
replay : Visualising the Structure and Behaviour

of Interconnected Systems

Alex Murray Duncan Grove

Defence Science Technology Organisation
PO Box 1500, Edinburgh, South Australia 5111

Email: alex.murray@dsto.defence.gov.au

Abstract

Visualisation is often used to help understand com-
plex systems and in particular scale-free networks
which are present in many systems, from object-
oriented software, to real-world and on-line social net-
works. While a number of tools already exist to visu-
alise these systems, most focus on presenting the net-
work as a whole and neglect to include information
on the possibly concurrent behaviour of individual
nodes. In this paper we present replay which aims to
meet these demands, by visualising both the structure
and evolution of the network through time, as well as
the behaviour of individual nodes and the communi-
cations between nodes. We describe the unique and
novel aspects of replay, including its three different
but related visualisations of the underlying system,
as well as its plug-in architecture, which allows re-
play to be extended and applied to visualise different
networked systems. We also demonstrate the utility
and flexibility of replay with a number of real-world
visualisation examples, as well as present possible di-
rections for future work.

Keywords: Graph and network visualisation, concur-
rency visualisation, interaction visualisation, inter-
connected systems, concurrent systems.

1 Introduction

Visualisation is increasingly being used to aid under-
standing of complex systems. In particular, scale-free
networks [5] have recently become a focus for visual-
isation [26, 16], as a means to understand their un-
derlying structures and hierarchies, as well as their
evolution through time [19]. Many networked sys-
tems have been found to exhibit scale-free properties,
ranging from social networks [5] (both real-world and
on-line) to object-oriented software [30, 8, 24].

By their nature, scale-free networks are quite com-
plex, comprising many nodes with numerous edges,
and hence visualisations have focused on ways of sim-
plifying the overall visualisation while still retaining
the salient features of the network [16, 19]. These
methods concentrate on visualising the network as a
whole, and so while these tools have generally been
successful in helping to understand the overall net-
work structure, they provide little capacity for in-
sight into the detailed behaviour of individual nodes

Copyright c©2013, Commonwealth of Australia. This paper ap-
peared at the 36th Australasian Computer Science Conference
(ACSC 2013), Adelaide, South Australia, January-February
2013. Conferences in Research and Practice in Information
Technology (CRPIT), Vol. 135, Bruce Thomas, Ed. Reproduc-
tion for academic, not-for-profit purposes permitted provided
this text is included.

– which we define as the node’s activity and any mes-
sages it exchanges with other nodes.

In many cases, understanding the behaviour of in-
dividual nodes is crucial to properly understanding
the overall behaviour of the network, since the evolu-
tion of the network through time is critically affected
by the actions of its nodes. For example, the need
for visualisations that show both the network’s overal
structure as well as the concurrent behaviour of its in-
dividual nodes has been identified as an educational
tool to aid in the understanding of object-oriented
software, especially the interactions between concur-
rent objects and how this influences the object graph
as a whole [9].

We believe that to truly understand complex, net-
worked, concurrent systems, visualisation tools must
be capable of effectively exploring these systems at
both macroscopic and microscopic levels of detail,
while sweeping arbitrarily backwards and forwards
through time.

We have therefore developed a visualisation tool
called replay to meet these requirements. Section 2
describes the system while Section 3 presents some
case-studies showing replay in action. We then de-
scribe related work in Section 4, future directions for
our research in Section 5 and conclude in Section 6.

2 An overview of replay

replay was designed with a number of features for vi-
sualising complex, concurrent networked systems: a
simple event based data model, three different but
related visualisations of the underlying event model
which are always synchronised, the ability to filter
information, and a plug-in based extension system.
Each of these features will be described in the follow-
ing sections.

2.1 The replay event model

The primary elements represented within replay are
nodes, edges, activities and messages, where nodes
can be executing activities and are connected via
edges to form the graph, and messages are sent be-
tween nodes along edges within the graph. replay em-
ploys a simple event-based data model which allows
the behaviour and structure of diverse concurrent net-
worked systems to be visualised. The plug-in inter-
face (described in Section 2.7) provides programmatic
access to drive the generation of events, allowing ar-
bitrary systems to interface with replay at runtime
using a diverse range of communication mechanisms.
Each event specifies the time at which it occurred, as
well as identifying the elements concerned. The four
basic elements (nodes, edges, activities and messages)
are all uniquely named within separate name-spaces

Proceedings of the Thirty-Sixth Australasian Computer Science Conference (ACSC 2013), Adelaide, Australia

13



and can have arbitrary properties. The following de-
scribes the standard events associated with each ele-
ment.

