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Abstract

A naive Bayes classifier was used to analyze gene be-
havior based on text data and presented as an en-
try for the 2002 KDD Cup, a data mining exercise
to predict the behavior of the yeast S. Cerevisiae.
The solution presented was based on the multino-
mial event model for text classification(McCallum
& Nigam 1998) with a feature selection mechanism
added. Despite this simple model, performance close
to that of the best entries in the competition could be
obtained, which were using more sophisticated tech-
niques. It appears that seemingly minor effort in us-
ing prior knowledge to conflate the gene classes, as
well as the previously described effectiveness of the
naive Bayes method contributed to this success.

1 Introduction

Biological data consists in many forms; a vast quan-
tity of data is held in academic research papers. It
is clear that there is a great deal of information in
these kinds of resources, however it is difficult for
automated systems to extract such data. Natural
language methods are the obvious mechanism for ex-
tracting this kind of information.

The 2002 KDD Cup consisted of two tasks, both
based on bioinformatics data mining. “Task 2” of this
challenge was to analyses a set of knockout data of the
yeast Saccharomyces Cerevisiae, and predict the be-
havior of the organism according to some hidden sys-
tem when the relevant gene had been knocked out. A
variety of data were given to the contestants, most no-
tably a body of approximately 15,000 abstracts from
MEDLINE. In the course of constructing the entry
for this challenge, it became apparent that mining the
text data in these abstracts was the most effective ap-
proach, and furthermore that a few simple modifica-
tions to the parsing process seemed to greatly enhance
the capability of the data mining software.

Simple Bayesian classifiers are very popular, on
account of the ease of implementation and effec-
tiveness despite their simplicity(Friedman, Geiger &
Goldszmidt 1997). The classifier assumes that the
data are generated according to some probabilistic
system, makes estimates of these probabilities, and
then combines the probabilities using Bayes theorem.
Classification is done by finding the class most likely
to have generated the particular data.
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Naive Bayes classifiers make a further assumption
that the process generating the data do so in such a
way that each attribute generated is independent of
all others. The so-called naive Bayes assumption is
that the probability of both attributes occurring to-
gether is the product of the probabilities of their oc-
curring independently, i.e. if a and b are events or at-
tributes, then p(a∧b) = p(a)·p(b). In practice this as-
sumption works well, and while some theories provide
partial accounts for why it might work, ultimately it
is unclear why(Friedman et al. 1997, Mitchell 1997).

The bag of words approach has been utilized in
many systems to construct feature vectors corre-
sponding to particular data items. Typically the
words in a document are stemmed, removing com-
mon endings such as ing or ed in English, and then
counted (Porter 1980). The counts in particular doc-
uments form the attribute in the feature vector.

There are several approaches to extracting bio-
logical information form abracts which have been
tried. Template based information extraction tech-
niques have been used with some success(Thomas,
J., Milward, D., Ouzounis, C., Pulman, S.& Carroll,
M. 2000). Stapley et al. used this approach in an-
alyzing S. Cerevisiae, attempting to construct a pre-
dictor for sub-cellular location based on available ab-
stracts (Stapley, Kelley & Sternberg 2002). Craven
and Kumlien used naive Bayes to extract features
from MEDLINE (Craven, & Kumlien 1999). Fukuda
et al. construct a sophisticated hand-crafted parser
for identifying references to proteins in text, which
was applied to MEDLINE data(Fukuda, Tamura,
Tsunoda & Takagi 1998).

2 Dataset

The dataset used was directly from the 2002 KDD
Cup competition. This consisted of approximately
15,000 potentially relevant abstracts, all truncated to
250 words. There were also a set of gene aliases, that
is mappings form standard to systematic names for
genes. The experimental data was derived from a mi-
croarray experiment on an unknown cellular system,
where the cell was exposed to some (unknown) en-
viornment. The results were presented as a list of
knocked-out gene and the corresponding class, where
nc indicated that no change was observed in the func-
tioning of the cell, change indicated that the function-
ing of the pathway under examination changed, and
control indicated that some other unrelated pathway
also changed (as well as possibly the change path-
way). The task was to construct classifiers, one capa-
ble of classifying the change genes as opposed to the
nc and control genes, and the other for classifying
the change and control together against the nc set.



change control nc Total
Training Data 38 46 2934 3018

Test Data 19 24 1446 1489
Total 57 70 4380 4507

3 Methodology

For the purposes of this analysis we viewed a gene
as a set of documents written about a gene, from
which attributes could be derived. Each gene was
then reduced into a feature vector describing that
gene. Based on the training data-set feature selec-
tion was performed, which produced the set of fea-
tures giving best accuracy over the data set. These
features were then used as the basis for calculating
the probability of each class in the training set.

