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Finding marks of the classical-quantum border

is a very important task of perennial interest.

Coherent states can be viewed as the

analogues of points in phase-space. One

can ask then a natural question: for an

arbitrary quantum state described by the

density operator ρ to what an extent

it is nonclassical in the sense that its

properties diverge from those of coherent

states? We may ask in this respect

whether there is any parameter that may

legitimately reflect ρ’s degree of non-

classicality. Many consider to that effect the

negativity of the Wigner function. In this note

we intend to provide a different kind of answer

within the semiclassical statistics’ realm, and

with relation to quantum optics’ techniques

and information theory treatments.
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Motivation: “Noise”, that plays a significant

informative role with regards to the particle-

wave duality. Electromagnetic fluctuations

are different if the energy is carried by waves

or by particles. The magnitude of energy

fluctuations scales linearly with the mean

energy for classical waves, while it does so

with the square root of the mean energy for

classical particles. Since a photon is neither

a classical wave nor a classical particle, for

it the linear and square-root contributions

must coexist. The square-root (particle)

contribution dominates at optical frequencies,

the linear (wave) contribution taking over at

radio-frequencies.
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The diagnostic-power of photon-noise was

extended further in the 60’s, as it was

discovered that fluctuations discriminate

between the radiation from a laser and

that from a black body. For the former

the wave contribution to the fluctuations is

null, while it is merely small for a black

body. Measurements of noise are now a

common technique in quantum optics and

Glauber’s quantum theory of photon statistics

is textbook material. Thus, coherent states

become of central importance in quantum

optics, being the states of a harmonic

oscillator system which mimic in the best

possible way the classical motion of a particle

in a quadratic potential.
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Much of the thrust of quantum optics’

techniques lies indeed in their ability to exploit

classical analogues and most particularly,

comparisons with classical noise theory, that

allow to reduce purely harmonic systems to

non-operator ones, via phase space methods,

where the essentially quantal nature of the

problem is transcribed in terms of the

interpretation of apparently classical variables,

with coherent states playing the starring

role. Here that role will be again invoked, within

the strictures of semiclassical techniques, in order to

provide an answer to the query posed in the first

paragraph above. It will be shown that non-classicality

can be visualized in terms the idiosyncratic features of

a semiclassical delimiter parameter associated to the

concepts of i) Husimi distributions, ii) Wherl’s entropy,

and iii) escort distributions.
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Wehrl entropy and Husimi distributions.

The paradigmatic semiclassical concept we

appeal to is that of Wehrls’s entropy W , a

useful measure of localization in phase-space

that is built up using coherent states. The

pertinent definition reads

W = −
∫

dxdp

2πh̄
µ(x, p) lnµ(x, p), (1)

where µ(x, p) = 〈z|ρ|z〉 is a “semi-classical”

phase-space distribution function associated

to the density matrix ρ. Coherent states are

eigenstates of the annihilation operator a, i.e.,

satisfy a|z〉 = z|z〉. The distribution µ(x, p)

is normalized in the fashion
∫

(dxdp/2πh̄) µ(x, p) = 1, (2)

and it is called the Husimi distribution.
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The Wehrl entropy is simply the “classical

entropy” (1) of a Wigner-distribution. Indeed,

µ(x, p) is a Wigner-distribution DW smeared

over an h̄ sized region of phase space.

The smearing renders µ(x, p) a positive

function, even if DW does not have

such a character. The semi-classical

Husimi probability distribution refers to

a special type of probability: that for

simultaneous but approximate location of

position and momentum in phase space. The

uncertainty principle manifests itself through

the inequality 1 ≤ W, which was first

conjectured by Wehrl and later proved by

Lieb. The usual treatment of equilibrium in

statistical mechanics makes use of the Gibbs’s

canonical distribution.
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The associated, “thermal” density matrix is

given by

ρ = Z−1e−βH, (3)

with Z = Tr(e−βH) the partition function,

β = 1/kBT the inverse temperature T , and

kB the Boltzmann constant. In order to

conveniently write down an expression for W

consider an arbitrary Hamiltonian H of eigen-

energies En and eigenstates |n〉 (n stands

for a collection of all the pertinent quantum

numbers required to label the states). One

can always write

µ(x, p) =
1

Z

∑

n

e−βEn|〈z|n〉|2. (4)

A useful route to W starts then with Eq. (4)

and continues with Eq. (1).
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In the special case of the harmonic oscillator

the coherent states are of the form

|z〉 = e−|z|2/2
∞
∑

n=0

zn

√
n!

|n〉, (5)

where |n〉 are a complete orthonormal set of

eigenstates and whose spectrum of energy

is En = (n + 1/2)h̄ω, n = 0, 1, . . . In

this situation we have the useful analytic

expressions

µ(z) = (1 − e−βh̄ω) e−(1−e−βh̄ω)|z|2;