Node create / set properties Specifies the
unique identifier for the node and a list of
associated properties for the node in question
(such as a label or colour).

Node delete Deletes the node with the given iden-
tifier.

Activity start Specifies the start of a uniquely
named activity upon a particular node with a
list of associated properties for the activity (such
as colour or level).

Activity end Specifies the end of the activity with
the given identifier.

Edge create Specifies the unique identifier for the
edge, the identifiers for the head and tail nodes
of the edge, whether the edge is unidirectional or
bidirectional and a list of associated properties
for the edge in question (such as a label, colour
or weight etc).

Edge set properties Specifies the unique identifier
of an edge and a list of associated properties to
set for the edge at the given time of the event.

Edge delete Deletes the edge with the given identi-
fier.

Message send Message send events specify an iden-
tifier for the message, the identifier for the send-
ing node, a potentially associated edge via which
the message travels and a list of properties for
the message (such as a human readable descrip-
tion to display in the various visualisations). To
model causality of message events, these events
also specify a parent message which caused this
message send to occur.

Message receive Specifies the unique identifier of
the message and the node which is receiving the
message.

Since all events specify a time-stamp, replay is able
to reconstruct the sequence of events for the system
through time, and allows the ability to step through
the sequence both forwards and backwards through
time. From the sequence of events, replay constructs
three different but related views of the system. Fig-
ure 1 shows a screen capture of the main replay win-
dow displaying these three views:

Timeline view This is positioned at the top of the
window and shows the state of nodes and their
interactions through time.

Causal message tree view This view is placed at
the left of the window and is designed to show
the causal relationship between messages sent /
received between nodes.

Network graph view This is situated on the right
hand side of the main window, and is designed to
show the graph of nodes within the system and
how they are interconnected, along with their in-
dividual states, at a given point in time.

2.2 Timeline view

The timeline view presents a two dimensional view of
the behaviour of nodes through time. Nodes are listed
along the vertical axis, while time is plotted along
the horisontal axis. A number of visual attributes
are used to show the different states of nodes through
time:

Node lifetime A thin line drawn in the node’s base
colour is drawn from the time of the node cre-
ate event to the time of the corresponding node
delete event.

Node activity The timeline view represents activ-
ity in a similar way to the network graph, us-
ing the activity level to determine the intensity
of the activity colour. A thick coloured line is
drawn in the current activity colour / level, and
runs from the time of each activity change event
to the next. An activity level of zero (the idle
state) is indicated by the absence of this line.

Message flow Message send / receive event pairs
are indicated by arrows drawn from the node
which sent the message to the node which re-
ceived the message.

Current time The timeline clearly indicates the
current point in time using a thin line, with the
region in the past shaded behind it.

This view is designed to show the concurrency and
message passing characteristics of the system across
time, and is similar to existing visualisations for par-
allel message passing systems [18, 29, 14]. By pairing
together events, the timeline view is able to clearly
show the duration of each interval, such that com-
munication patterns, message passing latencies, and
active / idle times are clearly visible.

The timeline view allows the user to zoom in and
out, providing an infinite zoom resolution to allow the
exact timing of events to be clearly represented and
determined.

2.3 Causal message tree view

While replay allows events to be stepped through se-
quentially, the representations provided by the other
two views give limited insight into the causal rela-
tionship of messages within the system. To address
this, replay includes a third view, the causal mes-
sage tree. Message send / receive events specify an
identifier for the current message, as well as a po-
tential parent message identifier which refers to the
message event (if any) which caused the current one.
This allows the message tree to be easily specified
and constructed. Message send and receive events for
the same message are aggregated into a single entry
within the tree, as the causality of these events is di-
rectly linked (the receipt of a message is always the
result of the corresponding send).

This view is situated at the lower left of the win-
dow, and lists the node which sent the message on the
left, along with the message label on the right. Nodes
are coloured with their corresponding base / activity
colour, depending on their activity level at the time
of the message send event.

This view is similar to the message-order view of
Causeway [27], a message oriented postmortem de-
bugger, and provides a visual representation of the
causality for the current message event. This view is
particularly suited to analysing interactions between

CRPIT Volume 135 - Computer Science 2013

14



Figure 1: Main replay window showing the three unified views

Proceedings of the Thirty-Sixth Australasian Computer Science Conference (ACSC 2013), Adelaide, Australia

15



nodes, such as in software development (i.e. repre-
senting the control flow via method calls between ob-
jects in an object-oriented software system).