3.1 Text Parsing

Most of the labour of this project was in parsing the
text to extract the words from it. Abstracts were sep-
arated into sentences, and then into words. Various
features of the text needed to be corrected, such as
the removal or expansion of abbreviations, the nor-
malization of numbers into a common syntax, and
the deletion of references from the text.

An ad-hoc “gene-like-word” recognizer was imple-
mented; in general it was impossible for this to work
entirely correctly due to words like loci becoming
confused with a gene-like word such as LOCI. (Indeed
LOC1 is a recognized part of the S. Cerevisiae genome).
Protein suffixes were removed (e.g. PPR1p 7→ PPR1)
and various prefixes (e.g. h, HUM, Delta) were also
deleted. When known these standard names were
then mapped to their equivalent systematic name,
which was used as the standard name throughout the
rest of the program. (e.g. PPR1 7→ YLR014C). This
simple analysis seemed to function well, despite be-
ing far simpler than the approach outlined by Fukuda
et al.(Fukuda et al. 1998).

These words were then counted and parsed into
three classes; dictionary words, non-dictionary words,
and gene names (stored internally as the systematic
name of the gene, e.g. YLR014C). Early experiments
showed the gene names had much greater predic-
tive value than the dictionary words, non-dictionary
words or other combinations, and so the gene names
were concentrated on for the remainder of the ex-
ercise. A variety of stemming techniques were also
attempted, in order to improve performance, essen-
tially using the standard porter stemming algorithm
(Porter 1980) with some additions to deal with com-
mon biological words (e.g. mitocondria and golgi).

3.2 Bag of Words Model

Having parsed the abstracts, a count of words corre-
sponding to each gene was created. This was used in
the calculation of the probability of a word occurring
in a context relating to a particular class, i.e. p(w|c).
For each word (i.e. each standard name in the final
model) a probability was estimated of that word oc-
curring in a particular class. In the event that there
was more than one abstract describing the gene all
abstracts describing the gene were concatenated to-
gether to be considered as the abstract describing the
gene.

Originally the following formula based on the
Laplacian probability estimate was used(McCallum
1998):

p(wi|cj) =
1 + Nij

Nj + |V |

where Nij is the number of times word i has appeared
in the context of class j, and Nj is the total number
of times any word has appeared in the context of class
Nj , and |V | is the total vocabulary size.

The performance using this was poor however,
and it was necessary to ensure that minor changes
of Nij had a small effect in perturbing the prior
odds. To this end the estimates were changed to
the following formula, based on the m-probability
estimate(Mitchell 1997):

p(wi|cj) =
Nij + m

|V |

Nj + m

where m is some constant parameter, which is clearly
identical to the original when |V | = m. Empirical
testing showed that this worked well, and values of
m = 100 had the highest score in cross-fold valida-
tion and was used for the final testing; in retrospect
this was probably a mistake since other tested values
higher than this whilst not achieving the same peak
value were more robust when the feature selection was
not as well tuned.

3.3 Multinomial Model

The multinomial formula was used to estimate
the odds of a gene given a particular class, ac-
cording to the multinomial formula for probability
estimation(McCallum 1998):

p(gi|cj) = p(D|cj)|gi|!
∏

k

p(wk|cj)
Nkj

Nkj !

Here p(gi|cj) is the probability of finding a specific
gene i (i.e. vector of word counts) given a class j. The
probability of finding a document of that size is given
by p(D|cj); it was assumed that this was independent
of the class and so ignored in the implementation.
Note that the naive Bayes assumption is employed
here.

Having calculated p(gi|cj) it is possible to de-
termine the most probable class given a particular
gene p(ci|gj) by employing Bayes rule, p(ci|gj) =
p(ci) ·p(gj |ci)/p(gj). Originally classification was per-
formed using the standard approximation:

class of gi = argmax
j

p(ci)p(gj |ci)

In order to produce rank orderings, it was noted
that every gene did in fact have a class, i.e. for gene j∑

i p(ci|gj) = 1. Given that p(gi) was constant, this
gave the final formula used for estimation:

p(ci|gj) =
p(ci)p(gj |ci)∑
k p(ck)p(gj |ck)

In the case that more than one class was being tested
for, the sum of the p(ci)p(gj |ci) was used as the nu-
merator.

3.4 Feature Selection

An entropy based feature selector was used in order to
find the best words to base the classification on; these
have been used in a variety of text mining settings
with considerable success (McCallum 1998). The fea-
ture selector measures mutual information between
the class and the feature; where this value is high,
the feature will be a useful predictor, and when this
is low the feature will be less useful.



The formula used for this estimation was besed on
the mutual information calculation given by McCal-
lum and Nigam(McCallum 1998).