W = 1 − ln(1 − e−βh̄ω). (6)

When T → 0, W takes its minimum value W = 1,

expressing purely quantum fluctuations. On the other

hand when T → ∞, the entropy tends to the value

− ln(βh̄ω) which expresses purely thermal fluctuations.
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An indicator of noise: the Mandel

parameter. A convenient noise-indicator of

a non-classical field is the so-called Mandel

parameter which is defined by

Q =
(∆N)2

〈N̂〉
− 1 ≡ F − 1, (7)

which is closely related to the normalized

variance (also called the quantum Fano factor

F ) F ≡ σ = (∆N)2/〈N̂〉 of the photon

distribution. For F < 1 (Q ≤ 0), emitted

light is referred to as sub-Poissonian since

it has photo-count noise smaller than that

of coherent (ideal laser) light with the same

intensity (F = 1; Q = 0), whereas for F >

1, (Q > 0) the light is called super-Poiss.,

exhibiting photo-count noise higher than the

coherent-light noise.
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Of course, one wishes to minimize the Fano

factor. For a coherent state (a pure quantum

state) the Mandel parameter vanishes, i.e.,

Q = 0 and F = 1. A field in a

coherent state is considered to be the closest

possible quantum-state to a classical field,

since it saturates the Heisenberg uncertainty

relation and has the same uncertainty in each

quadrature component. The question we will

try to answer here is: how close to Q = 0

(or F = 1) can we get semiclassically? The

answer should help to define the boundary

between a classical and a quantum field.

If so, it would be clear that both Q and

F function as indicators on non-classicality.

Indeed, for a thermal state one has Q > 0 and

F > 1, corresponding to a photon distribution

broader than the Poissonian.
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For Q < 0, (F < 1) the photon distribution

becomes narrower than that of a Poisson-PDF

and the associated state is non-classical. The

most elementary examples of non-classical

states are number states. Since they are

eigenstates of the photon number operator

N̂ the fluctuations in N̂ vanish and the

Mandel parameter reads Q = −1 (F = 0).

We will below establish a semiclassical link

with these ideas. Taking into account

that the number operator is connected with

the harmonic oscillator Hamiltonian Ĥ via

N̂ = Ĥ/h̄ω − 1/2, we can rewrite the HO-

Mandel parameter in this fashion

Q = F − 1 =
(∆Ĥ)2

h̄ω〈Ĥ〉 − h̄2ω2/2
− 1, (8)

since Ĥ = h̄ω|z|2.
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Our main protagonist from now on

is a semiclassical version Qsc of

Mandel’s parameter evaluated with Husimi’s

distribution, i.e.,

Qsc =
(∆µN)2

〈N̂〉µ
− 1, (9)

where 〈 ... 〉µ denotes the semiclassical mean

value of any general observable and the

subindex µ indicates that we have taken the

Husimi distribution as the weight function. It

is then easy to see that Qsc reads

Qsc =
2

(1 − e−βh̄ω)(2 − (1 − e−βh̄ω))
−1 ≥ 1,

(10)

and it becomes of the essence to remark

that the semiclassical approach impedes us to

reach the Q = 0−value.
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Escort-Mandl factor Given a probability

distribution (PD) f(x), there exists an infinite

family of associated PDs fq(x) given by

fq(x) =
fq(x)

∫

fq(x) dx
; (q ∈ R), (11)

that have proved to be quite useful in

the investigation of nonlinear dynamical

systems, as they often are better able

to discern some of the system’s features

than the original distribution. Things

can indeed be improved in the above

described scenario by recourse to this concept

of escort distribution (ED), introducing it

in conjunction with semiclassical Husimi

distributions. Thereby one might try to gather

“improved” semiclassical information.
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Escort Husimi distributions (q−HDs) are

γq(x, p):

γq(x, p) = µ(x, p)q/

(
∫

d2z

π
µ(x, p)q

)

,

(12)

where d2z/π = dxdp/2πh̄ and whose HO-

analytic form can be obtained from

γq(z) = q(1−e−βh̄ω) exp[−q(1−e−βh̄ω)|z|2 ].

(13)

We compute now the expectation values

involved in Eq. (8) with γq as a the

weight function and find for the relevant

Hamiltonian-moments

〈H〉γq =

∫

d2z

π
γq(z)h̄ω|z|2 =

h̄ω

q(1 − e−βh̄ω)
,

(14)
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〈H2〉γq =

∫

d2z

π
γq(z)h̄2ω2|z|4 =

2h̄2ω2

q2(1 − e−βh̄ω)2
,

(15)

and thus,

(∆H)2γq
=

h̄2ω2

q2[1 − exp(−βh̄ω)]2
, (16)

so that we finally obtain an “escort”-

expression for the Mandel parameter:

Qsc
q + 1 =

2

q(1 − e−βh̄ω)(2 − q(1 − e−βh̄ω))
.