2.4 Network graph view

The network graph view is situated to the right of the
main window, and displays a three dimensional rep-
resentation of the overall graph of the system. As the
sequence of events is stepped through in time, the
graph is constructed using the node create / delete
and edge add / remove events. The primary pur-
pose of this view is to show the connectivity of nodes
within the system, as well as their current state, and
finally to annotate the view with messages as they
pass between nodes. As a result, a number of specific
features have been incorporated into this view.

Like many existing visualisations which focus on
the connectivity within a graph [16, 19] a force-
directed model is used to layout the graph. All
nodes repel each other with an inverse gravitational
(Coulombic repulsion) force, while neighbors attract
one another using a spring-modeled force. Unlike the
two visualisation models cited previously, nodes in re-
play have a ‘mass’ which is proportional to the total
number of connections they have. Nodes are then
drawn with a size proportional to this mass (assum-
ing a constant density), and the inverse gravitational
repulsive force calculations take this value of mass
into account. By adding this property, nodes which
are highly connected (and hence, for example, have
greater ‘authority’ as defined by [17]) are significantly
larger and are placed further away from less connected
nodes. This creates a visual representation where the
highly connected nodes are easily discerned due to
their placement and size within the overall graph.

Nodes are coloured using the ‘color’ property
value, and activities are drawn as a glow around the
node in the designated colour and at the designated
intensity (using the ‘color’ and ‘level’ properties of
the activity respectively). Multiple concurrent activ-
ities on a node result in blending of their respective
colours at their respective intensities.

The graph is also annotated with the labels of mes-
sage send and receive events as these events occur,
along with the name for the corresponding node. By
overlaying these labels alongside the node with which
they are associated, the flow of messages within the
system is able to be represented along with the state
of the system as these events occur.

This view is able to be controlled by the user, pro-
viding the ability to center the view on a particular
node of interest, zoom in and out, or arbitrarily rotate
the viewpoint around the current center. By default
node and edge properties are hidden, but are exposed
when the user places the mouse over the node or edge
of interest. This allows the graph to be easily un-
derstood by showing only the vital information, but
provides an effective way to allow the user to reveal
relevant information as required. Finally, the user
can also interact directly with the graph and move
the nodes within it to determine how this affects the
overall graph layout.

2.5 Synchronisation of views and interaction

While each of the three views provides its own unique
representation of underlying the system, we believe
the real advantage of replay is the combination of all
three views. As a result, all three views use similar
representation (such as node colour) and remain syn-
chronised at all times, to ensure a consistent represen-
tation of the event sequence, and hence the underlying

system itself. This is an important feature, since it
helps to highlight relationships between the views and
allows the different information presented within the
views to complement one another [28]. Also, by us-
ing consistent representations within all three views,
replay reduces the cognitive load on the user to un-
derstand the underlying data. As a result, this frees
the user, allowing them to process large amounts of
complex data quite easily, due to the natural cogni-
tive abilities of the human visual system [7].

replay also employs user interaction within all
views to allow the user to jump to certain events,
and to manipulate the displays of the views. For ex-
ample, selecting a message within the message tree
causes both the network graph and timeline views to
jump to that event in the event sequence, and simi-
larly, events can also be selected in the timeline view.

Finally, both the message tree and graph view al-
low the user to search for a message or node by name
respectively to easily locate items of interest.

2.6 Filtering

In many large systems the number of nodes, and
their interconnections and communications, can pro-
duce quite complex visualisations where the finer de-
tails of the system are obscured. To deal with this
complexity, a number of techniques for automatically
simplifying the overall graph structure have been ex-
plored [8, 19]. In replay we also provide a means for
filtering the graph, providing the user with direct con-
trol over which properties to filter from the display as
well as providing the ability to implement automatic
filtering through the plug-in extension system as de-
scribed in Section 2.7.

Filters can be created which specify a list of spe-
cific nodes, or a glob [12] style pattern to match the
names of nodes, against which the filter is applied.
The filter can then specify that these nodes are either
grouped, or hidden, or can override the properties
(colour etc.) of the nodes. Groups are then rep-
resented as the aggregate of their component nodes
within the different visualisations. The timeline view
uses a single entry which draws the timelines of the
component nodes overlayed upon one-another, while
the network graph represents a group as a single node
with the combined mass of its components, hiding all
internal edges between nodes within the group. Hid-
den nodes are removed from all views (and any edges
or messages in which they are involved).