I(C, W ) =
∑

i∈C

∑

t∈{W}

p(ci, wt) log(
p(ci, wt)

p(ci)p(wt)
)

In this equation, p(ci) is the number of occurances of
a word in class ci divided by the total number of word
occurances, p(wt) is the total number of occurances
of word wt divided by the total number of word occu-
rances, and p(ci, wt) is the number of occurances of
word wt in class ct.

The probability estimates used were those calcu-
lated for the multinomial distribution of the doc-
uments; these are apparently satisfactory for most
purposes(McCallum 1998). Features in the feature
vector were removed if (according to the counts) they
had low information content and thus low predictive
value.

A search of the parameter space was made in order
to find optimal sizes for the feature selector. The op-
timal value for m was taken to be that of the optimal
value with the corresponding feature size.

3.5 Use of ROC Curves

A Receiver Operating Characteristic (ROC) curve is
commonly used in signal detection theory to examine
the performance of a classification system in terms of
the number of false alarms generated versus the num-
ber of true hits generated (Egan, 1975). The ROC
curve is generated by considering the rate at which
true positives accumulate versus the rate at which
false positives accumulate. If a system produces a
rank ordering of data, with the most likely data at
the top of the curve and the least likely data at the
bottom, the ROC curve will be a curve between (0, 0)
and (1, 1) with each point on the x-axis correspond-
ing to a data point, and the height on the y-axis cor-
responding to the number of true positives thus far
identified. Thus an ideal system will commence by
identifying all the positive examples and so the curve
will rise to (0, 1) immediately, having a zero rate of
false positives, and then continue along to (1, 1). The
area under the ROC curve is used as the measure of
classifier performance.

4 Experimental Results

Our initial submission to the KDD Cup competition
was disappointing, on account of a methodological
error in training the feature selector. Retraining this
correctly resulted in much better performance how-
ever, comparable with the better entries in the cup.

Note that narrow refers to the predictor of the
change data set only, and broad refers to the pre-
dictor for both the change and control data sets.
“Simple gene parser” refers to the program doing no
feature construction; this is compared with the more
substantial feature construction used for the other ex-
amples.

It appears that most of the performance advan-
tage came on account of the use of the feature selec-
tion algorithm, with some additional accuracy from
the parser. More significantly, the parser reduced the
sensitivity to the number of features used in the fea-
ture selection. This can be seen in the average of the
3-fold cross validation results.

The results in this table were either the quoted re-
sults from the KDD competition or the results gained

from experiments on the test data having trained the
learner on the training data.

It should be observed that with the feature selec-
tor at its optimum value the majority of the genes had
no features applicable to them; of the 1489 genes in
the test set, 793 had no features applicable to them.
When this cutoff is examined in the context of the
ROC curve, it seems that those genes for which there
are no data perform approximately at chance, and the
ROC curve inflects close to this cutoff point. Thus
the number of genes with features in the final analy-
sis gives a useful region of confidence about the pre-
dictions; the classifier has good predictive value for
approximately the first third of the genes which it
outputs, and relatively poor performance thereafter.
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Figure 1: ROC Curve - 1250 features, feature con-
struction
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Figure 2: ROC Curve - unlimited features, feature
construction

5 Conclusion

This paper describes the development of a text-
mining system to determine the presence or absence
of genes in some pathway of the yeast S. Cerevisiae.



Narrow Broad Total
Full parser, 1250 features 0.623 0.679 1.303

Full parser, all features 0.565 0.660 1.223
Simple gene parser, 1250 features 0.575 0.675 1.249

Simple gene parser, all features 0.557 0.644 1.201
Best in KDD Cup 2002 0.684 0.678 1.322

Table 1: Results on test data
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Figure 3: ROC Curve - 1250 features, no feature con-
struction

Since the identity of the specific pathway was un-
known to the program (and its designer) this method-
ology should be applicable to more generalized prob-
lems. One useful problem where this could be imme-
diately applied is predicting subcelluar localization;
work on this has already commenced.

Naive Bayes is a simple learning model; what this
paper has shown is the real power of feature construc-
tion and feature selection prior to exercising the learn-
ing algorithm. Use of feature construction and fea-
ture selection resulted in performance close to that of
more sophisticated techniques, such as Support Vec-
tor Machines. The model has releatively few param-
eters which need tuning, however there is no clear
methodology for obtaining the precise number of fea-
tures to use in a feature selection context.

Whilst this work used a relatively simple model for
protein parsing, using more complex models such as
that in (Fukuda et al. 1998) may give better results,
and this would be a worthwhile work. Similarly suing
this feature extraction and feature construction with
more complex learning algorithms (such as Bayes nets
or SVMs) would also be worthwhile. Application to
a problem of more immediate interest to biologists,
e.g. protein sub-cellular localization would also be of
benefit; currently work has commenced to compare
this work with the results in (Stapley et al. 2002).
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