(17)

We note that when q tends to unity we have

Qsc
1 ≡ Qsc.
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Figure 1: Mandel parameter Qsc

evaluated semiclassically by recourse to

escort distributions of order q at different

temperatures T (given in h̄ω−units).
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The additional degree of freedom acquired

via q allows for the desired negative values of

the Mandel parameter, as depicted in Fig. 1.

In order to interpret these results, additional

considerations are in order. First of all let

us look at the escort-Wehrl entropy built up

using the distributions γq, which has the form

Wq = W − ln q, (18)

and thus forbids negative q−values. Eq. (18),

together with the HO-analytic expression,

entail that, by requiring that the information

measure Wq obey both Lieb’s bound and

positivity (namely, 1 ≥ Wq ≥ 0), one must

restrict the escort-degree q−range to 1 ≤
q ≤ e ≃ 2.7182818. Still more sophisticated

considerations may further circumscribe the

above domain, however.
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To this effect we appeal now the concept of

participation ratio R of a density operator ρ

(the number of pure states that enter ρ):

R = 1/Tr(ρ2); [1 ≤ R ≤ ∞]. (19)

We will now concoct a semiclassical

“equivalent-notion” by performing an

analogous calculation using the q−escort

Husimi distribution γq of the harmonic

oscillator. This would yield

RHO
q =

1
∫

d2z
π γq(z)2

=
2

q(1 − e−βh̄ω)
. (20)

Note that RHO
q=1(T = 0) = 2. Our density

operator (3) contains a minimum of two pure

states in this “best possible” scenario, which

impedes reaching Q = 0 in Eq. (10).
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Now, invoking R ≥ 1 immediately entails,

at zero temperature, q ≤ 2. For higher

temperatures the allowed q−purview shifts

“rightwards” and exceeds the value two. At

T = 0 a refined region F of permissible values

for q then ensues, namely, F = [1 ≤ q ≤ 2],

which is crucial, as a glance to Fig. 1 will

confirm. As stated, when T grows, F expands

rightwards. Fig. 1 shows that the realm of

negative (and thus quantum) values of the

Mandel parameter Q can indeed be attained

semiclassically by recourse to the concept

of escort distributions of order 2 ≤ q ≤
e. However, the physical (quantum) region

−1 ≤ Q ≤ 1 remains strictly inaccessible

to our modified semiclassical treatment (and

thus the quantum-classical border begins at

Qsc = 1).
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The Qsc < −1 values of Fig. 1 are un-physical

since they imply negative fluctuations, which

are nonsensical [Cf. Eq. (7)]. Note that we do

get Qsc = −1 at q = ∞ (for all temperatures

T ), but this is un-physical as well, since

the accompanying escort-Husimi distribution

would be a delta in phase space, violating

the uncertainty principle. We proceed now to

tackle the same issue via a different approach,

in order to make sure that our results are not

just a Husimi artifact.

Conclusions What has effectively been

gained with our escort generalization? Well,

to be in a position to ascertain that, when

the escort degree q adopts certain specific

values, rather strange things happen, which

vividly illustrate non-classicality (our goal in

this communication).
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Clearly, such idiosyncracy seems to signal the

having reached the classical-quantum border

at Qsc = 1. First, take note of what happens

at q = 2; T = 0, when q−negativity first

becomes possible. Note that the ensuing

semiclassical escort-Husimi distribution for

e ≥ q ≥ 2 cannot be associated à la (20) to

a quantal distribution function derived from a

density operator, since its participation ratio

would in that case be smaller than unity, limit

value only reached by pure states. This is

of no great relevance for the semiclassical

treatment, which is not a quantum one

by definition, but does point out to an

incompatibility between the quantum regime

and escort distributions of degree > 2.
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The concomitant transition is by no means

a gentle one, as (remember that T = 0),

Qsc jumps from plus to minus infinite at

q = 2. These considerations hold also at

finite temperatures, by replacing q = 2 by

q = 2/[1 − exp (−βh̄ω)]. Second, we attain

the quantal Qsf = −1 at the “strange” value

q = ∞, where the escort distributions turns

into a Dirac’s delta in phase-space. Thus, if

we want our semiclassically evaluated noise-

estimator Q to take values associated to the

quantal regime, we encounter the strange

behaviors just described. One may dare

thus to formulate a conjecture in this respect.

Strange behaviors of semiclassical quantities

may well be indicators on non-classicality.
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Although we cannot enter the quantum

regime via a semiclassical treatment, we

have ascertained that ours does “sense” the

existence of such quantal regime, which

is our main conclusion. Moreover, we

can somehow “visualize” non-classicality in,

paradoxically, classical terms: it entails

having simultaneously zero-fluctuations in

the particle-number together with finite ones

in phase-space location, which is not possible

classically (because of the Dirac’s delta at

q = ∞).
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