This allows the user to selectively hide extraneous
information while retaining that which is pertinent
to the current analysis. This in turn allows the user
to reduce their cognitive load and hence focus on the
problem at hand. The use of such filtering has been
successfully demonstrated in the analysis of Annex
object capability based software [23], which will be
explored in Section 3.1.

2.7 Plug-in / Extension system

Originally replay was built as a tool to help analyse
and debug the Annex object capability system and,
as a result, was initially tailored to suit the specifics
of Annex. However, it was soon realised that the dif-
ferent visualisations within replay could be very use-
ful in analysing other systems including other object-
capability / object-oriented programming systems or
social networks. A plug-in system was developed to
enable replay to be easily extended and used to visu-
alise other diverse, inter-connected systems.

Plug-ins can be used to extend replay in multiple
ways:

CRPIT Volume 135 - Computer Science 2013

16



Event Sources The initial motivation for the de-
velopment of the plug-in system was to provide
support for the translation of custom data sets
into the specific events described in Section 2.1.
Hence plug-ins can provide and register event
sources for the main replay application, allowing
replay to easily support a wide range of systems.
Multiple types of event sources are supported,
including disk-based file sources for offline visu-
alisation, or network connected sources for visu-
alisation of live systems.

Analysis Plug-ins also have access to the various
data-structures within the core application, such
as the sequence of events, the node-edge graph,
and the list of filters. This allows for a number
of extensions to be implemented, such as perfor-
mance analysis or automatic filtering by the cre-
ation of custom filters. As an example, a plug-in
could easily analyse the graph at a given point
in time to determine disjoint sub-graphs. By ac-
cessing the filter list, it could then create filters
to select the nodes in each separate graph and
override their colours. This would then provide
a simple visual cue of the separate graphs to the
user without the need for manual intervention.

Extended Functionality The plug-in system has
been used to implement a number of the core
features for replay, including playback controls
(allowing the user to automatically play forwards
and backwards through the events), as well as the
filtering system presented in Section 2.6.

A number of plug-ins have been developed to ex-
tend the utility of replay.

Annex The original Annex specific code from replay
was re-factored into a single plug-in which inter-
prets the custom Annex event log and produces
appropriate replay events. An example of the
output from this is seen in Figure 1.

Java To demonstrate the utility of replay as a gen-
eral tool for the visualisation and analysis of
object-oriented programming languages, a plug-
in is being developed to interface with the output
from the OKTECH Profiler [2] for the Java Vir-
tual Machine to allow generic Java programs to
be visualised. This currently provides support
to visualise the object reference graph through
time, differentiating references obtained through
object creation, method invocation and return
value by using different colours for each. This
plug-in also provides the ability to view the ex-
ecution of methods upon objects through time
including their method signatures.

Due to limitations in the OKTECH profiler and
the nature of the Java garbage collector there is
currently no support for determining when refer-
ences are dropped, and so references simply accu-
mulate in the graph. Even without this complete
support, we believe that with this existing plug-
in replay provides almost complete support for
the visualisation of Java programs, for which a
clear need has previously been identified [9].

FDR A plug-in has been developed to aid in the
task of formal analysis of object-capability se-
curity patterns [22] which translates the output
of the FDR [10] model checker into appropriate
replay events. This will be discussed further in
Section 3.2.

Graphvis A plug-in has also been developed to
translate the Graphvis [11] dot-format graph de-
scriptions into replay node and edge events to
allow these graphs to be visualised in an interac-
tive, three-dimensional display using the force-
directed layout of the network graph view.

Causeway The previously mentioned Causeway
message-oriented debugger was designed to de-
bug concurrent message passing systems such
as the object-capability E programming lan-
guage [20] and the Waterken web server [4]. We
have developed a plug-in to translate the Cause-
way message log format [1] into replay events to
allow these systems to be visualised.

By separating the logic required to parse and inter-
pret custom data sets into different plug-ins, we have
been able to focus on the core visualisation technolo-
gies within replay itself. The following section will
discuss the use of replay in the analysis of real-world
systems, describing its utility and benefits as a gen-
eral purpose visualisation tool.

