
polating splines’, Computer Aided Geometric De-
sign pp. 317–326.

Chen, X., Neubert, B., Xu, Y.-Q., Deussen, O. &
Kang, S. B. (2008), Sketch-based tree modeling us-
ing markov random field, in ‘ACM SIGGRAPH
Asia 2008 papers’, ACM, pp. 1–9.

Davis, J., Agrawala, M., Chuang, E., Popović, Z. &
Salesin, D. (2003), A sketching interface for articu-
lated figure animation, in ‘SCA ’03: Proceedings of
the 2003 ACM SIGGRAPH/Eurographics sympo-
sium on Computer animation’, Eurographics Asso-
ciation, pp. 320–328.

de Araújo, B., Jorge, J., Sousa, M. C., Samavati, F.
& Wyvill, B. (2004), MIBlob: a tool for medical vi-
sualization and modelling using sketches, in ‘SIG-
GRAPH ’04: Posters’, ACM Press, p. 107.

Douglas, D. & Peucker, T. (1973), ‘Algorithms for the
reduction of the number of points required to repre-
sent a digitized line or its caricature’, The Canadian
Cartographer 10(2), 112–122.

Eggli, L., Ching-Yao, H., Bruderlin, B. D. & El-
ber, G. (1997), ‘Inferring 3d models from freehand
sketches and constraints’, Computer-Aided Design
29(2), 101–112.

Gain, J., Marais, P. & Strasser, W. (2009), Terrain
sketching, in ‘I3D ’09: Proceedings of the 2009
symposium on Interactive 3D graphics and games’,
ACM, pp. 31–38.

Gross, M. D. & Do, E. Y.-L. (1996), Ambiguous in-
tentions: a paper-like interface for creative design,
in ‘Proceedings of the 9th annual ACM symposium
on User interface software and technology (UIST
’96)’, ACM, New York, NY, USA, pp. 183–192.

Igarashi, T. & Hughes, J. F. (2003), Smooth meshes
for sketch-based freeform modeling, in ‘I3D ’03:
Proceedings of the 2003 symposium on Interactive
3D graphics’, ACM, pp. 139–142.

Igarashi, T., Matsuoka, S., Kawachiya, S. & Tanaka,
H. (1997), Interactive beautification: a technique
for rapid geometric design, in ‘Proceedings of the
Symposium on User Interface Software and Tech-
nology’, pp. 105–114.

Igarashi, T., Matsuoka, S. & Tanaka, H. (1999),
Teddy: a sketching interface for 3d freeform design,
in ‘Proceedings of SIGGRAPH ’99’, ACM Press,
pp. 409–416.

Ijiri, T., Owada, S., Okabe, M. & Igarashi, T.
(2005), ‘Floral diagrams and inflorescences: inter-
active flower modeling using botanical structural
constraints’, ACM Trans. Graph. 24(3), 720–726.

Karpenko, O. A. & Hughes, J. F. (2006), ‘Smooths-
ketch: 3d free-form shapes from complex sketches’,
ACM Transactions on Graphics 25(3), 589–598.

Karpenko, O., Hughes, J. & Raskar, R. (2002), ‘Free-
form sketching with variational implicit surfaces’,
Computer Graphics Forum 21(3), 585–594.

Levet, F. & Granier, X. (2007), Improved skeleton
extraction and surface generation for sketch-based
modeling, in ‘GI ’07: Proceedings of Graphics In-
terface 2007’, ACM, pp. 27–33.

Mao, C., Qin, S. F. & Wright, D. (2007), Sketch-based
virtual human modelling and animation, in ‘SG ’07:
Proceedings of the 8th international symposium on
Smart Graphics’, Springer-Verlag, pp. 220–223.

McCord, G., Wünsche, B. C., Plimmer, B., Gilbert,
G. & Hirsch, C. (2008), A pen and paper metaphor
for orchid modeling, in ‘Proceedings of the 3rd
International Conference on Computer Graphics
Theory and Applications (GRAPP 2008)’, pp. 119–
124.

Mitani, J., Suzuki, H. & Kimura, F. (2002), ‘3d
sketch: sketch-based model reconstruction and ren-
dering’, pp. 85–98.