3 Case studies

3.1 The Annex Capability System

The original motivation behind the development of
replay was to develop a tool for debugging and
analysing the security properties of the Annex object-
capability system (which will be referred to as simply
Annex for the sake of brevity). Annex serves as the
Trusted Computing Base (TCB) in a number of se-
cure devices developed by DSTO Australia [13, 23].
The Annex TCB is used to control the security pol-
icy for these devices, and hence the correctness of the
Annex system is crucial to ensuring the security of
the devices as a whole.

Within Annex, and other object-capability sys-
tems, objects can only communicate with one-another
by message passing, and they can only pass messages
if they have an appropriate capability which desig-
nates the other object. As a result the collection of
capabilities which an object possesses defines the au-
thority of the object within the system [20]. As capa-
bilities can be delegated from one object to any other
that they are already in communication with, the ob-
ject graph (where objects are nodes, connected via
capabilities) is a dynamic entity which is constantly
changing as the system evolves. The ability to easily
visualise this graph and hence quickly ‘see’ the secu-
rity policy / posture of the system embodied by the
graph was the primary motivation in the development
of replay. Once the graph view was developed, it was
also realised that as well as visualising the security
properties of the system, the ability to visualise the
behaviour of the system through time would also help
in analysis and debugging. Hence the timeline view
was added. Similarly, the need to track the causality
of messages (what caused this message to be sent) was
identified, and resulted in the addition of the message
tree view.

replay has served as a significant tool in the devel-
opment of Annex by allowing the entire execution of
the system to be visualised. This has been particu-
larly useful in a number of situations, some of which
are summarised in the follow sections.

3.1.1 Timing and race-conditions

Annex objects interact by method calls / returns
in a turn-based fashion using an asynchronous

Proceedings of the Thirty-Sixth Australasian Computer Science Conference (ACSC 2013), Adelaide, Australia

17



promise [20] model. An object is active and unin-
terruptable while processing a call (and this defines a
single turn for the object), but it is idle while waiting
for the response to other calls it makes. As a re-
sult, while waiting on the result from a call an object
has made, it can be invoked by either another incom-
ing call, or a response to a different call it has previ-
ously made, which will start the execution of a new,
independent turn. This feature of the Annex sys-
tems allows high levels of concurrency, since multiple
turns (and hence multiple method calls) can poten-
tially be interleaved without needing to wait for each
to synchronously execute, and also allows a high level
of parallelism to be achieved, while still guarantee-
ing atomicity between turns. However, without care-
ful attention to turn boundaries this feature can also
lead to potential race-conditions and security critical
bugs. replay has proved useful in helping to track
down these particular issues by clearly showing the
concurrent and interleaved execution of calls within a
single object. The Annex plug-in colours each differ-
ent call separately and so the interleaving of different
calls to a single object is clearly visible within the
timeline view, as seen in Figure 2.

This Figure shows the execution of the tor-
tureAsync application which comprises 1 driver ob-
ject (tortureAsync) and 16 worker objects oTor-
tureAsync repeatedly calling one-another, and is de-
signed to stress-test Annex’s message-passing perfor-
mance. The execution of the top-most oTortureAsync
object clearly demonstrates this interleaving. This
object is initially called by the driver tortureAsync
and starts execution (shown by the blue activity line)
and proceeds to call 4 of the other worker objects, in-
cluding itself. It then suspends execution to wait for
the returns from these calls. Almost immediately a
return is received from the first object which it called
(again shown by the same colour blue activity line),
at which point the initial call is resumed to store this
result, and execution is again suspended. However,
since the object is now idle, the call which it made
to itself is now delivered, shown by the green activ-
ity line. This starts a new turn, which is separate
from the one used to execute the original call (in-
dicated by the different colours) and clearly demon-
strates that these two calls have been interleaved on
this object. In interleaving these calls, if the second
call happens to modify state which the first call is ex-
pecting to remain constant, then a race-condition will
result. However, the timeline view of replay clearly
allows this to be identified and flagged to the pro-
grammer. It should be noted that the causal view will
not help identify this same potential for error since it
only highlights the causal, i.e. partial ordering, not
total ordering.

Figure 2 also clearly shows the ability to measure
the time taken to execute particular calls - the time
taken to execute the call from tortureAsync to each of
the worker oTortureAsync’s is clearly longer than the
time taken to execute the calls made between each
worker object.

3.1.2 Authority analysis

As the purpose of the tortureAsync application is
to simply make repeated calls between each of the
worker objects, there is no need for these objects to
have capabilities to any other object within the sys-
tem, except for the other worker objects. This design
follows the principle of least authority, which states
that an object should only have the minimum author-
ity required to perform its intended function, and no
more [21]. We can easily analyse the authority of the

application by inspecting the object graph within the
network graph view of replay, as shown in Figure 3.

From simple inspection of the Figure, we can see
the 16 worker objects of the application situated in
the bottom right, with the rest of the objects com-
prising the other applications of the system in the
left of the Figure. It is clear that these are two dis-
tinct and separate graphs, i.e. there are no capa-
bilities connecting the worker objects to the rest of
the system. replay therefore provides the ability to
quickly verify the intended security-related isolation
properties of this system by simple inspection of the
graph. While this is clearly useful, the usability of vi-
sual inspection decreases with the complexity of the
system at hand. Therefore for more complex analysis,
as previously mentioned, the plug-in system provides
the ability to directly access various data structures
maintained by replay (such as the graph structure),
allowing programmatic analysis of various properties
of the system to be implemented as needed.

3.2 FDR Model Checker

The FDR plug-in was developed to visualise the
trace output from the FDR model checker [10] when
analysing CSP [15, 25] models of object-capability se-
curity patterns [22]. Communicating Sequential Pro-
cesses (CSP) is a process algebra used to describe
concurrent message-passing systems and allows for-
mal models of such systems to be constructed. The
correctness of such formal models can be stated and
tested using refinement checks which can be evalu-
ated by the Failures-Divergences-Refinements (FDR)
model-checker to ensure correctness of the system.
Murray [22] describes the use of CSP to model object-
capability security patterns and the use of FDR to
test the security properties of such models: CSP is
used to construct a model for the object-capability
pattern, which expresses the desired security proper-
ties for the system as well as the potential behaviour
of its components. FDR is then used to test whether
these security properties hold, and if not will return
a counter example of the system’s behaviour which
violates the properties. One such counter-example,
taken from the work of Murray [22] in analysing the
Sealer-Unsealer pattern for object-capability systems
is as follows:

TheDriver.Alice.Call.null,
Alice.TheUnsealer.Call.Alice,
TheUnsealer.TheSlot.Call.null,
TheSlot.TheUnsealer.Return.null,
TheUnsealer.Alice.Call.null,
Alice.TheDriver.Return.null,
TheDriver.Bob.Call.null,
Bob.TheBox.Call.null,
TheBox.TheSlot.Call.TheCash,
TheSlot.TheBox.Return.null,
TheBox.Bob.Return.null,
Bob.TheDriver.Return.TheBox,
TheDriver.Alice.Call.null,
Alice.TheUnsealer.Return.null,
TheUnsealer.TheSlot.Call.null,
TheSlot.TheUnsealer.Return.TheCash,
TheUnsealer.Alice.Return.TheCash,
Alice.TheCash.Call.TheDriver

From this trace output alone, and with no prior
background information as to the example, it is al-
most impossible to determine the error which this
counter-example expresses. However when visualised
by replay (Figure 4), one aspect stands out as anoma-
lous.

CRPIT Volume 135 - Computer Science 2013

18



Figure 2: Timeline view of replay highlighting the interleaving of calls within objects in the tortureAsync
application of the Annex system

Figure 3: The Object-Capability Graph for the Annex system executing the tortureAsync application as
depicted by the network graph view of replay. Note the complete isolation of the two graphs.

Proceedings of the Thirty-Sixth Australasian Computer Science Conference (ACSC 2013), Adelaide, Australia

19



Figure 4: Message tree and timeline views of replay when analysing the output from the FDR model checker

Without any other knowledge of the system to
inform our analysis, we can see the potential error
clearly: the object Alice is called by TheUnsealer
but then proceeds to return to TheDriver. This se-
quence of events is impossible in languages which im-
pose strict call / return semantics, and indeed is re-
sponsible for the error in the model. By using replay
to visualise this sequence of events we are able to
quickly and easily identify the error in the model, a
task which is not so easily accomplished by simply
looking at the raw trace output alone. This example
demonstrates the utility of replay in translating the
user unfriendly output from this formal analysis tool
into a much more easily understood visual form.

4 Related Work

Various individual aspects of replay are similar to ex-
isting visualisation tools. For example, the use of a
three-dimensional force-directed network graph view
is common for visualising scale-free networks [16, 19,
6, 3]; the causal message tree view is similar to that
employed by Causeway [27]; and the time-line is also a
standard technique for showing parallelism and mes-
sage passing within systems [18, 29, 14] .