Nealen, A., Igarashi, T., Sorkine, O. & Alexa, M.
(2007), Fibermesh: designing freeform surfaces
with 3d curves, in ‘SIGGRAPH ’07: ACM SIG-
GRAPH 2007 papers’, ACM, p. 41.

Olsen, D. J., Pitman, N. D., Basak, S. & Wünsche,
B. C. (2011), Sketch-based building modelling, in
‘Proceedings of GRAPP 2011’, pp. 119–124.

Plimmer, B., Blagojevic, R., Chang, S. H.-H.,
Schmieder, P. & Zhen, J. S. (2012), RATA: codeless
generation of gesture recognizers, in ‘Proceedings of
the 26th Annual BCS Interaction Specialist Group
Conference on People and Computers (BCS-HCI
’12)’, British Computer Society, pp. 137–146.

Schauwecker, K., van den Hurk, S., Yuen, W.
& Wünsche, B. (2011), Sketched interaction
metaphors for character animation, in ‘Proceedings
of GRAPP 2011’, pp. 247–252.

Schmidt, R., Wyvill, B., Sousa, M. C. & Jorge, J. A.
(2006), Shapeshop: sketch-based solid modeling
with blobtrees, in ‘SIGGRAPH ’06: ACM SIG-
GRAPH 2006 Courses’, ACM, p. 14.

Sezgin, T. M., Stahovich, T. & Davis, R. (2001),
Sketch based interfaces: Early processing for sketch
understanding, in ‘Proceedings of the Workshop for
Perceptive User Interfaces (PUI 01)’, ACM Press,
pp. 1–8.

Steger, E. (2004), Sketch-based animation lan-
guage, Technical report, Department of Com-
puter Science, University of Toronto. URL:
http://www.cs.toronto.edu/~esteger/
sketchlang/index.html.

Thorne, M., Burke, D. & van de Panne, M. (2004),
‘Motion doodles: an interface for sketching charac-
ter motion’, ACM Trans. Graph. 23(3), 424–431.

Proceedings of the Fifteenth Australasian User Interface Conference (AUIC2014), Auckland, New Zealand

27

Trimble Navigation Ltd. (2013), ‘Sketchup ruby api
- creating geometry’. http://www.sketchup.com/
intl/en/developer/docs/gsrubyapi_examples,
Last retrieved 24th August 2013.

Turquin, E., Wither, J., Boissieux, L., Cani, M.-P. &
Hughes, J. F. (2007), ‘A sketch-based interface for
clothing virtual characters’, IEEE Comput. Graph.
Appl. 27(1), 72–81.

Windows Dev Center (2013a), ‘Ink analysis
overview’. http://msdn.microsoft.com/en-
us/library/windows/desktop/ms704040\%28v=
vs.85\%29.aspx, Last retrieved 24th August 2013.

Windows Dev Center (2013b), ‘Microsoft.ink’.
http://msdn.microsoft.com/en-us/library/
ms826516.aspx, Last retrieved 24th August 2013.

Wong, Y. Y. (1992), Rough and ready prototypes:
lessons from graphic design, in ‘Posters and short
talks of the 1992 SIGCHI conference on Human fac-
tors in computing systems (CHI ’92)’, ACM, New
York, NY, USA, pp. 83–84.

Wünsche, B. C. (2013), ‘Compsci 373 assignment
2 sammple solution - question 3: Sketch-based
modelling’. http://www.cs.auckland.ac.
nz/courses/compsci373s1c/assignments/
CS373Assignment2_SampleSolution.pdf, Last
retrieved 24th August 2013.

Yang, R. & Wünsche, B. C. (2010), Life-sketch: a
framework for sketch-based modelling and anima-
tion of 3d objects, in ‘Proceedings of the Eleventh
Australasian Conference on User Interface (AUIC
’10)’, Australian Computer Society, Inc., pp. 61–70.

Zeleznik, R. C., Herndon, K. P. & Hughes, J. F.
(1996), SKETCH: An interface for sketching 3d
scenes, in ‘Proceedings of SIGGRAPH ’96’, ACM
Press, pp. 163–170.

Zimmermann, J., Nealen, A. & Alexa, M. (2008),
‘Sketching contours’, Computers & Graphics
32(5), 486–499.

CRPIT Volume 150 - User Interfaces 2014

28