However, although the individual visualisations
used by replay are not new, the combination of all
three views plus an event model and plugin system
make replay unique and interesting. We are not aware
of any other tool which combines such disparate visu-
alisations in such a coherent manner to provide a com-
prehensive system for understanding how networks
change through time.

5 Future work

While Annex provided the initial motivation for the
development of replay, the current and future direc-
tions for the project lay in applying the general in-
formation visualisation abilities of replay to a wider
range of systems. The existing list of plug-ins al-
ready developed shows the ability of replay as a vi-
sualisation tool for general object-capability / object-
oriented programming systems, and for general par-
allel, message passing systems.

Although replay has proven effective in visualising
numerous software systems, we believe it would also
be apt in visualising a wide range of existing real-
world interconnected systems such as WWW hyper-
link networks and computer networks including real-

time data flows within such networks. replay could
also be useful when applied within the field of foren-
sic analysis of computer systems to visualise commu-
nication networks of suspects, and we believe replay
would also be well suited to visualising real world so-
cial networks. The network graph view of replay is
quite similar to existing social network graph visual-
isations [26, 16], and so is well suited to visualising
the structure of such networks. We also believe the
timeline view showing interactions through time, as
well as the causal view showing the relationships be-
tween communications would provide valuable insight
in understanding these networks which the previously
cited tools do not provide. We also believe a similar
approach could be used to visualise the transmission
of email or instant messages, to determine the struc-
ture and behaviour of such communications.

While the manual filtering already provided by re-
play allows easy analysis by removing extraneous in-
formation, it does not yet apply to the causal message
tree view, but this could be done in the future. It
would also be useful to investigate the utility of ap-
plying automatic filtering and grouping mechanisms
via the plug-in system, as well as implmenting various
graph and performance analysis algorithms.

Finally, extensions to the plug-in system enabling
other visualisations of the existing data structures,
such as different layout algorithms for the network
graph view, could also be developed.

6 Conclusion

In this paper we have presented replay, a novel tool
for the visualisation of concurrent networked systems.
We have shown the unique aspects of replay including
its programmable event model and its three synchro-
nised and related visualisations. The plug-in system,
which allows replay to be applied to a wide variety of
applications has also been presented and a number of
existing uses of replay have been described, demon-
strating its clear utility. Finally, we have contrasted
replay against existing tools and presented possible
future directions for this work. We believe that the
use of a generic, programmable event model, the com-
bination of the three different but consistent views of
these events and an extensible plug-in system make
replay a unique tool with both a high degree of us-
ability and utility for the visualisation and analysis of
networked, parallel systems.

CRPIT Volume 135 - Computer Science 2013

20



References

[1] Debugging a Waterken application. Available on-
line - http://waterken.sourceforge.net/debug/.

[2] OKTECH Profiler. Available online -
http://code.google.com/p/oktech-profiler/.

[3] Walrus - graph visualiza-
tion tool. Available online -
http://www.caida.org/tools/visualization/walrus/.

[4] Waterken server documentation. Available on-
line - http://waterken.sourceforge.net/.

[5] A.-L. Barabasi and R. Albert. Emergence of scal-
ing in random networks. Science, 286, 1999.

[6] M. Bastian, S. Heymann, and M. Jacomy. Gephi:
An open source software for exploring and ma-
nipulating networks. In Proceedings of the Inter-
national AAAI Conference on Weblogs and So-
cial Media, 2009.

[7] S. K. Card, J. D. Mackinlay, and B. Shneider-
man, editors. Readings in Information Visual-
ization: Using Vision to Think. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA,
1999.

[8] G. Concas, M. Marchesi, S. Pinna, and N. Serra.
Power-laws in a large object-oriented software
system. IEEE Trans. Softw. Eng., 33(10):687–
708, 2007.

[9] C. Exton and M. Kölling. Concurrency, objects
and visualisation. In ACSE ’00: Proceedings of
the Australasian conference on Computing ed-
ucation, pages 109–115, New York, NY, USA,
2000. ACM.

[10] Formal Systems (Europe) Limited. Fail-
ures Divergences Refinement - FDR2
User Manual, 2009. Available online -
http://www.fsel.com/documentation/fdr2/html/.

[11] E. R. Gansner and S. C. North. An open graph
vizualisation system and its applications to soft-
ware engineering. Software - Practice and Expe-
rience, 30:1203–1233, 1999.

[12] GNU. GLOB(7) - glob - globbing pathnames, Au-
gust 2003. Linux Programmer’s Manual ‘man’
page - http://www.kernel.org/doc/man-pages/.

[13] D. A. Grove, T. C. Murray, C. A. Owen, C. J.
North, J. A. Jones, M. R. Beaumont, and
B. D. Hopkins. An overview of the Annex sys-
tem. In Computer Security Applications Confer-
ence, 2007. ACSAC 2007. Twenty-Third Annual,
pages 341–352, December 2007.

[14] M. T. Heath and J. A. Etheridge. Visualizing the
performance of parallel programs. IEEE Soft-
ware, 8(5):29–39, 1991.

[15] C. A. R. Hoare. Communicating Sequential Pro-
cesses. Prentice Hall, 1985.

[16] Y. Jia, J. Hoberock, M. Garland, and J. Hart.
On the visualization of social and other scale-free
networks. IEEE Transactions on Visualization
and Computer Graphics, 14(6):1285–1292, 2008.

[17] J. M. Kleinberg. Authoritative sources in a hy-
perlinked environment. Journal of the ACM,
46(5):604–632, 1999.

[18] E. Kraemer and J. T. Stasko. Creating an ac-
curate portrayal of concurrent executions. IEEE
Concurrency, 6(1):36–46, 1998.

[19] G. Kumar and M. Garland. Visual exploration
of complex time-varying graphs. IEEE trans-
actions on visualization and computer graphics,
12(5):805, 2006.

[20] M. S. Miller. Robust Composition: Towards a
Unified Approach to Access Control and Concur-
rency Control. PhD thesis, Johns Hopkins Uni-
versity, Baltimore, Maryland, USA, May 2006.

[21] M. S. Miller and J. S. Shapiro. Paradigm re-
gained: Abstraction mechanisms for access con-
trol. In Proceedings of the 8th Asian Computing
Science Conference (ASIAN03), pages 224–242,
December 2003.

[22] T. Murray. Analysing object-capability security.
In Proceedings of the Joint Workshop on Founda-
tions of Computer Security, Automated Reason-
ing for Security Protocol Analysis and Issues in
the Theory of Security (FCS-ARSPA-WITS’08),
2008.

[23] C. Owen, D. Grove, T. Newby, A. Murray,
C. North, and M. Pope. PRISM: Program Repli-
cation and Integration for Seamless MILS. In
Proceedings of the 2011 IEEE Symposium on
Security and Privacy, SP ’11, pages 281–296,
Washington, DC, USA, 2011. IEEE Computer
Society.

[24] A. Potanin, J. Noble, M. Frean, and R. Biddle.
Scale-free geometry in OO programs. Commun.
ACM, 48(5):99–103, 2005.

[25] A. W. Roscoe. The Theory and Practice of
Concurrency. Prentice Hall PTR Upper Saddle
River, NJ, USA, 1997.

[26] L. Shi, N. Cao, S. Liu, W. Qian, L. Tan,
G. Wang, J. Sun, and C. Lin. HiMap: Adap-
tive visualization of large-scale online social net-
works. In Proceedings of the 2009 IEEE Pacific
Visualization Symposium-Volume 00, pages 41–
48. IEEE Computer Society, 2009.

[27] T. Stanley, T. Close, and M. S. Miller. Cause-
way: A message-oriented distributed debugger.
Technical report, HP Laboratories, 2009.

[28] M. Q. Wang Baldonado, A. Woodruff, and
A. Kuchinsky. Guidelines for using multiple
views in information visualization. In AVI ’00:
Proceedings of the working conference on Ad-
vanced visual interfaces, pages 110–119, New
York, NY, USA, 2000. ACM.

[29] J. Yan, S. Sarukkai, and P. Mehra. Perfor-
mance measurement, visualization, and model-
ing of parallel and distributed programs using
the aims toolkit. Software Practice and Experi-
ence, 25(8):429–461, 1995.

[30] Y. Yao, S. Huang, Z. ping Ren, and X. ming Liu.
Scale-free property in large scale object-oriented
software and its significance on software engi-
neering. Information and Computing Science,
International Conference on, 3:401–404, 2009.

Proceedings of the Thirty-Sixth Australasian Computer Science Conference (ACSC 2013), Adelaide, Australia

21



CRPIT Volume 135 - Computer Science 2013

22




